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ABSTRACT 

Incorporating geophysical technologies into forensic investigations has become a 

growing practice. Oftentimes, forensic professionals rely on basic metal detectors to assist their 

efforts during buried weapons searches, perhaps being used by someone with negligible or 

limited training, in turn slowing down investigation time and destroying the scene.  This has 

created a need for research in the area of weapons searches, specifically to formulate guidelines 

for advanced geophysical methods that may be appropriate for locating weapons that have been 

discarded or buried by criminals attempting to conceal their involvement in a crime.   

This research project was the first to demonstrate the utility of geophysical technologies 

at a crime scene or a suspected weapon burial site by detecting and identifying specific types of 

buried metal targets, including an array of firearms.  Controlled testing of 32 buried targets 

(including sixteen decommissioned street-level firearms, six pieces of assorted scrap metals, and 

ten blunt or bladed weapons) was conducted using a basic all-metal detector, an advanced metal 

detector, and a magnetic locator.  Overall, a number of important conclusions were drawn from 

the research project.  All forensic targets included in the project were detected with the basic all-

metal detector, but only down to the shallower depths.  The magnetic locator provided the 

deepest detection for the largest firearms, scrap metals, and miscellaneous weapons.  However, 

not all forensic targets included in the project were detected due to the detection capabilities 

inherent to the magnetic locator (i.e. only detecting ferromagnetic items).  The advanced metal 

detector was best suited for detecting the handguns and was able to detect most of the targets, 

excluding a number of items comprised of iron, down to deeper depths using the factory presets.                  
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I. INTRODUCTION 

Forensic evidence searches require a multidisciplinary team of investigators, volunteers, 

specialists, and additional resources, and can be laborious tasks.  Incorporating geophysical 

technologies into forensic investigations is a growing practice because of the confounding issues 

inherent to locating buried bodies and evidence (Connor and Scott, 1998; Davenport et al., 1992; 

Dupras et al., 2006; France et al., 1997; Goddard, 1977; Hunter and Cox, 2005; Isaacson et al., 

1999; Killam, 2004; Murray and Tedrow, 1975; Nielsen, 2003; Ruffel and McKinley, 2005; 

Schultz et al., 2006; Schultz, 2007).  Oftentimes, forensic professionals rely on basic equipment 

to assist in their efforts; for instance, buried weapons searches frequently incorporate metal 

detectors into the process, perhaps used by someone with negligible or limited training.  A high 

number of false hits that need to be physically checked by digging may then be produced, 

slowing down investigation time, and destroying the scene.  Those limitations have created a 

need for controlled research in the area of buried weapons searches, specifically to formulate 

guidelines for advanced geophysical methods that may be appropriate for locating weapons that 

have been discarded or buried by criminals attempting to conceal their involvement in a crime.   

Prior to the following research project, published controlled forensic research involving 

the use of geophysical technologies to locate and identify buried objects has been mainly limited 

to replicated archaeological features and buried pig cadavers serving as proxies for human 

remains (Connor and Scott, 1998; Davenport et al., 1992; France et al., 1997; Isaacson et al., 

1999; Rowlands and Sarris, 2007; Schultz et al., 2006; Schultz, 2007; Scott et al., 1989).  

Controlled settings provide an opportunity to demonstrate the capabilities of utilized 

technologies, to test innovative geophysical tools or new software, and to improve standard 

http://www.terraplus.ca/case-histories/davenport.htm
http://www.terraplus.ca/case-histories/davenport.htm
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geophysical detection methods.  Research methods utilized in the controlled context must be 

similar to those methods that will be practiced in the field, creating guidelines for replicable 

results during real-world search scenarios.        

Controlled Research Design 

The current research project was the first to demonstrate the utility of geophysical 

technologies at a crime scene or a suspected weapon burial site by detecting and identifying 

specific types of buried metal objects, including an array of firearms.  In addition, the controlled 

setting of this research allowed for the opportunity to improve standard geophysical detection 

methods which are used in the search for street-level firearms commonly used in crimes which 

have been buried for the purpose of concealing or discarding them.   

Controlled testing of 32 buried targets (including sixteen decommissioned street-level 

firearms, six pieces of assorted scrap metals, and ten blunt or bladed weapons) was conducted 

over two years.  The scrap metals and miscellaneous weapons have been included to test the 

discrimination function of the advanced metal detector and to allow for a wider variety of metals 

to be tested on all three of the geophysical tools.   

As this project utilizes controlled research conditions, a probe was used to locate the 

target prior to detection, allowing for readings to be confirmed on the target, not an unknown 

object or iron concretion in the soil.  Quality control procedures were also established to account 

for soil compaction and weather concerns.  Soil compaction did not seem to affect target 

detection, as loose soil and the compact soil of the control graves did not provide any results.  

However, due to inconsistent results during periods of rain or wet soil, all targets were retested 
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individually with all three geophysical tools, with two additional projects members providing 

inter-observer confirmation of the author’s results.  After first testing each hole to be sure there 

were no metal components that would skew results, targets were tested both in their burial 

location in the grid, and also in the control hole in both a north/south and east/west direction.  

Taking into consideration that the research site is a live firearms range, each hole was tested for 

metallic items such as bullet fragments or ricochets each visit.           

Geophysical Tools Tested 

Due to their steady use in archaeology and forensics, their accessibility, and their 

efficiency, many law enforcement agencies will find the tools used for this research project easy 

to find, relatively inexpensive, and easy to use.  The geophysical tools included in this research 

are designed to detect metallic objects and provide consistent readings, allowing for dependable 

results which should be replicable during real-world forensic search scenarios.  Included in this 

research project were: (1) a Fisher M-97 basic all-metal detector (2) a Schonstedt GA-72Cd® 

magnetic locator, which detects differences in the earth’s magnetic field (3) and a Minelab 

Explorer II advanced metal detector, which provides “signature” ferrous and conductivity 

readings, allowing for metal discrimination.  Control readings of detection and signature ranges 

(if applicable) were taken for each weapon with each geophysical tool prior to their burial.  

Starting at 20-25 cm, the weapons were subsequently tested at a number of depths.    

Utilization of the aforementioned geophysical technologies allowed for the following 

objectives to be addressed: (1) To test the ease with which these geophysical technologies may 

be used to detect buried weapons with little operator training; (2) To determine what effects the 
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metallic composition of the weapons have on their detection; (3) To determine which instrument 

is better at detecting specific weapons; (4) To determine maximum depth at which these objects 

may be detected with these three tools; (5) To provide guidelines for forensic investigators using 

geophysical tools so that they are better prepared to search for buried firearms. 

Thesis Outline 

The following chapters detail results of the controlled research conducted.  Chapter two 

discusses the utilization of both a basic all-metal detector and a magnetic locator, illustrating 

similarities and differences between the two when searching for buried metallic items.  

Advantages and disadvantages were found for both technologies, and are discussed at length.  

Chapter three discusses the abilities of an advanced metal detector to locate and identify 

suspected metal targets.  Information regarding the association of metal composition and 

“signature” readings has also been gathered from the Explorer II.  The final chapter focuses on 

the project as a whole, discussing guidelines which will assist crime scene officials in 

determining which geophysical tools should be used at a suspected weapon burial site, depending 

upon which type of metallic item is being searched for.    
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II. CONTROLLED RESEARCH UTILIZING A BASIC ALL-METAL 

DETECTOR AND A MAGNETIC LOCATOR 

Criminals may go to great lengths to conceal their involvement in a crime by discarding 

or burying the weapon used in the commission of a crime.  Locating discarded or buried metallic 

weapons, such as firearms, often involves the use of a variety of search methods and 

technologies.  Depending upon the size and composition of the weapon, forensic scene 

professionals may incorporate advanced search methods to locate or identify the suspected 

weapon.  Search methods or technological instruments appropriate for an investigation depend 

upon diverse factors, including location, weather, timeframe, object being searched for, and 

available specialists (Davenport, 2001; Dupras et al., 2006; Hunter and Cox, 2005; Killam, 2004; 

Nickell and Fischer, 1999; Schultz, 2007).  When metallic weapons such as firearms are being 

searched for, advanced search methods are often required to locate or identify the suspected 

weapon.  Key components in many of these advanced searches are geophysical technologies. 

Geophysical methods respond to acoustic, electrical, magnetic or electromagnetic 

changes in the earth, and are utilized by forensic professionals when searching for victims, 

weapons, or criminals (Hunter and Cox, 2005; Killam, 2004; Schultz, 2007; Schultz et al., 2006).  

A large part of archaeological methods, geophysical tools are non-intrusive remote sensing 

technologies that are used in the location, identification, and recovery of buried objects. The 

appropriate geophysical tool can be used to recognize anomalies or hot-spots of contrasting 

properties in the soil (Connor and Scott, 1998; Davenport, 2001; Dupras et al., 2006; Hunter and 

Cox, 2005; Isaacson et al., 1999; Murray and Tedrow, 1975; Rowlands and Sarris, 2007; Ruffell 

and McKinley, 2005; Schultz et al., 2006; Schultz, 2007).   Geophysical technologies provide a 
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measurable advantage in that some types can be utilized when and where other geophysical 

technologies cannot be; for instance, over concrete or salt water.  The greatest advantage of non-

intrusive methods lies within their ability to preserve the integrity of the ground surface (Dupras 

et al., 2006; Schultz et al., 2006; Schultz, 2007).  

Non-intrusive methods cause minimal, if any, disturbance to the ground surface, and are 

used to search for evidence both above and below ground (Dupras et al., 2006; Hunter and Cox, 

2005; Killam, 2004; Nickell and Fischer, 1999; Schultz, 2007).  Non-intrusive techniques 

include visual search lines to locate evidence of a burial or surface scatter, cadaver dogs to assist 

in the location of a grave, and geophysical technologies to locate buried evidence (Davenport, 

2001; Dupras et al., 2006; Hunter and Cox, 2005; Killam, 2004; Schultz et al., 2006; Schultz, 

2007).  Utilization of non-intrusive geophysical technologies not only allows for the location of 

objects, but also to clear the area in question, disproving allegations of burial and also allowing 

for searches to be directed elsewhere (Connor and Scott, 1998; Davenport, 2001; Dupras et al., 

2006; Hunter and Cox, 2005; Nickell and Fischer, 1999; Schultz et al., 2006; Schultz, 2007).  

Since these technologies vary in what they are able to detect, the fact that one tool does not 

locate an anomaly does not mean that the area is clear (Hunter and Cox, 2005; Schultz et al., 

2006).   

However, if an anomaly is detected, it is left up to the operator’s experience and 

knowledge of the surrounding area whether or not to investigate it.  If there is a high amount of 

metal debris, large tree roots, clay soil, underground utilities, rocky terrain, or other similar 

situations, many geophysical technologies will be of little use for the detection of weapons, 
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graves, or other buried objects (Hunter and Cox, 2005; Schultz et al., 2006; Schultz, 2007).  

Intrusive methods cause moderate to severe ground destruction, and are ideally used after the 

non-intrusive techniques have either been exhausted or have pinpointed an anomaly.  If an area 

warrants further examination, intrusive techniques may be used to locate and recover the object 

in question (Davenport, 2001; Dupras et al., 2006; Hunter and Cox, 2005; Killam, 2004; Nickell 

and Fischer, 1999; Schultz, 2007).   

Advantages and disadvantages are evident in both non-intrusive and intrusive methods.  

The greatest advantage of non-intrusive methods lies within their ability to preserve the integrity 

of the ground surface; however, this limits the ability to identify and recover what has been 

buried.  Basic non-intrusive methods do not require heavy equipment or the need for trained 

specialists, while advanced non-intrusive techniques, as well as most intrusive methods, often 

require that the participants be trained specialists in their areas (Dupras et al., 2006; Hunter and 

Cox, 2005; Killam, 2004; Nickell and Fischer, 1999; Schultz et al., 2006; Schultz, 2007).  

Disadvantages of intrusive techniques include loss of context or association of evidence, 

destruction of ground surface, scene, or evidence, and that they may impede the reconstruction of 

events if not utilized properly (Davenport, 2001; Dupras et al., 2006; Hunter and Cox, 2005; 

Killam, 2004; Schultz, 2007).  From walking a basic visual search line to incorporating advanced 

geophysical technologies to proper excavation techniques, the location and recovery of evidence 

is the goal of any forensic search (Connor and Scott, 1998; Davenport, 2001; Dupras et al., 2006; 

Schultz et al., 2006;).  
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Geophysical technologies fall into two categories for measuring geologic signals: passive 

or active.  Passive tools simply measure those signals inherent to the earth’s physical properties, 

while active methods transmit human-made signals into the ground and measure any signals 

received from an object in the ground (Davenport, 2001; Dupras et al., 2006; Killam, 2004).  

Examples of active geophysical instruments include metal detectors, conductivity meters, 

resistivity meters, and ground-penetrating radar (GPR), while magnetic locators are passive tools 

(Connor and Scott, 1998; Davenport, 2001; Dupras et al., 2006; Garrett, 1998; Hunter and Cox, 

2005; Isaacson et al., 1999; Murray and Tedrow, 1975; Nelson, 2004; Nielson, 2003; Rowlands 

and Sarris, 2007; Ruffell and McKinley, 2005; Schultz et al., 2006; Schultz, 2007).   

Geophysical Technologies in Archaeology and Forensics 

Archaeologically, geophysical techniques have run the gamut from finding small metal 

artifacts to reconstructing features (Connor and Scott, 1998; Isaacson et al., 1999; Murray and 

Tedrow, 1975; Rowlands and Sarris, 2007; Scott et al., 1989).  Forensically, geophysical 

techniques have proven useful for the identification of buried ordnance (Garrett, 1998; Nelson, 

2004; Ruffell and McKinley, 2005), other metallic evidence (Davenport, 2001; Dupras et al., 

2006; Garrett, 1998; Nielson, 2003; Ruffell and McKinley, 2005), and the location of buried 

bodies (Davenport et al., 1992; Davenport, 2001; Dupras et al., 2006; France et al., 1997; Schultz 

et al., 2006; Schultz, 2007).   

The advantages of geophysical technologies in archaeological or forensic investigation 

include minimal disturbance to ground surfaces, in-field results, and the ability to conduct a 

search discreetly. Disadvantages of these technologies include time constraints, the need for an 
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experienced handler for some technologies (GPR and resistivity meters), and also the cost (GPR 

and conductivity meters) (Dupras et al., 2006; Rowlands and Sarris, 2007; Schultz et al., 2006; 

Schultz, 2007).  The non-intrusive characteristic of geophysical search methods is the most 

beneficial in terms of crime scene investigation where an area needs to be preserved for future 

reference (Dupras et al., 2006; Hunter and Cox, 2005; Killam, 2004; Schultz, 2007).  While these 

techniques are quite useful at forensic scenes, many law enforcement personnel often view them 

as too complicated due to a lack of familiarity with the technology (Hunter and Cox, 2005; 

Schultz et al., 2006).   

Metal detectors, in particular, are non-intrusive geophysical technologies that have a long 

history of use in both archaeological and forensic contexts (Connor and Scott, 1998; Davenport, 

2001; Garrett, 1998; Goddard, 1977; Isaacson et al., 1999; Murray and Tedrow, 1975; Nelson, 

2004; Nielson, 2003; Nickell and Fischer, 1999).  Two interesting historical facts, according to 

Nelson (2004), are that the first known metal detector was used approximately 200 years ago by 

a Chinese Emperor in the form of a magnetic door which attracted weapons and other metal 

objects that visitors were carrying, and that Alexander Graham Bell utilized a metal detector to 

recover a bullet from President James Garfield following an attempted assassination in 1881.  

Connor and Scott (1998) detail several archaeological and forensic cases which utilized metal 

detectors.  Both Connor and Scott (1998) and Scott et al. (1989) detail the controlled excavation 

of Little Bighorn, Montana, which is perhaps the best study of the use of geophysical 

technologies (specifically metal detectors and GPR) in the location and recovery of metallic 

archaeological artifacts and evidence.  



12 

 

Metal Detector and Magnetic Locator Properties    

Metal detectors transmit electromagnetic fields which penetrate the material surrounding 

the search coil - be it soil, sand, rock, wood, brick, stone, masonry, water, concrete, vegetable, 

some mineral sources, or air. If the electromagnetic field interacts with a metal, eddy currents 

will form, creating a secondary field that transmits a detection signal back to the receiver in the 

unit (Connor and Scott, 1998; Dupras et al., 2006; Garrett, 1998; Nelson, 2004; Nielson, 2003).   

Magnetic locators utilize sensors (one or two, depending upon model) to measure local 

variations in earth’s magnetic field, and are used to detect ferromagnetic objects (Davenport, 

2001; Dupras et al., 2006; Hunter and Cox, 2005; Schonstedt Instrument Company, 1998).    The 

use of magnetic profiling requires basic familiarity with the locator, but is relatively easy to 

learn, and the devices themselves are some of the more inexpensive geophysical tools 

(Davenport, 2001; Hunter and Cox, 2005).   

Purpose 

Prior to the current research project, published controlled research involving the use of 

geophysical technologies to locate and identify buried objects has been limited to replicated 

archaeological features (Isaacson et al., 1999) and buried pig cadavers serving as proxies for 

human remains (Davenport et al., 1992; France et al., 1997; Schultz et al., 2006; Schultz, 2007).  

Controlled settings provide an opportunity not only to demonstrate the capabilities of utilized 

technologies, but also to test innovative geophysical tools, new software, and methodologies 

(Isaacson et al., 1999; Schultz et al., 2006).  Research methods utilized in the controlled context 

must be similar to those methods that will be practiced in the field, creating guidelines for 
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replicable results during real-world search scenarios (Schultz et al., 2006).  This research is the 

first to utilize controlled geophysical tools to detect, identify, and map specific types of buried 

metal objects, including an array of firearms.  In addition, the controlled setting of this research 

allows for the opportunity to improve standard geophysical detection methods which are used in 

the search for street-level firearms that have been buried for the purpose of concealing or 

discarding them.   

This research is designed to demonstrate the utility of geophysical technologies at a crime 

scene or a suspected weapon burial site through controlled testing of 32 buried objects, including 

firearms.  Utilizing a basic metal detector and a magnetic locator, the objectives of this research 

are: 

 To test the ease at which these geophysical technologies may be used to detect buried 

weapons with little operator training  

 To determine the effect that burial has on the detection of these objects with each of the 

geophysical tools 

 To determine maximum depth at which these objects may be detected with these two 

tools 

 To determine which instrument is better at detecting specific weapons 

 To provide guidelines to forensic investigators using geophysical tools so that they are 

better prepared to search for buried firearms 
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Materials and Methods 

Research Site 

An undeveloped, flat, open section of the Orange County Sheriff’s Office (OCSO) 

Lawson Lamar Firearms and Tactical Training Center in Orlando, Florida was designated as the 

research site for this project (Figure 1).  Centered in the overflow portion for a retention pond, 

the research area is frequently mowed, but otherwise inactive.  Soil in the research area is 

classified as a spodosol, specifically in the Smyrna series, which consists of poorly drained soils 

with spodic horizons (dark organic layers which may consist of aluminum, carbon, and/or iron) 

which have formed in sandy marine sediment (Doolittle and Schellentrager, 1989).   However, 

when the range was developed, extra fill was incorporated into the area to raise the ground 

surface.      
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Figure 1: Aerial Photograph of Lawson Lamar Firearms and Tactical Training Center in Orlando, Florida.  The 

Research Site (White Square) is located at 28°25’11.28” N 81°10’25.07” W. 

 

The research area contained a total of 32 buried metallic objects and three control holes 

(consisting of only backfill) in a grid of seven rows (Figure 2).  Each row contains five buried 

targets, except for rows D and G. Row D contains a total of seven holes, which includes five 

buried targets and two control holes, and row G contains only two buried targets and one control 

hole.  Rows A and B contain strictly buried firearms (10), rows C and D contained both firearms 

(3,1) and scrap metal (2,4), rows E and F housed only blunt or edged metal weapons (10), and 

the final row was added to incorporate two additional firearms and a third control hole.  Burial 

holes were marked with bright orange plastic stakes as metallic flags would have interfered with 

results.    
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Figure 2: Map of Research Area Containing a Total of Thirty-two Buried Metallic Objects and Three Control 

Holes.  Map Created Using Surfer ® Software. 
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Forensic Targets 

Included in this research were sixteen firearms, six pieces of assorted scrap metals, and 

ten blunt or edged weapons (Figures 3-5).  In order to gain access to the weapons for research, all 

protocols outlined by the OCSO’s security procedures, including the decommissioning of the 

firearms, were followed.   Firearms were decommissioned by removing or filing firing pins and 

blocking the firing pin channel and barrel with JB Weld® cold-weld liquid epoxy compound.  Of 

note is A5, the Glock 9mm; due to the minimal amount of metal in the polymer frame, the firing 

pin was removed and welded into the grip, and both the firing pin channel and barrel were 

blocked.  

Firearms 

A collection of firearms most commonly associated with street-level crime in Central 

Florida were provided for this research by the Orange County Sheriff’s Office, and consisted of a 

derringer, eight pistols, four revolvers, two shotguns, and a rifle (Figure 3; Table 1).  The 

firearms selected represent a variety of metallic compositions, finishes, and lengths.  The 

majority of the firearm frame compositions consist of steel, with several utilizing other metals or 

materials, such as zinc, aluminum, or polymer.  
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Figure 3: Sixteen Decommissioned Firearms Utilized in the Project. a) Thirteen Handguns,  

b) Rifle and Two Shotguns 
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Table 1: Firearms 

Grid 
Location 

Firearm Type 
Metal/ 
Composition 

Special Finish 
Length 
(mm) 

Unloaded 

Weight 

(oz.) 

A1 
Davis Derringer 

D9 

Derringer/ 

9mm 
Steel Chrome-plated 119 12.8 

A2 
Raven Arms 

MP25 
Pistol/.25 Zinc Alloy/Steel Chrome-plated 123 14.4 

A3 
Hi-Point 

Model C 
Pistol/9mm Steel/Polymer Blued 178 35 

A4 
Smith & Wesson 

5906 
Pistol/9mm Stainless Steel  190 38.3 

A5 Glock Model 19 Pistol/9mm 

Polymer Frame/ 

Steel Slide and 

Firing Pin 

Blued/Tenifer 187 20.6 

B1 
North American 

Arms Mini-

Magnum 

Revolver/ 

.22 Magnum 
Stainless Steel  130 6.4 

B2 Jennings Bryco 59 Pistol/9mm 
Zinc Alloy/Steel 

Magazine 

Satin 

Nickel-plated 
170 33.6 

B3 
Smith & Wesson 

Model 686 

Revolver/ 

.357 

Magnum 

 

Stainless Steel  235 37 

B4 Lorcin L380 
Pistol/ 

.380 

Aluminum 

Frame, 

Magazine, 

Slide/Steel  

Blued 171 30.4 

B5 Colt Commander 
Pistol/ 

.45 ACP 
Steel Blued 196 27 

C1 
Smith & Wesson 

Model 37 

Revolver/ 

.38 Special 
Steel Nickel-plated 167 25 

C2 
RG Industries 

RG23 

Revolver/ 

.22 Long 

rifle 

Aluminum 

Frame/Steel 

Barrel, Cylinder 

Blued 148 14.4 

C5 
Norinco AK 

Hunter 

Rifle/ 

7.62 

 

Steel/Polymer Blued 1067 

125.5 

Includes 

Wooden 

Stock 

D5 
Mossberg Model 

500A with Knoxx 

COPStock 

Shotgun/ 

12 Gauge 
Steel/ Polymer Blued 711 96 

G1 Remington 870 
Shotgun/ 

12 Gauge 
Steel Parkerized 762 120 

G2 Ruger P89 Pistol/9mm 
Aluminum/ 

Stainless Steel 

Terhune 

Anticorro 
203 32 



20 

 

Scrap Metals and Miscellaneous Weapons 

The scrap metals include pieces of copper, aluminum, and iron (including rebar), 

representing trash metals which are frequently encountered during weapons searches (Figure 4; 

Table 2).  A variety of blunt (mallet, hammer, prybar, baton, brass knuckles) and edged 

(machete, sword, Buck knife, Philip’s head screwdriver, scissors) weapons which have been 

recovered from OCSO crime scenes were also included, and primarily consist of steel (Figure 5; 

Table 3).    

 
Figure 4: Six Pieces of Assorted Scrap Metals Utilized in the Project 

Table 2: Scrap Metals 

Burial Grid Location Type Metal/Composition Length (cm) 

C3 Aluminum Edging Aluminum 53 

C4 Solid Iron Pipe Iron 48 

D1 Hollow Copper Tube Copper 68.5 

D2 Rusty Iron Pipe Iron 57 

D3 Solid Aluminum Pipe Aluminum 47.7 

D4 Rebar Iron 66.5 
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Figure 5: Ten Blunt and Edged Weapons Utilized in the Project 

Table 3: Blunt and Edged Miscellaneous Weapons 

Burial Grid Location Type Metal/Composition Length (cm) 

E1 Scissors Steel 20 

E2 Buck Knife Stainless Steel 22.2 

E3 Prybar Steel 32.2 

E4 Mallet Steel 38.4 

E5 Machete Steel 68.2 

F1 Baton Steel 25.7 

F2 Philip’s Head Screwdriver Steel 26.2 

F3 Brass Knuckles 
Brass 

(Copper and Zinc) 
11.6 

F4 Claw Hammer Steel 35 

F5 Sword Steel 81 
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 Geophysical Tools in this Research  

The geophysical tools used in this research are designed to detect metallic objects and 

provide consistent readings, allowing for dependable results which should be replicable during 

real-world search scenarios (Fisher Research Laboratory, 2006.; Schonstedt Instrument 

Company, 1998).  Chosen due to their accessibility and efficiency, many law enforcement 

agencies will find these tools easy to purchase, relatively inexpensive, and easy to use.  The 

geophysical tools used in this study are a basic all-metal detector (Fisher M-97) and a magnetic 

locator (Schonstedt GA-72Cd®) (Figure 6 a,b).  Simple detection by the M-97 and the GA-72Cd 

was tested at various burial depths for each metal target.   

a)  b)  
Figure 6:(a) Fisher M-97 Basic All-Metal Detector; (b) Schonstedt GA-72Cd Magnetic LocatorFisher M-97 
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Fisher M-97 

The Fisher M-97 utilized in this project is an affordable, rugged, and simple to use all-

metal detector which utilizes a waterproof 11” Double-D search coil to identify metallic objects 

with both visual and audio responses (Figure 6a).  According to the manufacturer, the Fisher M-

97 is designed to search for concealed, buried, or paved-over metallic objects, including valves, 

manhole covers, and boxes (Fisher Research Laboratory, 2006).  Detected metals also include 

iron, lead, brass, and aluminum.  The M-97 features high sensitivity, ground effect rejection due 

to mineralized ground or wet ground foliage, and auto-tune for stabilizing ground interference.  

The detector has ten ground rejection levels that can be adjusted to compensate for high mineral 

content in the area being searched.  Additional sensitivity settings (Normal and High) further 

allow the user to customize the detector to the soil conditions (Fisher Research Laboratory, 

2006).  

Ten ground rejection levels are used to balance the M-97, compensating for the search 

area’s mineral content.  The manufacturer recommends that detection begin by selecting ground 

balancing level 5, and the Normal sensitivity setting.  Generally, these settings do not require 

much ground rejection adjustment, and provide a “turn on and go” mode.  Tuning the machine 

higher or lower depends upon ground conditions; the machine is tuned when the there is no 

change in audible hum when the detector is lifted 12-18 inches off of the ground.  High setting is 

recommended for increasing the mineral sensitivity and depth of detection (Fisher Research 

Laboratory, 2006).  Retuning the machine once High is chosen allows the detector to correctly 

rebalance itself to the ground conditions.     
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Schonstedt GA-72Cd  

 The Schonstedt GA-72Cd magnetic locator used in this project is a field sensor that is 

designed to detect the magnetic field of ferromagnetic (material or substance that is highly 

magnetic-such as iron) objects while ignoring non-metallic materials such as gold, silver, copper, 

brass, and aluminum (Schonstedt Instrument Company, 1998).  Two sensors located in the shaft, 

spaced roughly 14 inches apart, respond to the difference in the magnetic field around the locator 

(Figure 6b). The Schonstedt GA-72Cd magnetic locator includes Low, Medium, High, and 

Maximum sensitivity settings.  According to the manufacturer, the level of sensitivity required 

for accurate detection differs based upon background interference and depth of object.  High 

sensitivity will allow for deeper detection, but also increases the sensitivity of the machine, 

producing background noise (Schonstedt Instrument Company, 1998).     

 Materials which may be located with the Schonstedt GA-72Cd include magnetic markers, 

stakes, manholes, septic tanks, magnetically detectable nonmetallic duct and cable, well casings, 

barbed wire, chain link fence, valve boxes, cast-iron pipes, steel drums, magnetized non-metallic 

duct and cable, weapons, projectiles, hunting knives, and hand guns.  According to the 

manufacturer, the locator can be used over snow or water, and the maximum known burial 

depths for 55 gallon steel drums, hunting knives, and hand guns are 2.44 meters, 40.64cm of 

underwater silt, and 30.48cm, respectively (Schonstedt Instrument Company, 1998).  Of course, 

these vary by conditions and depend on vertical or horizontal burial orientation.  In addition, the 

manufacturer (Schonstedt Instrument Company, 1998) asserts that this equipment can aid 
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explosive ordnance disposal technicians and law enforcement officers during area search 

operations for improvised explosive devices, buried ordnance, and covered weapons.  

The digital display and the audible alarm operate very similar to metal detectors; as you 

move closer to a target, the audible tone and/or digital readout will increase.  Digital indications 

of both signal strength and polarity register in the display unit when a magnetic object is located, 

and audible tone changes can also be discerned with training and experience.  Advanced training 

and experience allows for simultaneous use of both indications, helping to pinpoint a target and 

determine its burial orientation.  Using the polarity readings, the positive and negative ends of 

the target can be determined, if the object is buried horizontally.  If an object is buried vertically, 

the audio signal will only sound directly over the object, and can appear either positive or 

negative.      

Data Collection Parameters 

Controlled readings of simple detection were taken for each object with each geophysical 

tool prior to their burial.  Over the course of two years, the weapons were first buried at depths of 

20-25cm, and depths were then increased by 5cm each re-burial visit until detection by the two 

geophysical tools was no longer possible.  Target detection was achieved by walking the grid in 

both north/south and east/west patterns.  As this project utilizes controlled research conditions, a 

probe was used to locate the target if the marked burial produced a detection reading.  Doing so 

allowed for readings to be confirmed on the target, not an unknown object or iron concretion in 

the soil.   
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It is important to note that a number of quality control procedures were also established 

to account for soil compaction and weather concerns.  Control holes (two outside the grid and 

one inside the grid – G3, see Figure 2) were tested during data collection.  The disturbed soil of 

the control holes did not produce any audible responses for the various depths when tested with 

either geophysical tool.  Soil compaction differences also did not seem to affect target detection, 

as loose soil and the compact soil of the control graves did not provide any detection results.  

However, due to inconsistent results following periods of rain or wet soil, all targets were 

retested individually with all three geophysical tools, with two other projects members providing 

inter-observer confirmation of the author’s results.  After first testing each hole to be sure there 

were no metal components that would skew results, targets were tested both in their burial 

location in the grid, and also in the control hole.  Taking into consideration that the research site 

is a live firearms range, each hole was tested for metallic items such as bullet fragments or 

ricochets each visit.           

Fisher M-97 

The M-97 all-metal detector was initially tested in the manufacturer’s recommended 

“turn on and go” (Normal sensitivity, level 5) setting, which provided the correct ground 

balancing for the research area.  Swinging the detector side-to-side, low and even to the ground, 

the sound of the detector’s hum increased and the readings on the display meter changed when a 

metallic object was encountered.  Once deeper depths were reached, some of the targets were 

sampled on High when Normal did not produce a notable audible response, as the High setting 

increases the depth capabilities of the machine.   



27 

 

Schonstedt GA-72Cd  

The GA-72Cd magnetic locator was used very much like a metal detector in that it was 

slowly waived in front of the operator, pointing at the ground.  When the audio and visual 

readings become stronger, an object may be located by running the locator in an “x” type fashion 

over the area.  The point of strongest readings is most likely a magnetic object.  The lowest 

sensitivity setting did not adequately detect the targets, and the maximum setting reflected too 

much background interference.  Medium setting was first utilized in detection for this reason; if 

no audible response was noted, the High setting was then used.   

Using factory presets and/or Medium settings on the geophysical technologies allowed 

for detection and readings at multiple depths.  Detection was categorized into “No”, “Slight”, 

and “Strong”.  Slight detection readings meant that a change in the detector’s hum was audible, 

but may not have been noticeable enough in real-world searches involving areas that are littered 

with trash metals and/or have a high mineral content, include large groups searching in the area, 

or have other background noise or distractions to qualify as a Strong.  For the magnetic locator, 

slight may also have included a noticeable change in the polarity readings on the display; enough 

change to determine orientation of the target.  This was only useful at deeper depths, and after 

much operator experience.  Any no or slight readings were checked on High settings to 

determine if the High settings proved more useful at deeper depths.     
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Results  

Fisher M-97  

Firearms 

Data collection on the buried firearms with the all-metal detector on Normal setting 

shows that all 16 firearms produce strong audible responses, although at varying depths (Figure 

7).  One shotgun, the larger Remington 870 (G1), produced a strong audible response down to a 

maximum depth of 30-35cm.  The Norinco AK rifle (C5), the Mossberg 500A shotgun (D5), and 

the Colt Commander (B5) produced strong audible responses down to a maximum depth of 25-

30cm. Three of the largest handguns, the Smith & Wesson 686 (B3), the Ruger P89 (G2), and 

the Smith & Wesson 5906 (A4) produced strong audible responses down to a maximum depth of 

20-25cm. Seven medium-to-small handguns produced strong audible responses down to a 

maximum depth of 15-20cm: the Glock Model 19 (A5), the Hi-Point Model C (A3), the Lorcin 

L380 (B4), the Jennings Bryco 59 (B2), the Smith & Wesson Model 37 (C1), the RG Industries 

RG23 (C2), and the Raven Arms MP25 (A2). Finally, two of the three smallest handguns, the 

North American Arms Mini-Revolver (B1) and the Davis Derringer (A1), produced strong 

audible responses down to a maximum depth of only 10-15cm.  

Data collection on the buried firearms with the all-metal detector on High setting showed 

that all 16 firearms produced strong audible responses, although at varying depths (Figure 8).  

The Remington 870 (G1) produced a strong audible response down to a maximum depth of 50-

55cm.  The Norinco AK rifle (C5) was detected as a strong audible response down to a 

maximum depth of 45-50cm.  The Mossberg 500A (D5) produced a strong audible response 
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down to a maximum depth of 40-45cm.  Six large-to-medium handguns produced strong audible 

responses down to a depth of 35-40cm: Smith & Wesson 686 (B3), the Ruger P89 (G2), the Colt 

Commander (B5), the Smith & Wesson 5906 (A4), the Hi-Point Model C (A3), and the Jennings 

Bryco 59 (B2).  Four firearms, representing medium to small handguns, produced strong audible 

responses down to a maximum depth of 30-35cm: the Lorcin L380 (B4), the Smith & Wesson 

Model 37 (C1), the RG Industries RG23 (C2), and the Glock Model 19 (A5).  Finally, three 

firearms produced only strong audible responses down to a maximum depth of 25-30cm: the 

North American Arms Mini-Revolver (B1), the Raven Arms MP25 (A2), and the Davis 

Derringer (A1).      

 
Figure 7: Results from Firearm Detection with M-97 on Normal Setting 
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Figure 8: Results from Firearm Detection with M-97 on High Setting 

Scrap Metals 

Data collection on the buried scrap metals with the all-metal detector on Normal setting 

shows that all six scrap metals produced strong audible responses, although at varying depths 

(Figure 9).  Two scrap metal targets produced a strong audible response down to a maximum 

depth of 25-30cm: the rusty iron pipe (D2), and the solid iron pipe (C4). The rebar (D4) and the 

aluminum edging (C3) produced strong audible responses down to a maximum depth of 15-

20cm. Finally, two scrap metal targets, the hollow copper tube (D1) and solid aluminum pipe 

(C4), produced a strong audible response down to a maximum depth of 10-15cm. 
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depth of 40-45cm: the rusty iron pipe (D2), and the solid iron pipe (C4). The rebar (D4) and the 

aluminum edging (C3) produced strong audible responses down to a maximum depth of 30-

35cm. Finally, the hollow copper tube (D1) produced a strong audible response down to a 

maximum depth of 25-30cm, while the solid aluminum pipe (C4), produced a strong audible 

response down to a maximum depth of 20-25cm. 

 
Figure 9: Results from Scrap Metal Detection with M-97 on Normal Setting 
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Figure 10: Results from Scrap Metal Detection with M-97 on High Setting 

Miscellaneous Weapons 

Data collection on the buried miscellaneous weapons with the all-metal detector on 

Normal setting shows that all ten miscellaneous weapons produced a strong audible response, 

although at varying depths (Figure 11).  The claw hammer (F4) produced a strong audible 

response down to a maximum depth of 25-30cm. Four miscellaneous weapons, representing 

large, medium, and small targets, produced a strong audible response down to a maximum depth 

of 20-25cm: the sword (F5), the machete (E5), the mallet (E4), and the baton (F1).  The prybar 

(E3) produced a strong audible response down to a maximum depth of 15-20cm, while the buck 

knife (E2), the scissors (E1), and the brass knuckles (F3) all produced strong audible responses 

down to a maximum depth of 10-15cm.  Finally, the Philip’s head screwdriver (F2) produced a 

strong audible response down to a maximum depth of 5-10cm.                  
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 Data collection on the buried miscellaneous weapons with the all-metal detector on High 

setting shows that all miscellaneous weapons produced a strong audible response, although at 

varying depths (Figure 12).  The claw hammer (F4) produced a strong audible response down to 

a maximum depth of 40-45cm. Three miscellaneous weapons, representing large targets, 

produced a strong audible response down to a maximum depth of 35-40cm: the sword (F5), the 

machete (E5), and the mallet (E4).  The prybar (E3) and the baton (F1) produced a strong 

audible response down to a maximum depth of 30-35cm, while the buck knife (E2), the scissors 

(E1), and the brass knuckles (F3) all produced strong audible responses down to a maximum 

depth of 25-30cm.  Finally, the Philip’s head screwdriver (F2) produced a strong audible 

response down to a maximum depth of 15-20cm. 

 
Figure 11: Results from Miscellaneous Weapon Detection with M-97 on Normal Setting 
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Figure 12: Results from Miscellaneous Weapon Detection with M-97 on High Setting 

Schonstedt GA-72Cd 
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were detected with a strong audible response down to a maximum depth of 15-20cm: Smith & 

Wesson Model 686 (B3), Ruger P89 (G2), Glock Model 19 (A5), Hi-Point Model C (A3), and 

the North American Arms Mini-Revolver (B1).  The Jennings Bryco 59 (B2) was detected with a 

strong audible response down to a maximum depth of 10-15cm.  The smallest handgun, the 

Davis Derringer (A1), was only detected with a strong audible response down to a maximum 

depth of 5-10cm, while the RG Industries RG23 (C2) was only detected with a strong audible 

response down to a maximum depth of 0-5cm.   

Data collection on the buried firearms with the magnetic locator on High setting (Figure 

14) shows that all 16 firearms produced strong audible responses, although at varying depths.  

The two largest firearms, the Norinco AK rifle (C5) and the Remington 870 (G1) shotgun, 

produced strong audible responses down to a maximum depth of 70-75cm.  Two firearms, the 

Mossberg 500A (D5) shotgun and the large Colt Commander (B5) handgun produced strong 

audible responses down to a maximum depth of 55-60cm.  The second largest handgun, the 

Ruger P89 (G2), produced a strong audible response down to a maximum depth of 40-45cm.  

The Smith & Wesson 5906 (A4), a larger handgun, produced a strong audible response down to 

a maximum depth of 35-40cm.  The largest handgun and three medium handguns produced a 

strong audible response down to a maximum depth of 30-35cm: the Smith & Wesson Model 686 

(B3), the Glock 19 (A5), the Jennings Bryco 59 (B2), and the Smith & Wesson Model 37 (C1).  

Two medium-to-small handguns, the Hi-Point Model C (A3) and the North American Arms 

Mini-Revolver (B1) produced strong audible responses down to a maximum depth of 25-30cm.  

The smallest handgun, the Davis Derringer (A1), was detected with a strong audible response 
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down to a maximum depth of 20-25cm.  The RG Industries RG-23 (C2) only produced a strong 

audible response down to a maximum depth of 10-15cm.  Finally, the Lorcin L380 (B4) and the 

Raven Arms MP-25 (A2) only produced a strong audible response down to a maximum depth of 

5-10cm.     

 
Figure 13: Results from Firearm Detection with GA-72Cd on Normal Setting 
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Figure 14: Results from Firearm Detection with GA-72Cd on High Setting 

Scrap Metals 

Data collection on the scrap metals with the magnetic locator on Medium setting (Figure 
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strong audible response down to a maximum depth of 40-45cm, and the rebar (D4) produced a 

strong audible response down to a maximum depth of 15-20cm.   
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the only scrap metals detected, all producing strong audible responses down to maximum depths 

of 65-70cm , 55-60cm, and 25-30cm, respectively. 

 
Figure 15: Results from Scrap Metal Detection with GA-72Cd on Normal Setting 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Results from Scrap Metal Detection with GA-72Cd on High Setting 
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Miscellaneous Weapons 

Data collection on the buried miscellaneous weapons with the magnetic locator on 

Medium setting shows that nine out of ten miscellaneous weapons (90%) produced strong 

audible responses (Figure 17).  Only the brass knuckles (F3) did not produce any audible 

response once buried, and were found to have only produced a slight audible response pre-burial.  

The weapon detected most strongly was the Philip’s head screwdriver (F2) which produced a 

strong audible response down to a maximum depth of 70-75cm. Two weapons, the claw hammer 

(F4) and the scissors (E1), produced strong audible responses down to a maximum depth of 60-

65cm, while the buck knife (E2) produced a strong audible response down to a depth of 25-

30cm.  The sword (F5), mallet (E4), the prybar (E3), and the baton (F1) produced strong audible 

responses down to a maximum depth of 15-20cm.  Finally, the machete (E5) only produced a 

strong audible response down to a depth of 0-5cm.    

 Data collection on the buried miscellaneous weapons with the magnetic locator on High 

setting (Figure 18) shows that the Philip’s head screwdriver (F2) produced a strong audible 

response down to a maximum depth of 80-85cm. The claw hammer (F4) and the scissors (E1) 

produced strong audible responses down to a maximum depth of 60-65cm.  The sword (F5) 

produced a strong audible response down to a maximum depth of 40-45cm, while the Buck knife 

(E2) produced a strong audible response down to a maximum depth of 35-40cm.  Three targets 

produced strong audible responses down to a maximum depth of 25-30cm: the machete (E5), 

prybar (E3), and baton (F1).  Finally, the mallet (E4) produced a strong audible response only 
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down to a maximum depth of 20-25cm.   The brass knuckles (F3) only produced a slight audible 

response, down to a maximum depth of 0-5cm.         

 
Figure 17: Results from Miscellaneous Weapon Detection with GA-72Cd on Normal Setting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18:  Results from Miscellaneous Weapon Detection with GA-72Cd on High Setting 
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Discussion 

Both geophysical tools selected for this project proved to be easy for the author to use 

with little training; however, this does not mean to say that dependable, reproducible results will 

be achieved without proper training, simply that the machines are not difficult to operate.  

Owner’s manuals (Fisher Research Laboratory, 2006; Schonstedt Instrument Company, 1998) 

provided answers to any questions that arose, and in-field adjustment was simple.  A basic metal 

detector and/or a magnetic locator would therefore be suitable for law enforcement officials and 

forensic investigators with little or no prior experience with geophysical technologies. 

Discussed below are only those results which concern the audible response of strong, as 

it is the most easily discernable response.  Slight audible responses take more in-depth operator 

experience to tune one’s ear to, as do the High settings, and should be interpreted with caution.   

Data collection performed over the past two years utilizing the aforementioned 

geophysical technologies has yielded both expected and unexpected results.  For both the all-

metal detector and the magnetic locator, Normal/Medium and High levels allowed for detection 

and readings at multiple depths.  As expected, the all-metal detector was able to detect each 

target, and the magnetic locator was able to detect ferric targets made of iron and steel and not 

those of non-ferric copper or aluminum composition (Fisher Research Laboratory, 2006; 

Schonstedt Instrument Company, 1998).  Once deeper depths were reached, higher settings on 

both tools generally proved to be more helpful in strong detection of the targets.  

As the purpose of this research entailed determining the maximum depth of detection for 

these selected targets, the concentration of discussion must therefore be on which factors aided 
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or hindered detection.  Several aspects of the research design affected detection: metal and size 

of the forensic targets, and detector settings.      

Depth 

When examining the effect of depth on the detection of forensic targets, there are several 

patterns which became apparent.  On Normal/Medium settings, the all-metal detector did indeed 

detect all of metallic targets; however, many maximum depths of detection were shallower than 

those achieved by the magnetic locator.  Once High settings were incorporated, the array of 

items detected for both tools were roughly the same as on Normal/Medium; however, the 

magnetic locator was still able to detect more targets down to deeper depths.     

On Normal/Medium settings, the magnetic locator was more useful when strongly 

detecting the firearms at deeper depths, as three more firearms were detected past the 30-35cm 

benchmark of the metal detector, with two of those being strongly detected down to 45-50cm and 

50-55cm, respectively (Tables 4-5; Figures 19-20).  As suggested by the manufacturer, the 

magnetic locator was able to locate firearms down to 30.48cm, with 62% (8 of 13) being 

detected either strongly or slightly on Normal down to at least 30-35cm (Schonstedt Instrument 

Company, 1998).   

On High settings, the all-metal detector and magnetic locator detected all 16 firearms 

strongly, although to varying depths.  The all-metal detector provided more consistent readings, 

and the shallowest detection was on the smallest three handguns at a maximum depth of 25-

30cm.  The magnetic locator detected the larger firearms deeper than the all-metal detector; 

however, the handguns were detected deeper with the all-metal detector as seven out of the 13 
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handguns (54%) were not detected as deeply with the magnetic locator as they were with the all-

metal detector.   

Table 4: Maximum Depth of Detection (in cm) for Firearms Comparing the All-metal Detector and Magnetic 

Locator on Normal/Medium Setting When Only Audible Responses Classified as Strong are Considered 

Firearms 
All-Metal Detector 

(cm) 

Magnetic Locator 

(cm) 

Norinco (C5) 25-30 45-50 

Remington (G1) 30-35 50-55 

Mossberg (D5) 25-30 25-30 

S&W 686 (B3) 20-25 15-20 

Ruger (G2) 20-25 15-20 

Colt (B5) 25-30 40-45 

S&W 5906 (A4) 20-25 20-25 

Glock (A5) 15-20 15-20 

Hi-Point (A3) 15-20 15-20 

Lorcin L380 (B4) 15-20 Not Detected 

Bryco 59 (B2) 15-20 10-15 

S&W 37 (C1) 15-20 20-25 

RG 23 (C2) 15-20 0-5 

NA Arms (B1) 10-15 15-20 

Raven Arms (A2) 15-20 Not Detected 

Derringer (A1) 10-15 5-10 
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Figure 19: Comparison of Strong Detection of Firearms with All-metal Detector and Magnetic Locator on Normal 

and Medium Settings 
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Raven Arms (A2) 25-30 5-10 
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Figure 20: Comparison of Strong Detection of Firearms with All-metal Detector and Magnetic Locator on High 

Setting 
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Table 6: Maximum Depth of Detection (in cm) for Scrap Metals Comparing the All-metal Detector and Magnetic 

Locator on Normal/Medium Setting When Only Audible Responses Classified as Strong are Considered 

Scrap Metals 
All-Metal Detector 

(cm) 

Magnetic Locator 

(cm) 

Hollow Copper (D1) 10-15 Not Detected 

Rebar (D4) 15-20 15-20 

Rusty Iron (D2) 25-30 55-60 

Aluminum Edging 

(C3) 
15-20 Not Detected 

Solid Iron (C4) 25-30 40-45 

Solid Aluminum (D3) 10-15 Not Detected 
 

 
Figure 21: Comparison of Strong Detection of Scrap Metals with All-metal Detector and Magnetic Locator on 

Normal and Medium Settings 

Table 7: Maximum Depth of Detection (in cm) for Scrap Metals Comparing the All-metal Detector and Magnetic 

Locator on High Setting When Only Audible Responses Classified as Strong are Considered. 

Scrap Metals 
All-Metal Detector 

(cm) 

Magnetic Locator 

(cm) 

Hollow Copper (D1) 25-30 Not Detected 

Rebar (D4) 30-35 25-30 

Rusty Iron (D2) 40-45 65-70 

Aluminum Edging (C3) 30-35 Not Detected 

Solid Iron (C4) 40-45 55-60 

Solid Aluminum (D3) 20-25 Not Detected 

 

0
10
20
30
40
50
60
70

D
e

p
th

 o
f 

D
e

te
ct

io
n

 (
cm

)

Buried Scrap Metals (Longest to Shortest)

Strong Scrap Metal Detection on 
Normal/Medium Setting 

All-Metal

Magnetic 
Locator



47 

 

 
Figure 22: Comparison of Strong Detection of Scrap Metals with All-metal Detector and Magnetic Locator on High 

Settings 

On Normal/Medium settings, the all-metal detector was better at detecting strong 
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Table 8: Maximum Depth of Detection (in cm) for Miscellaneous Weapons Comparing the All-metal Detector and 

Magnetic Locator on Normal/Medium Setting When Only Audible Responses Classified as Strong are Considered 

Miscellaneous Weapons 
All-Metal Detector 

(cm) 

Magnetic Locator 

(cm) 

Sword (F5) 20-25 15-20 

Machete (E5) 20-25 0-5 

Mallet (E4) 20-25 15-20 

Claw Hammer (F4) 25-30 60-65 

Prybar (E3) 15-20 15-20 

Screwdriver (F2) 5-10 70-75 

Baton (F1) 20-25 15-20 

Buck Knife (E2) 10-15 25-30 

Scissors (E1) 10-15 60-65 

Brass Knuckles (F3) 10-15  
 

 
Figure 23: Comparison of Strong Detection of Miscellaneous Weapons with All-metal Detector and Magnetic 

Locator on Normal and Medium Settings 
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Table 9: Maximum Depth of Detection (in cm) for Miscellaneous Weapons Comparing the All-metal Detector and 

Magnetic Locator on High Setting When Only Audible Responses Classified as Strong are Considered 

Miscellaneous Weapons 
All-Metal Detector 

(cm) 

Magnetic Locator 

(cm) 

Sword (F5) 35-40 40-45 

Machete (E5) 35-40 25-30 

Mallet (E4) 35-40 20-25 

Claw Hammer (F4) 40-45 60-65 

Prybar (E3) 30-35 25-30 

Screwdriver (F2) 15-20 80-85 

Baton (F1) 30-35 25-30 

Buck Knife (E2) 25-30 35-40 

Scissors (E1) 25-30 60-65 

Brass Knuckles (F3) 25-30  

 

 
Figure 24: Comparison of Strong Detection of Miscellaneous Weapons with All-metal Detector and Magnetic 

Locator on Normal and Medium Settings 
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metals.  Not only was metallic composition a factor in the obvious cases of the copper and 

aluminum targets not being detected with the magnetic locator, but also other instances where 

the magnetic locator did not detect a target as strongly as the all-metal detector.    

The most striking instances where metal composition was a factor with detection of 

firearms using the magnetic locator included the Lorcin L380 (B4), and Raven Arms MP-25 

(A2).  Both of these weapons were only detected down to 5-10cm using the High setting. 

 Although these are two of the smallest weapons, it is not surprising that there was shallow 

detection based on the metallic materials comprising the weapons.  The Lorcin L380 (B4) is 

comprised of an aluminum frame and magazine.  The Raven Arms MP-25 (A2) is primarily 

comprised of a zinc alloy with an aluminum clip.  Zinc is classified as a diamagnetic alloy that 

weakly repels magnetic fields, and aluminum objects are not supposed to be detected by the 

magnetic locator.  Conversely, the Jennings Bryco 59 (B2), which is also comprised of a zinc 

alloy, was detected much deeper than the Raven Arms MP-25 (A2) at 30-35cm because the clip 

is made out of steel.  In addition, the second largest handgun, the Ruger P89 (G2), was detected 

at a shallower depth with the magnetic locator than the all-metal detector using the 

Medium/Normal setting and was not detected any deeper using the high setting.  This detection 

limit is not surprising considering that the Ruger P89 (G2) is comprised of aluminum and 

stainless steel.  Also, while the frame for the RG Industries RG23 (C2) is comprised of 

aluminum, the weapons were detected deeper than the Lorcin L380 (B4) and the Raven Arms 

MP-25 (A2) at 30-35cm because the barrel and cylinder are comprised of steel.  The NA Arms 

Mini-Magnum (B1) also stands out as being detected to a deep maximum depth with the 



51 

 

magnetic locator.  As it is the third smallest handgun, the fact that it was detected past 20cm on 

Medium leads the author to believe that the iron content in the steel composition is high.      

The reduced detection of items comprised of non-ferrous materials is further 

demonstrated by a number of other items that were tested.  For example, the two pieces of 

aluminum scrap metal (C3 and D3) and the hollow copper pipe (D1) were not detected with the 

magnetic locator on either the Medium or High settings.  Furthermore, the brass knuckles (F3) 

were not detected with a strong hit using either the Medium or High settings.   

On Normal/Medium setting, the all-metal detector proved better at detecting the scrap 

metals, as all six scrap metal targets could be detected with strong hits.  As expected, the 

magnetic locator was able to detect those scrap metal targets which have ferrous content (solid 

iron pipe (C4), rusty iron pipe (D2), and rebar (D4)) and not those of copper or aluminum 

composition (the hollow copper tube (D1), solid aluminum pipe (D3), and aluminum edging 

(C3)).  This would actually make the magnetic locator a more efficient tool in forensic weapons 

searches; even though items of similar metallic composition may be detected, false hits on scrap 

metals would be limited when searching for a potential firearm.    

Miscellaneous weapon detection produced better results on the all-metal detector; 

however, only the brass knuckles failed to produce a strong response on Normal/Medium and 

High. As brass is composed of copper and zinc, making it less magnetic than the steel used for 

the remaining weapons included in this project, it is clear why the magnetic locator would not 

locate the brass knuckles as strongly as the other weapons (Schonstedt Instrument Company, 

1998).  The screwdriver seems to be an anomaly, as it is a smaller target, but detected the deepest 
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out of every other target with either the all-metal or magnetic locator.  Maximum strong depth of 

detection for the screwdriver with the magnetic locator is 70-75cm on Medium and 80-85cm on 

High.  After speaking with a representative from the manufacturer (pers. Comm. Mark Pugh, 

Jan. 28, 2009), the suspicion by the author that the iron content in the steel composition of the 

screwdriver may be high, and that the screwdriver was most likely magnetized were confirmed.  

Since the magnetic locator is designed to detect objects that can be magnetized, it would make 

sense that an object that is already magnetized would be detected deeper than an object which is 

not.  

Size 

Size was also a factor affecting detection of the weapons; as targets were buried on their 

sides to increase surface area, size is referring only to overall length.  As expected, the all-metal 

detector follows a pattern of detecting larger items deeper than smaller targets.  The magnetic 

locator, however, seems to detect ferric items deeper, regardless of size.  As the magnetic locator 

is designed to locate ferric items, those results are expected (Schonstedt Instrument Company, 

1998).     

Conclusions 

Controlled research using geophysical technologies has proven that they are beneficial 

tools in the search for buried metallic weapons, including firearms.  Objectives constructed for 

this research were all answered, and provide valuable information regarding the utility of basic 

all-metal detectors and magnetic locators in the search for buried metallic weapons.  Both the all-



53 

 

metal detector and the magnetic locator proved easy to use in their recommended capacities with 

little operator training, the effects of burial on target detection and maximum depth of detection 

for each target with both tools have been explained above, as has the difference between each 

tool in specific target detection.  Although tools acquired by law enforcement agencies may not 

be the exact models utilized for this research, it was basic metal detector and magnetic locator 

properties that were tested, and results may be extrapolated to other models.  

Data collection performed over the past two years utilizing the aforementioned 

geophysical technologies has yielded both expected and unexpected results.  For the all-metal 

detector and the magnetic locator, medium/normal levels allowed for detection and readings at 

multiple depths.  The all-metal detector was able to detect each metallic target in the project, 

although to varying depths.  As expected, and for both pre-burial and buried objects, the 

magnetic locator was able to detect ferric objects made of iron and steel and not those of copper 

or aluminum composition.  Once deeper depths were reached, higher settings proved to be more 

helpful in detecting the targets.  

Overall, the all-metal detector provides a greater range of detected targets than the 

magnetic locator (32 to 28); however, this includes a greater detection of scrap metals with the 

all-metal detector.  The magnetic locator is a very useful tool as it limits the amount of scrap 

metal detection, saving time and energy by eliminating many false targets.  The magnetic locator 

has also demonstrated a greater depth range on the firearms, and is most appropriate when 

searching for targets with suspected or known ferrous content. 
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III. CONTROLLED RESEARCH UTILIZING AN ADVANCED METAL 

DETECTOR 

With technologies utilized in forensics and death investigations advancing in general, it is 

no surprise that geophysical technologies that are incorporated into forensic searches are 

becoming more advanced as well. Whether being used to search for buried bodies (ground 

penetrating radar (GPR), conductivity meters) or metallic evidence (metal detectors, magnetic 

locators), geophysical methods are generally used to locate small anomalies near the ground 

surface (Davenport et al., 1992; Davenport, 2001; Dupras et al., 2006; Fisher Research 

Laboratory, n.d.; France et al., 1997; Garrett, 1998; Goddard, 1977; Hunter and Cox, 2005; 

Isaacson et al., 1999; Killam, 2004; Minelab Electronics Pty Ltd, n.d.;  Murray and Tedrow, 

1975; Nelson, 2004; Nickell and Fischer, 1999; Nielsen, 2003; Rowlands and Sarris, 2007; 

Ruffell and McKinley, 2005;  Schonstedt Instrument Company, 1998; Schultz et al., 2006; 

Schultz, 2007; Scott et al., 1989).   

Many sources support the use of geophysical tools for the search and recovery of buried 

metallic evidence (Connor and Scott, 1998; Davenport, 2001; Dupras et al., 2006; Garrett, 1998; 

Goddard, 1977; Hunter and Cox, 2005; Isaacson et al., 1999; Nelson, 2004; Nickell and Fischer, 

1999; Nielson, 2003; Scott et al., 1989); however, there have been no published controlled 

geophysical research studies that have tested the utility of locating buried firearms and weapons 

using geophysical technologies, specifically advanced metal detectors.  Only a few references 

(Murray and Tedrow, 1975; Nielsen, 2003; Schonstedt Instrument Company, 1998) briefly 

discuss locating weapons using a metal detector or magnetic locator, although no information is 

provided for size or metallic composition.   
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Metal detectors, in particular, are non-intrusive geophysical technologies that have a long 

history of use in forensic contexts (Davenport, 2001; Dupras et al., 2006; Garrett, 1998; 

Goddard, 1977; Isaacson et al., 1999; Murray and Tedrow, 1975; Nelson, 2004; Nickell and 

Fischer, 1999 Nielson, 2003).  Metal detectors are generally used to locate small objects at 

shallow depths and large objects at deeper depths (Connor and Scott, 1998; Garrett, 1998; 

Nelson, 2004; Nielsen, 2003; Scott et al., 1989).  Basic all-metal detectors are used by 

prospectors, treasure hunters, relic seekers, and novices along the beach (Garrett, 1998), while 

new, computerized advanced metal detectors are mostly used by people looking to control what 

they detect and do not detect through the use of metal discrimination (Brockett, 1990; Garrett, 

1998; Minelab Electronics Pty Ltd, n.d.; Nelson, 2004; ).  Metal discrimination allows advanced 

detectors to recognize the user’s identified target, blocking signals from all other materials and 

providing a great advantage over a basic all-metal detector.  This allows for select targets to be 

ignored, making detection of the sought after objects quicker and easier (Brockett, 1990; Fisher 

Research Laboratory, n.d.; Garrett, 1998; Minelab Electronics Pty Ltd, n.d.; Nelson, 2004; 

Nielsen, 2003).  However, due to its multiple features and ability to be programmed by the user, 

therefore increasing user error, the advanced metal detector requires more operator training and 

efficiency to reach its maximum effectiveness (Garrett, 1998). 

A second component of metal detectors is that many different types of search coils are 

available to meet the needs of the user.  Smaller coils (<6”) are generally used to locate small 

items at shallow depths, while larger coils (>10”) are generally used when searching deeper 

depths for larger targets, providing a wide range of options so that a user may choose a coil to 
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suit their investigative needs (Connor and Scott, 1998; Dupras et al., 2006; Garrett, 1998; Hunter 

and Cox, 2005; Nielsen, 2003).  Considering that the weapons utilized in the current research are 

larger than most items hobbyists commonly search for, it may be inferred that larger coils would 

be more beneficial when detecting such weapons, especially at greater depths.      

Purpose 

The paucity of published controlled research focusing on locating buried firearms and 

miscellaneous weapons using advanced metal detectors, and the impact of search coil size on 

such searches, led to the construction of the following research study.  In order to test the utility 

of an advanced metal detector at a crime scene or a suspected weapon burial site, controlled 

testing of 32 buried objects, including firearms, was performed.  The advanced metal detector 

was incorporated in order to determine whether or not the unique attributes of metal 

discrimination and specialized target programming features would make the more expensive 

advanced metal detector a necessity for law enforcement agencies.  The objectives of this 

research were: 

 To determine what effects the metallic composition of the weapons have on signature 

readings and their detection  

 To determine maximum depth at which these targets may be detected with the advanced 

metal detector 

 To determine if larger search coils provide better depth results than medium coils 

 To provide guidelines to forensic investigators using advanced metal detectors so that 

they are better prepared to search for buried firearms   
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Materials and Methods 

Research Site 

An undeveloped, flat, open section of the Orange County Sheriff’s Office (OCSO) 

Lawson Lamar Firearms and Tactical Training Center in Orlando, Florida was designated as the 

research site for this project (Figure 25).  Centered in the overflow portion for a retention pond, 

the research area is frequently mowed, but otherwise inactive.  Soil in the research area is 

classified as a spodosol, specifically in the Smyrna series, which consists of poorly drained soils 

with spodic horizons (dark organic layers which may consist of aluminum, carbon, and/or iron) 

which have formed in sandy marine sediment (Doolittle and Schellentrager, 1989).   However, 

when the range was developed, extra fill was incorporated into the area to raise the ground 

surface.    
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Figure 25: Aerial Photograph of Lawson Lamar Firearms and Tactical Training Center in Orlando, Florida.  The 

Research Site (White Square) is located at 28°25’11.28” N 81°10’25.07” W. 

 

The research area contained a total of 32 buried metallic objects and three control holes 

(consisting of only backfill) in a grid of seven rows (Figure 26).  Each row contains five buried 

targets, except for rows D and G. Row D contains a total of seven holes, which includes five 

buried targets and two control holes, and row G contains only two buried targets and one control 

hole.  Rows A and B contain strictly buried firearms (10), rows C and D contained both firearms 

(3,1) and scrap metal (2,4), rows E and F housed only blunt or edged metal weapons (10), and 

the final row was added to incorporate two additional firearms and a third control hole.  Burial 

holes were marked with bright orange plastic stakes as metallic flags would have interfered with 

results.    
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Figure 26: Map of Research Area Containing a Total of Thirty-two Buried Metallic Objects and Three Control 

Holes.  Map Created Using Surfer ® Software. 
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Forensic Targets 

Included in this research were sixteen firearms, six pieces of assorted scrap metals, and 

ten blunt or edged weapons (Figures 27-29).  In order to gain access to the weapons for research, 

all protocols outlined by the OCSO’s security procedures, including the decommissioning of the 

firearms, were followed.   Firearms were decommissioned by removing or filing firing pins and 

blocking the firing pin channel and barrel with JB Weld® cold-weld liquid epoxy compound.  Of 

note is A5, the Glock 9mm; due to the minimal amount of metal in the polymer frame, the firing 

pin was removed and welded into the grip, and both the firing pin channel and barrel were 

blocked.   

Firearms 

A collection of firearms most commonly associated with street-level crime in Central 

Florida were provided for this research by the Orange County Sheriff’s Office, and consist of a 

derringer, eight pistols, four revolvers, two shotguns, and a rifle (Figure 27; Table 10).  The 

firearms selected represent a variety of metallic compositions, finishes, and lengths.  The 

majority of the firearm frame compositions consist of steel, with several utilizing other metals or 

materials, such as zinc, aluminum, or polymer.    
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a)  

b)  
Figure 27: Sixteen Decommissioned Firearms Utilized in the Project. a) Thirteen Handguns,  

b) Rifle and two Shotguns 
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Table 10: Firearms 

Burial 

Grid 

Location 

Firearm Type 
Metal/ 

Composition 

Special 

Finish 

Length 

(mm) 

Unloaded 

Weight 

(oz.) 

A1 
Davis Derringer 

D9 

Derringer/ 

9mm 
Steel Chrome-plated 119 12.8 

A2 
Raven Arms 

MP25 
Pistol/.25 

Zinc 

Alloy/Steel 
Chrome-plated 123 14.4 

A3 
Hi-Point Model 

C 
Pistol/9mm Steel/Polymer Blued 178 35 

A4 
Smith & 

Wesson 5906 
Pistol/9mm Stainless Steel  190 38.3 

A5 Glock Model 19 Pistol/9mm 

Polymer Frame/ 

Steel Slide and 

Firing Pin 

Blued/Tenifer 187 20.6 

B1 
North American 

Arms Mini-

Magnum 

Revolver/ 

.22 

Magnum 

Stainless Steel  130 6.4 

B2 
Jennings Bryco 

59 
Pistol/9mm 

Zinc 

Alloy/Steel 

Magazine 

Satin 

Nickel-plated 
170 33.6 

B3 
Smith & 

Wesson Model 

686 

Revolver/ 

.357 

Magnum 

 

Stainless Steel  235 37 

B4 Lorcin L380 
Pistol/ 

.380 

Aluminum 

Frame, 

Magazine, 

Slide/ Steel 

Blued 171 30.4 

B5 
Colt 

Commander 

Pistol/ 

.45 ACP 
Steel Blued 196 27 

C1 
Smith & 

Wesson Model 

37 

Revolver/ 

.38 Special 
Steel Nickel-plated 167 25 

C2 
RG Industries 

RG23 

Revolver/ 

.22 Long 

rifle 

Aluminum 

Frame/Steel 

Barrel and 

Cylinder 

Blued 148 14.4 

C5 
Norinco AK 

Hunter 

Rifle/ 

7.62 

 

Steel/Polymer Blued 
1067 

 

125.5 

With Stock 

D5 

Mossberg 

Model 500A 

with Knoxx 

COPStock 

Shotgun/ 

12 Gauge 
Steel/ Polymer Blued 711 96 

G1 Remington 870 
Shotgun/ 

12 Gauge 
Steel Parkerized 762 120 

G2 Ruger P89 Pistol/9mm 
Aluminum/ 

Stainless Steel 

Terhune 

Anticorro 
203 32 
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Scrap Metals and Miscellaneous Weapons 

The scrap metals include pieces of copper, aluminum, and iron (including rebar), 

representing trash metals which are frequently encountered during weapons searches (Figure 28; 

Table 11).  A variety of blunt (mallet, hammer, prybar, baton, brass knuckles) and edged 

(machete, sword, Buck knife, Philip’s head screwdriver, scissors) weapons which have been 

recovered from OCSO crime scenes were also included, and primarily consist of steel (Figure 

29; Table 12).   

 
Figure 28: Six Pieces of Assorted Scrap Metals Utilized in the Project 

Table 11: Scrap Metals 

Burial Grid Location Type Metal/Composition Length (cm) 

C3 Aluminum Edging Aluminum 53 

C4 Solid Iron Pipe Iron 48 

D1 Hollow Copper Tube Copper 68.5 

D2 Rusty Iron Pipe Iron 57 

D3 Solid Aluminum Pipe Aluminum 47.7 

D4 Rebar Iron 66.5 



66 

 

 
Figure 29: Ten Blunt and Edged Weapons Utilized in the Project 

 

Table 12: Blunt and Edged Miscellaneous Weapons 

Burial Grid Location Type Metal/Composition Length (cm) 

E1 Scissors Steel 20 

E2 Buck Knife Stainless Steel 22.2 

E3 Prybar Steel 32.2 

E4 Mallet Steel 38.4 

E5 Machete Steel 68.2 

F1 Baton Steel 25.7 

F2 Philip’s Head Screwdriver Steel 26.2 

F3 Brass Knuckles 
Brass 

(Copper and Zinc) 
11.6 

F4 Claw Hammer Steel 35 

F5 Sword Steel  81 
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Geophysical Tool: Minelab Explorer II
TM 

 

Metal detectors transmit electromagnetic fields which penetrate the material surrounding 

the search coil - be it soil, sand, rock, wood, brick, stone, masonry, water, concrete, vegetable, 

some mineral sources, or air.  If the electromagnetic field interacts with a metal, eddy currents 

will form, creating a secondary field that transmits a detection signal back to the receiver in the 

unit (Connor and Scott, 1998; Dupras et al., 2006; Garrett, 1998; Nelson, 2004; Nielson, 2003).   

The Minelab Explorer II
TM

 advanced metal detector used in this research project has 

specific metal discrimination capabilities, and also has a specific Learn function wherein 

signature ranges determined for the weapons and/or metals may be loaded into the machine for 

easy discrimination upon searching (Figure 30a) (Minelab Electronics Pty Ltd, n.d.).  The 

Explorer II is a rugged, simple to use all-metal detector which utilizes a standard 10.5” Double-D 

search coil to identify metallic objects by providing both visual and audio responses.  According 

to the manufacturer, the Explorer II is “designed to locate valuable metal objects in a wide 

variety of ground conditions” (Minelab Electronics Pty Ltd, n.d.: 3). 

A second coil was used on the Explorer II in this research: a manufacturer-specific 

Coiltek 15” after-market coil (Figure 30b).  Larger coils are generally used when searching 

deeper depths for larger targets, so the ability of the after-market coil to detect all targets once 

deeper depths were reached was tested (Connor and Scott, 1998; Dupras et al., 2006; Garrett, 

1998; Hunter and Cox, 2005; Nielsen, 2003).   
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a)  b)  
Figure 30: Minelab Explorer II. a) Standard Medium 10.5” Coil; b) Large 15” Coil 

Improving upon the single and dual frequency Broad Band Spectrum (BBS) technology 

of previous metal detectors, the manufacturer asserts that the Explorer II employs a 28 frequency 

Full Band Spectrum (FBS) detection system (Minelab Electronics Pty Ltd, n.d.).  The advantages 

to this technology are increased depth detection, accurate target identification at those greater 

depths, improved detection of desired targets among iron trash, greater recognition of ground 

mineralization, enhanced searching on beaches (salt-water), less background interference from 

nearby electromagnetic sources, and more accurate identification of target characteristics, 

including size.   

The Explorer II is held and maneuvered as any other metal detector, low and even to the 

ground in a swaying motion.  When an object is located, the pitch of the detector’s hum will 

increase, with highly conductive objects emitting high-pitched sounds and low-pitched tones 
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being emitted by less conductive, more ferrous, objects.  Large targets or targets close to the 

ground surface will emit louder signals.  The frequency of the Explorer II ranges from 1.5-100 

kHz.  Explorer II has two modes: Quickstart and Advanced (Minelab Electronics Pty Ltd, n.d.):   

 Quickstart automatically loads the factory presets, which sound as a 6-note musical tone 

when the machine is started.  Providing audible and visual cues (in the form of ferrous 

content and conductivity values displayed numerically on the screen), Quickstart was 

utilized at the beginning stages of this project due to being inherently basic.  As many 

law enforcement agencies do not provide training on these devices, the quick and easy 

approach to detection found in the Quickstart factory presets is highly beneficial. 

 Advanced mode allows for the specification of custom targets, enabling the user to edit 

and save target profiles in order to recognize those objects and reject others. The ability 

of a metal detector to identify a desired target while eliminating unwanted signals is 

known as discrimination, and is programmable in the Explorer II.  Advanced mode was 

used in later stages of this project to program any “signature” ranges determined for a 

carefully selected segment of targets. 

Data Collection Parameters 

Objectives of data collection consisted of 1) simple detection of the targets, 2) obtaining 

ferrous content and conductivity readings using the Quickstart method, and 3) programming 

signature metallic composition patterns using the Advanced Learn feature to test if all targets 

could be recognized against specific targets of known metallic compositions.  Control readings 

of detection and ferrous content/conductivity were taken for each object, and six specific known 
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metallic composition signature patterns were obtained with the advanced metal detector prior to 

target burial.  The targets were first buried at depths of 20-25cm, and depths were then increased 

by 5cm each re-burial until detection by the geophysical tool was no longer possible.  First, it 

was determined whether the buried forensic target was detected at specific depths using both 

coils.  Second, the ferrous content and conductivity values were recorded using the standard coil.  

Third, the Advanced Learn feature was utilized with the standard coil pre-burial to program the 

signature patterns of a selection of six targets representing the firearm sample in order to test if 

each target would be detected by a specific metallic composition.  In addition, a number of 

targets were not detected at the 20-25cm depth, and were therefore individually re-buried starting 

at 0-5cm until a maximum depth of detection was determined.    

The Explorer II was initially used in the manufacturer’s recommended “turn on and go” 

(Quickstart) setting to provide information regarding basic detection of the targets.  Quickstart 

uses factory presets for Discrimination (non-ferrous coin-type targets) and Iron Mask (-6, non-

ferrous metals).   Swinging the detector side-to-side, low and even to the ground, the normal hum 

of the detector would become various tonal beeps and the Quickstart Digital display screen 

showed numerical values when a metallic object was encountered.  The Explorer II was used 

with a digital display in this project, indicating the ferrous content and conductivity of located 

objects with values ranging from 0-31; a value of 0 represents the lowest ferrous content or 

conductivity, and the highest ferrous content or conductivity is represented by a value of 31.  For 

example, a reading of 0-24 would be a ferrous content (always first) of 0 and a conductivity 

value of 24.     
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Factory presets of the Quickstart mode allowed for detection at multiple depths.  Once 

detection was established, the conductivity and ferrous content values were recorded to 

determine if any metallic composition patterns could be established.  Originally planning on 

collecting multiple passes on each target to replicate the signatures, the author was advised by 

the manufacturer that the detector should be run over each target only two to three times.  More 

than these few passes might skew the readings by detecting individual metallic signatures as 

opposed to the metallic composition of the target as a whole.   

A selection of targets was then programmed into the Learn feature in order to determine 

if the discrimination feature of the advanced detector is more useful than a basic all-metal 

detector on the variety of objects included in this project for their real-world popularity.  Based 

upon metallic composition, a selection of six firearms of varying size, including examples of 

stainless steel, aluminum/stainless steel, aluminum/synthetic, basic steel, and tenifered steel, 

were programmed into the Learn feature, following manufacturer instructions.  Selected targets 

were as follows: S1- Smith & Wesson 686, S2- North American Arms Mini-Magnum, S3-Raven 

Arms MP-25, S4-Ruger P89, S5-Mossberg 500A, and S6-Glock Model 19.  As data collection 

using the preset signatures can only be conducted using one programmed signature at a time, the 

detector was set to each saved signature one at a time (S1-S6, sequentially) and run over the 

research site.  Therefore, the detector was run over the individual buried items a total of six 

times, each time set to a different signature.   
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Results  

Simple Detection  

Firearms 

Data collection on the buried firearms using the advanced metal detector with the 

medium coil showed that 14 of 16 firearms (87.5%) were detected, although to varying depths 

(Figure 31).  The Colt Commander (B5), Smith & Wesson 5906 (A4), and Jennings Bryco 59 

(B2) were the three firearms detected the deepest, down to a maximum depth of 45-50cm.  Four 

firearms, ranging in size from the second longest shotgun to the smallest handgun, were detected 

down to a maximum depth of 40-45cm: Remington 870 (G1), Smith & Wesson 686 (B3), RG 

Industries RG23 (C2), and Davis Derringer D9 (A1).  Five firearms, ranging from the largest 

shotgun to the second smallest handgun, were detected down to a maximum depth of 35-40cm: 

Mossberg 500A (D5), Ruger P89 (G2), The Hi-Point Model C (A3), Lorcin L380 (B4), and 

Raven Arms MP25 (A2). The Smith & Wesson Model 37 (C1) was detected down to a 

maximum depth of 30-35cm.  The Norinco AK rifle (C5) was detected the shallowest, down to a 

maximum depth of only 20-25cm.  Finally, the third smallest handgun, the North American 

Arms Mini-Magnum (B1), was not detected once buried, and the Glock Model 19 (A5) was not 

detected at all, even pre-burial. 

Data collection on the buried firearms using the advanced metal detector with the large 

coil showed that 14 of 16 firearms (87.5%) were detected, although to varying depths (Figure 

32).  Several firearms were detected deeper with the large coil, while only one firearm was 

detected deeper with the medium coil (Table 26).  The Remington 870 (G1) was detected 

deepest, down to a maximum depth of 50-55cm.  Four firearms, ranging in size from the third 
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largest handgun to the fourth smallest handgun were detected down to a maximum depth of 45-

50cm: Colt Commander (B5), Smith & Wesson 5906 (A4), Jennings Bryco 59 (B2), and RG 

Industries RG23 (C2).  Four of the five largest firearms, the Norinco AK rifle (C5), Mossberg 

500A (D5), Smith & Wesson 686 (B3), and Ruger P89 (G2), were detected down to a maximum 

depth of 40-45cm.  Three medium to small handguns were detected down to a maximum depth 

of 35-40cm: Hi-Point Model C (A3), Lorcin L380 (B4), and Raven Arms MP25 (A2). The fourth 

smallest and smallest handguns (Smith & Wesson Model 37 (C1) and Davis Derringer (A1)) 

were detected down to a maximum depth of 30-35cm.  Finally, the North American Arms Mini-

Magnum (B1) and Glock Model 19 (A5) were not detected at all once buried.     

 
Figure 31: Results from Firearm Detection with Minelab Explorer II

TM
 with Medium Coil 
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Figure 32: Results from Firearm Detection with Minelab Explorer II

TM
 with Large Coil 

Scrap Metals 

Data collection on the buried scrap metals using the advanced metal detector with the 

medium coil shows that three of the six scrap metals (50%) were detected, although at varying 

depths (Figure 33).  The aluminum edging (C3) was detected down to a maximum depth of 40-

45cm.  The solid aluminum pipe (D3) was detected down to a maximum depth of 30-35cm. The 

largest piece of scrap metal, the hollow copper tube (D1), was detected down to a maximum 

depth of 25-30cm.  The rebar (D4), rusty iron pipe (D2), and solid iron pipe (C4) were not 

detected at all, even pre-burial.  

Data collection on the buried scrap metals using the advanced metal detector with the 

large coil showed that the same three targets were detected, although to varying depths (Figure 

34).  The aluminum edging (C3) was detected down to a maximum depth of 40-45cm.  The 

hollow copper tube (D1) and solid aluminum pipe (D3) were both detected down to a depth of 

30-35cm.  The rebar (D4), rusty iron pipe (D2), and solid iron pipe (C4) were not detected at all. 
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Figure 33: Results from Scrap Metal Detection with Minelab Explorer II

TM
 with Medium Coil 

 

 
Figure 34: Results from Scrap Metal Detection with Minelab Explorer II

TM
 with Large Coil 
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Miscellaneous Weapons 

Data collection on the buried miscellaneous weapons using the advanced metal detector 

with the medium coil showed that 8 of the 10 miscellaneous weapons (80%) were detected, 

although to varying depths (Figure 35).  The fourth longest weapon, the claw hammer (F4), was 

detected down to a maximum depth of 55-60cm.  The second longest weapon, the machete (E5), 

was detected down to a maximum depth of 40-45cm.  The two smallest weapons, the scissors 

(E1) and the brass knuckles (F3), were detected down to a maximum depth of 35-40cm.  The 

longest miscellaneous weapon, the sword (F5), and third longest weapon, the mallet (E4), were 

detected down to a maximum depth of 30-35cm.  The prybar (E3) and Buck knife (E2), both 

medium sized miscellaneous weapons, were detected down to a maximum depth of 25-30cm.  

The Philip’s Head Screwdriver (F2) and Baton (F1) were not detected at all once buried. 

Data collection on the buried miscellaneous weapons using the advanced metal detector 

with the large coil showed that 8 of the 10 miscellaneous weapons (80%) were detected, 

although at varying depths (Figure 36).  The fourth longest weapon, the claw hammer (F4), was 

detected down to a maximum depth of 50-55cm.  The second longest weapon, the machete (E5), 

and a medium-sized weapon, the prybar (E3) were detected down to a maximum depth of 40-

45cm.  The mallet (E4), the third largest weapon, and the two smallest weapons, the scissors (E1) 

and the brass knuckles (F3), were detected down to a maximum depth of 35-40cm.  The longest 

miscellaneous weapon, the sword (F5), was detected down to a maximum depth of 30-35cm.  

The Buck knife (E2), the third smallest miscellaneous weapon, was detected down to a 

maximum depth of 25-30cm.  Finally, the Philip’s head screwdriver (F2) and baton (F1) were 

not detected at all once buried. 
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Figure 35: Results from Miscellaneous Weapon Detection with Minelab Explorer II
TM

 with Medium Coil 

 

 

Figure 36: Results from Miscellaneous Weapon Detection with Minelab Explorer II
TM

 with Large Coil 
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Quickstart Ferrous Content/Conductivity Readings 

As advised by the manufacturer, data was collected in three passes over each target so as 

to ensure proper detection of the metallic target as a whole, not as individual components of its 

metallic composition.  Since both ferrous content and conductivity readings provide values 

ranging from 0-31, three categories were assigned for each: Low (0-10), Medium (11-20), and 

High (21-31).  Five patterns were noticed while analyzing the data collected on the buried 

firearms, scrap metal, and miscellaneous weapons using the advanced metal detector with the 

Medium Coil (Tables 13-15): Low/Medium, Low/High, Medium/Low, Medium/High, and 

Variable.   

One target produced the Low/Medium pattern: the Norinco AK rifle (C5). Low/High was 

the most frequent pattern, consisting of a total of sixteen targets, including eleven firearms 

(Davis Derringer (A1), Raven Arms MP25 (A2), Hi-Point Model C (A3), North American Arms 

Mini-Magnum (B1), Jennings Bryco 59 (B2), Lorcin L380 (B4), Colt Commander (B5), Smith 

& Wesson Model 37 (C1), RG Industries RG23 (C2), Mossberg 500A (D5), and Ruger P89 

(G2)), three miscellaneous weapons (Buck knife (E2), brass knuckles (F3), and claw hammer 

(F4)), and two scrap metals (aluminum edging (C3) and hollow copper tube (D1)).  One target 

produced the Medium/Low pattern: the Smith & Wesson 5906 (A4).  Two targets, the 

Remington 870 (G1) and the mallet (E4), produced the Medium/High pattern. 

The Variable pattern was defined as instances in which the pre-burial pattern was 

different than the pattern observed once the target was buried.  The Variable pattern was only 

observed in six of the thirty-two tested targets (Smith & Wesson 686 (B3), the scissors (E1), 

prybar (E3), and machete (E5), sword (F5), and solid aluminum pipe (D3)).       
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As so many targets of differing metallic compositions fell into each pattern, especially the 

Low/High pattern, it would therefore be problematic to use this technique during real-world 

forensic searches in order to distinguish a suspected target as a firearm, scrap metal, or 

miscellaneous weapon.   

 

Table 13: Firearm Results for the Quickstart Ferrous Content-Conductivity Readings and Associated Patterns 

Target Pre-Burial 20-25cm Pattern 

A1 0-23, 0-25, 03-27 0-26, 0-25, 0-26 Low/High 

A2 0-19, 0-24, 0-26 3-28, 3-27, 0-26 Low/High 

A3 0-24, 0-26, 0-23 0-23, 0-25, 0-24 Low/High 

A4 15-05, 15-08, 15-7 15-5, 16-5, 7-5 Medium/Low 

A5    

B1 9-30, 12-27, 6-28 3-23, 11-28, 9-30 Low/High 

B2 9-24, 8-26, 0-26 0-24, 0-24, 0-26 Low/High 

B3 5-23, 11-19, 10-24 14-11, 13-18, 13-18 Variable 

B4 0-25, 0-27, 0-22 11-25, 0-25, 2-24 Low/High 

B5 7-26, 3-28, 2-27 3-26, 6-27, 8-28 Low/High 

C1 2-28, 5-29, 8-28 5-28, 1-25, 6-27 Low/High 

C2 0-27, 0-25, 1-28 0-19, 4-28, 0-25 Low/High 

C5 11-17, 7-17, 10-16 7-16, 7-20, 7-16 Low/Medium 

D5 6-29, 3-27, 7-27 6-27, 5-28, 2-28 Low/High 

G1 12-26, 11-27, 11-26 18-23, 10-26, 11-27 Medium/High 

G2 0-23, 0-17, 7-26 8-26, 7-25, 4-23 Low/High 
 

 

Table 14: Scrap Metal Results for the Quickstart Ferrous Content-Conductivity Readings and Associated Patterns 

Target Pre-Burial 20-25cm Pattern 

C3 0-26, 0-25, 0-28 7-31, 0-25, 12-24 Low/High 

C4    

D1 0-29, 0-30, 0-29 9-18, 3-29, 5-26 Low/High 

D2    

D3 0-20, 0-23, 0-22 0-23, 11-26, 11-16 Variable 

D4    
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Table 15: Miscellaneous Weapons Results for the Quickstart Ferrous Content-Conductivity Readings and 

Associated Patterns 

Target Pre-Burial 20-25cm Pattern 

E1 11-14, 0-5, 11-14 14-8, 11-10, 7-3 Variable 

E2 10-18, 6-29, 0-28 2-23, 6-27, 4-28 Low/High 

E3 8-27, 7-26, 3-26 12-16, 9-12, 3-8 Variable 

E4 13-23, 11-21, 9-16 12-24, 12-24, 11-23 Medium/High 

E5 12-23, 6-28, 10-27 7-19, 11-25, 12-21 Variable 

F1    

F2    

F3 0-25, 3-26, 11-27 0-27, 0-26, 3-27 Low/High 

F4 11-26, 3-26, 11-8 6-4, 6-28, 4-28 Low/High 

F5 4-16, 9-29, 11-28 11-17, 10-17, 10-23 Variable 

Advanced Learn Feature  

  Using the Advanced Learn feature to program signature patterns of the firearms, scrap 

metals, and miscellaneous weapons proved just as difficult as the use of the Quickstart ferrous 

content/conductivity readings, as many of the targets could be detected with the selected 

signatures (Tables 16-18).  When referring to the Table 10, it can be seen that 12 out of the 16 

firearms hit on all six programmed signatures, and the remaining four hit on five out of six 

programmed signatures.  Interestingly, programmed signature S-6 was the Glock Model 19 (A5), 

which is comprised of a polymer frame and enough steel components to allow for the recognition 

of 13 out of 16 firearms by its programmed signature.  Tables 17 and 18 further illustrate that the 

miscellaneous weapons and the trash metals are also detected by many of the programmed 

signatures, all of the miscellaneous weapons hit on at least four of the programmed signatures, 

while all but one of the trash metals hit on at least four.  While this feature is of no doubt great 

use in the detection of items with standardized metallic composition (i.e. coins and jewelry), the 

variations in the production of firearms, scrap metals, and miscellaneous weapons included in 

this study did not allow for a distinction to be made. 
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Table 16: Firearm Results for the Learn Feature Indicating Whether the Forensic Targets were Detected, Marked 

by the “x”, When the Advanced Detector was Set to Each of the Saved Signatures (S1 to S6) 

Target S1 S2 S3 S4 S5 S6 

A1 x x x x x x 

A2 x x x x x  

A3 x x x x x x 

A4 x x x x x x 

A5 x x x x  x 

B1 x x x x x x 

B2 x x x x x x 

B3 x x x x x x 

B4 x x x x x  

B5 x x x x x x 

C1 x x x x x x 

C2 x x x x x x 

C5 x x x x x  

D5 x x x x x x 

G1 x x x x x x 

G2 x x x x x x 
 

 

Table 17: Scrap Metal Results for the Learn Feature Indicating Whether the Targets were Detected,Marked by the 

“x”,  When the Advanced Detector was Set to Each of the Saved Signatures (S1 to S6) 

Target S1 S2 S3 S4 S5 S6 

C3   x x x x 

C4 x x x x  x 

D1   x    

D2 x x x x  x 

D3  x x x x  

D4 x x x x  x 
 

 

Table 18: Miscellaneous Weapons Results for the Learn Feature Indicating Whether the Targets were Detected, 

Marked by the “x”, When the Advanced Detector was Set to Each of the Saved Signatures (S1 to S6) 

Target S1 S2 S3 S4 S5 S6 

E1 x x x x x x 

E2 x x x x x x 

E3 x x x x  x 

E4  x  x x x 

E5 x x x x x x 

F1 x x x x x x 

F2 x x x x  x 

F3  x x x x  

F4 x x x x x x 

F5 x x x x  x 
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Discussion 

Analyzing the capabilities of an advanced metal detector in locating firearms, scrap 

metals, and miscellaneous weapons provided for expected and unexpected results.  Utilizing both 

modes for the tool (the factory preset Quickstart and the user programmable Advanced), the 

advanced metal detector proved to be easier for the author to use with little training while in 

Quickstart Mode.  However, this does not mean to say that dependable, reproducible results will 

be achieved without proper training, simply that the machine was not difficult to operate in 

Quickstart mode.  As Quickstart is analogous to the turn-on-and-go functioning of a basic all-

metal detector (Minelab Electronics Pty Ltd, n.d.), it was not unexpected that Quickstart would 

be the easier mode to operate in. Making use of ferrous-conductivity readings and Advanced 

discrimination features warranted more training, and detailed target training with the detector is 

highly recommended for those considering the machine for their agency.   

Due to the metallic compositions of the targets included in this project being mostly of 

steel, Quickstart ferrous content and conductivity readings did not prove useful in establishing 

discrimination patterns (Tables 13-15), and the Advanced Learn feature was not helpful in 

distinguishing unique signature patterns (Tables 16-18).  Had the research project incorporated 

more junk metal or other items normally searched for by hobbyists, the Advanced Learn feature 

may have been of more use.  However, the current research project was designed to determine 

whether or not the advanced features of this detector were helpful in distinguishing different 

weapons commonly associated with crime, not discerning a firearm from a wedding band.    

Although the Minelab Explorer II
TM

 was able to detect many of the buried targets in both 

modes, the most useful feature seems to be the simple detection component of the unit; 25 of 32 

targets were detected when utilizing the basic detection feature in Quickstart (Figures 31-36).  
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There are interesting results that can be discussed from Quickstart mode regarding the effect of 

metallic composition, target size, and coil size on target detection.      

Metal  

When analyzing whether metallic composition had any effect on target detection, it was 

confirmed in a few instances: the mostly polymer Glock Model 19 (A5), the steel NA Arms 

Mini-Magnum (B1), three scrap iron objects (solid iron pipe (C4), rusty iron pipe (D2), and rebar 

(D4)), and two of the steel miscellaneous weapons (baton (F1) and Phillip’s head screwdriver 

(F2))  were not detected with either coil.  The Glock Model 19 (A5) does have a steel slide, but is 

extensively polymer, which is non-metallic, and therefore a lack of detection is unsurprising.   As 

the factory presets in Quickstart mode set the Iron Mask at a mode “suitable when detecting non-

ferrous metals” (-6) between complete iron discrimination (0) and all-metal detection (-16), the 

observation that the iron targets or targets with high amounts of iron in their steel composition 

were not detected is explained (Minelab Electronics Pty Ltd, n.d.: 43).   

Size 

 Target size did not seem to be a factor in maximum depth of detection.  In general, 

smaller targets were detected down to similar, if not deeper, maximum depths of detection as the 

largest targets.  For example, the smallest handgun, the Derringer D9 (A1) was detected to the 

same maximum depth of detection as the largest shotgun, the Remington 870 (G1) using the 

medium coil.     
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Comparison of Medium and Large Search Coils  

Another issue to consider was whether the larger manufacturer-specific, after-market, 15” 

search coil would increase depth detection over the standard 10” search coil of the Minelab 

Explorer II
TM

 advanced metal detector.  Theoretically, the large search coil from the advanced 

metal detector should provide increased depth detection (Connor and Scott, 1998; Dupras et al., 

2006; Garrett, 1998; Hunter and Cox, 2005; Nielsen, 2003).  This research produced mixed 

results, as the larger 15” coil provided greater maximum detection depths for eight out of the 25 

detected weapons (Tables 19-21, Figures 37-39).  However, it should be noted that the two coils 

actually displayed the same maximum depth of detection for 15 of the 25 detected weapons. The 

large coil has a slight advantage in depth of detection for the larger weapons, including four of 

the five largest firearms: Norinco AK Hunter (C5), Remington 870 (G1), Mossberg Model 500A 

(D5), and Ruger P89 (G2).  Both coils may therefore be valuable in real-life forensic weapon 

searches. However, if the suspected metallic weapon is large, a large search coil may provide 

improved depths of detection. 

Within the firearm sample, one firearm was best detected by the medium coil: the Davis 

Derringer D9 (A1).  Five firearms were detected deeper with the large coil: the Norinco AK 

Hunter (C5), Remington 870 (G1), Mossberg Model 500A (D5), Ruger P89 (G2), and RG 

Industries RG23 (C2).  The remaining eight detected firearms were all detected down to the same 

maximum depth with both coils: Smith & Wesson Model 686 (B3), Colt Commander (B5), 

Smith & Wesson 5906 (A4), Hi-Point Model C (A3), Lorcin L380 (B4), Jennings Bryco 59 (B2), 

and Smith & Wesson Model 37 (C1), and Raven Arms MP25 (A2).  The North American Arms 

(B1) and Glock Model 19 (A5) were not detected by either coil (Table 19, Figure 37). Overall, 

the large search coil seems to best detect the larger firearms of the grid as the four weapons best 



85 

 

detected by the large coil are among the five largest firearms.  Both coils seem to fare the same 

with the medium-sized firearms, and the medium coil was better suited for the smallest targets.   

Overall, the results support the notion that a large search coil when compared to a smaller 

search coil detects larger targets deeper (Connor and Scott, 1998; Dupras et al., 2006; Garrett, 

1998; Hunter and Cox, 2005; Nielsen, 2003) as the four weapons best detected by the large coil 

are among the seven largest firearms. Both coils seem to fare the same with the medium and 

smaller objects as only two of the smallest eight firearms are detected better with the medium 

coil. 

Table 19: Maximum Depth of Detection (cm) for Firearms Comparing the Advanced Metal Detector with the 

Medium Coil and Large Coil 

Firearm 

(Largest to Smallest) 

Maximum Depth (cm) 

Minelab Explorer II
TM

 

Medium Coil 

Maximum Depth (cm) 

Minelab Explorer II
TM

 

Large Coil 

Norinco (C5) 20-25 40-45 

Remington (G1) 40-45 50-55 

Mossberg (D5) 35-40 40-45 

S&W 686 (B3) 40-45 40-45 

Ruger (G2) 35-40 40-45 

Colt (B5) 45-50 45-50 

S&W 5906 (A4) 45-50 45-50 

Glock (A5)   

Hi-Point (A3) 35-40 35-40 

Lorcin L380 (B4) 35-40 35-40 

Bryco 59 (B2) 45-50 45-50 

S&W 37 (C1) 30-35 30-35 

RG 23 (C2) 40-45 45-50 

NA Arms (B1)   

Raven Arms (A2) 35-40 35-40 

Derringer (A1) 40-45 30-35 
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Figure 37: Firearm Detection with the Advanced Metal Detector Comparing the Medium Coil and Large Coil 

 

Out of the six scrap metals, only three weapons (hollow copper tube (D1), aluminum 

edging (C3), and solid aluminum pipe (D3)) were detected. One piece of scrap metal, the hollow 

copper tube (D1), was best detected by the large coil, while the other two, the aluminum edging 

(C3), and solid aluminum pipe (D3) were detected down to the same maximum depth by both 

coils (Table 20, Figure 38). These scrap metals are three of the smallest items in the grid, and 

once again the ability of the smaller coil to detect smaller targets is shown. 

 

Table 20: Maximum Depth of Detection (cm) for Scrap Metals Comparing the Advanced Metal Detector with the 

Medium Coil and the Large Coil  

Scrap Metals 

Advanced Metal 

Detector 

Medium Coil 

Advanced Metal 

Detector 

Large Coil 

Hollow Copper (D1) 25-30 30-35 

Rebar (D4)   

Rusty Iron (D2)   

Aluminum Edging (C3) 40-45 40-45 

Solid Iron (C4)   

Solid Aluminum (D3) 30-35 30-35 
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Figure 38: Scrap Metal Detection with the Advanced Metal Detector Comparing the Medium Coil and Large Coil 

 

Out of the ten miscellaneous weapons comprising the sample, one was best detected by 

the medium coil: the claw hammer (F4).  Two miscellaneous weapons were detected deeper with 

the larger coil: mallet (E4) and prybar (E3).  The remaining three detected miscellaneous 

weapons were all detected down to the same maximum depth with both coils: the sword (F5), 

machete (E5), buck knife (E2), scissors (E1), and brass knuckles (F3).  The Philip’s Head 

Screwdriver (F2) and baton (F1) were not detected once buried (Table 21, Figure 39).  
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Table 21: Maximum Depth of Detection (cm) for Miscellaneous Weapons Comparing the Advanced Metal Detector 

with the Medium Coil and the Large Coil 

Miscellaneous Weapons 

Advanced Metal 

Detector 

Medium Coil 

Advanced Metal 

Detector 

Large Coil 

Sword (F5) 30-35 30-35 

Machete (E5) 40-45 40-45 

Mallet (E4) 30-35 35-40 

Claw Hammer (F4) 55-60 50-55 

Prybar (E3) 25-30 40-45 

Screwdriver (F2)   

Baton (F1)   

Buck Knife (E2) 25-30 25-30 

Scissors (E1) 35-40 35-40 

Brass Knuckles (F3) 35-40 35-40 

 

 
Figure 39: Miscellaneous Weapon Detection with the Advanced Metal Detector Comparing Medium Coil  

and Large Coil 

Conclusions 

This research project illustrated that utilizing an advanced metal detector, such as the 

Minelab Explorer II
TM

 tested here, is beneficial during a forensic search for a suspected weapon.  

Although we were not as successful with the Advanced features of the detector as we had hoped 

going into the project, the Minelab Explorer II
TM

 provided helpful results overall by detecting 
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most of the buried firearms and miscellaneous weapons.  Depth of detection for each group of 

targets was also helpful, as it was shown that many of the targets could be detected to deep 

maximum depths.  The amount of training and familiarity needed in order to utilize the 

Advanced functions of the detector may not be conducive to the amount of training, familiarity, 

or usage that many law enforcement agencies may be able to provide; however, this should not 

deter from the fact that the above results show that it is a beneficial tool.  In addition, the large 

coil did not prove as useful in detecting larger items deeper as one would have thought.  More 

positive results in this study came from using the standard 10.5” coil. 
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IV. CONCLUSIONS 

Due to the increasing incorporation of geophysical technologies into the process of 

forensic weapons searches, a need for controlled research and detailed guidelines has arisen.  

Often, forensic personnel in charge of using the geophysical technologies have negligible or 

limited training and experience on the specific tools.  Increased numbers of false hits that need to 

be physically checked by digging may then be produced, slowing down investigation time and 

destroying the scene (Connor and Scott, 1998; Davenport et al., 1992; Dupras et al., 2006; 

France et al., 1997; Goddard, 1977; Hunter and Cox, 2005; Isaacson et al., 1999; Killam, 2004; 

Murray and Tedrow, 1975; Nielsen, 2003; Ruffel and McKinley, 2005; Schultz et al., 2006; 

Schultz, 2007).  Controlled research not only allows for testing of geophysical equipment, but 

also for updating search methodologies.    

A variety of geophysical technologies were tested in this project: a basic all-metal 

detector, a magnetic locator, and an advanced metal detector.  Each proved easy to use in basic 

modes, although accurate and dependable results require training and experience, especially on 

the magnetic locator to distinguish between the normal hum and some responses.  The following 

sections detail which of the three geophysical tools was better able to detect each of the target 

groups on both settings utilized (Normal/Medium, High, medium and large coils). 

Comparisons 

Firearms   

For the firearms comparing the all-metal detector and magnetic locator on Normal/ 

Medium and the advanced metal detector with the medium coil, twelve firearms were best 

detected with the Minelab Explorer II
TM

 (Table 22, Figure 40).  The magnetic locator was next 
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with three, and one target was detected equally with the all-metal and magnetic locator.  

Although the all-metal did not have any targets down to their maximum depth, it was the only 

tool to detect all of the firearm targets.  

Table 22: Maximum Depth of Detection (cm) for Firearms Comparing the All-Metal Detector and Magnetic Locator 

on Normal/Medium Setting, and the Advanced Metal Detector with Medium Coil Using only Audible Responses 

Classified as Strong 

Firearms  

(Largest to 

Smallest) 

Maximum Depth  

(cm) Fisher M-97 

All-Metal Detector 

Maximum Depth  

(cm) Schonstedt  

GA-72Cd® Magnetic 

Locator 

Maximum Depth (cm)  

Minelab Explorer II 

Advanced Metal 

Detector 

Norinco (C5) 25-30 45-50 20-25 

Remington (G1) 30-35 50-55 40-45 

Mossberg (D5) 25-30 25-30 35-40 

S&W 686 (B3) 20-25 15-20 40-45 

Ruger (G2) 20-25 15-20 35-40 

Colt (B5) 25-30 40-45 45-50 

S&W 5906 (A4) 20-25 20-25 45-50 

Glock (A5) 15-20 15-20  

Hi-Point (A3) 15-20 15-20 35-40 

Lorcin L380 (B4) 15-20  35-40 

Bryco 59 (B2) 15-20 10-15 45-50 

S&W 37 (C1) 15-20 20-25 30-35 

RG 23 (C2) 15-20 0-5 40-45 

NA Arms (B1) 10-15 15-20  

Raven Arm (A2) 15-20  35-40 

Derringer (A1) 10-15 5-10 40-45 
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Figure 40: Firearm Detection with the All-metal Detector and Magnetic Locator on Normal/Medium Setting and the 

Advanced Metal Detector with the Medium Coil 

 

For the firearms comparing the all-metal detector and magnetic locator on High setting 

and the advanced metal detector with the large coil, seven targets were best detected by the 

advanced metal detector, while four targets were best detected with the magnetic locator (Table 

23, Figure 41).  Two firearms were detected equally with the all-metal detector and the magnetic 

locator, one firearm was detected equally with the all-metal detector and the advanced metal 

detector, and one firearm was detected equally with the magnetic locator and the advanced metal 

detector.  One firearm was detected equally with all three geophysical tools. 
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Table 23: Maximum Depth of Detection (cm) for Firearms Comparing the All-Metal Detector and Magnetic Locator  

on High Setting, and the Advanced Metal detector with the Large Coil Using Only Audible Responses Classified as 

Strong 

Firearm  

(Largest to  

Smallest) 

Maximum Depth 

(cm) Fisher M-97 

All-Metal Detector 

Maximum Depth  

(cm) Schonstedt  

GA-72Cd®  

Magnetic Locator 

Maximum Depth (cm) 

Minelab Explorer II 

Advanced Metal 

Detector 

Norinco (C5) 45-50 70-75 40-45 

Remington (G1) 50-55 70-75 50-55 

Mossberg (D5) 40-45 55-60 40-45 

S&W 686 (B3) 35-40 30-35 40-45 

Ruger (G2) 35-40 40-45 40-45 

Colt (B5) 35-40 55-60 45-50 

S&W 5906 (A4) 35-40 35-40 45-50 

Glock (A5) 30-35 30-35  

Hi-Point (A3) 35-40 25-30 35-40 

Lorcin L380 (B4) 30-35 5-10 35-40 

Bryco 59 (B2) 35-40 30-35 45-50 

S&W 37 (C1) 30-35 30-35 30-35 

RG 23 (C2) 30-35 10-15 45-50 

NA Arms (B1) 25-30 25-30  

Raven Arms (A2) 25-30 5-10 35-40 

Derringer (A1) 25-30 20-25 30-35 

 

Figure 41:Firearm Detection with the All-metal Detector and Magnetic Locator on High Setting and the Advanced 

Metal Detector with the Large Coil 
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Scrap Metals   

 For the scrap metals comparing the all-metal detector and magnetic locator on 

Normal/Medium settings and the advanced metal detector with the medium coil, three targets 

were best detected with the advanced metal detector (Table 24, Figure 42).  The magnetic locator 

best detected two, while the all-metal detector detected one target equally with the magnetic 

locator.   

For the scrap metals comparing the all-metal detector and magnetic locator on High 

setting and the advanced metal detector with the large coil, three targets were best detected with 

the advanced metal detector.  The magnetic locator best detected two, while the all-metal 

detector best detected one target (Table 25, Figure 43).  

Table 24: Maximum Depth of Detection (cm) for Scrap Metals Comparing the All-Metal Detector and Magnetic 

Locator  on Normal/Medium Setting, and the Advanced Metal Detector with the Medium Coil Using Only Audible 

Responses Classified as Strong 

Scrap Metals 

(Largest to 

Smallest) 

Maximum Depth 

(cm) 

Fisher M-97 

All-Metal 

Detector 

Maximum Depth (cm) 

Schonstedt GA-

72Cd® 

Magnetic Locator 

Maximum Depth 

(cm) 

Minelab Explorer II 

Advanced Metal 

Detector 

Hollow Copper (D1) 10-15  25-30 

Rebar (D4) 15-20 15-20  

Rusty Iron (D2) 25-30 55-60  

Aluminum Edging 

(C3) 

15-20  
40-45 

Solid Iron (C4) 25-30 40-45  

Solid Aluminum (D3) 10-15  30-35 
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Figure 42: Scrap Metal Detection with the All-metal Detector and Magnetic Locator on Normal/Medium Setting 

and the Advanced Metal Detector with the Medium Coil 

 

Table 25: Maximum Depth of Detection (cm) for Scrap Metals Comparing the All-Metal Detector and Magnetic 

Locator  on High Setting, and the Advanced Metal detector with the Large Coil Using Only Audible Responses 

Classified as Strong 

Scrap Metals 

(Largest 

to 

Smallest) 

Maximum Depth 

(cm) 

Fisher M-97 

All-Metal Detector 

Maximum Depth  

(cm) 

Schonstedt GA-

72Cd® 

Magnetic Locator 

Maximum Depth  

(cm)           

Minelab Explorer II 

Advanced Metal  

Detector 

Hollow Copper (D1) 25-30  30-35 

Rebar (D4) 30-35 25-30  

Rusty Iron (D2) 40-45 65-70  

Aluminum Edging (C3) 30-35  40-45 

Solid Iron (C4) 40-45 55-60  

Solid Aluminum (D3) 20-25  30-35 
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Figure 43: Scrap Metal Detection with the All-metal Detector and Magnetic Locator on High Setting and the 

Advanced Metal Detector with the Large Coil 

Miscellaneous Weapons 

For the miscellaneous weapons comparing the all-metal detector and magnetic locator on 

Normal/Medium setting and the advanced metal detector with the medium coil, five weapons 

were detected deepest with the advanced metal detector, three targets were detected best with the 

magnetic locator, and one was detected deepest with the all-metal detector (Table 26).  One 

target was detected equally with magnetic locator and the advanced metal detector.   

For the miscellaneous weapons comparing the all-metal detector and magnetic locator on 

High setting and the advanced metal detector with the large coil,  five targets were detected 

deepest with the magnetic locator, three were detected deepest with the advanced metal detector, 

one was detected deepest with the all-metal detector, and one was detected equally with the all-

metal and advanced metal detectors (Table 27).  
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 Table 26: Maximum Depth of Detection (cm) for Miscellaneous Weapons Comparing the All-Metal Detector and 

Magnetic Locator  on Normal/Medium Setting, and the Advanced Metal detector with the Medium Coil Using Only 

Audible Responses Classified as Strong 

Miscellaneous 

Weapons 

(Largest to  

Smallest) 

Maximum Depth 

(cm)  

Fisher M-97 

All-Metal Detector 

Maximum Depth (cm) 

Schonstedt GA-

72Cd® 

Magnetic Locator 

Maximum Depth (cm) 

Minelab Explorer II 

Advanced Metal 

Detector 

Sword (F5) 20-25 15-20 30-35 

Machete (E5) 20-25 0-5 40-45 

Mallet (E4) 20-25 15-20 30-35 

Claw Hammer 

(F4) 
25-30 60-65 55-60 

Prybar (E3) 15-20 15-20 25-30 

Screwdriver (F2) 5-10 70-75  

Baton (F1) 20-25 15-20  

Buck Knife (E2) 10-15 25-30 25-30 

Scissors (E1) 10-15 60-65 35-40 

Brass Knuckles 

(F3) 
10-15  35-40 

 

 

 
Figure 44: Miscellaneous Weapon Detection with the All-metal Detector and Magnetic Locator on Normal/Medium 

Setting and the Advanced Metal Detector with the Medium Coil 
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Table 27: Maximum Depth of Detection (cm) for Miscellaneous Weapons Comparing the All-Metal Detector and 

Magnetic Locator  on High Setting, and the Advanced Metal detector with the Large Coil Using Only Audible 

Responses Classified as Strong. 

Miscellaneous 

Weapons 

(Largest to 

Smallest)   

Maximum Depth 

(cm) 

Fisher M-97 

All-Metal Detector 

Maximum Depth  

(cm) 

Schonstedt GA-72Cd® 

Magnetic Locator 

Maximum Depth  

(cm)           

Minelab Explorer II 

Advanced Metal 

Detector 

Sword (F5) 35-40 40-45 30-35 

Machete (E5) 35-40 25-30 40-45 

Mallet (E4) 35-40 20-25 35-40 

Claw Hammer (F4) 40-45 60-65 50-55 

Prybar (E3) 30-35 25-30 40-45 

Screwdriver (F2) 15-20 80-85  

Baton (F1) 30-35 25-30  

Buck Knife (E2) 25-30 35-40 25-30 

Scissors (E1) 25-30 60-65 35-40 

Brass Knuckles (F3) 25-30  35-40 

 

 
Figure 45: Miscellaneous Weapon Detection with the All-metal Detector and Magnetic Locator on High Setting and 

the Advanced Metal Detector with the Large Coil 

Conclusions 

Overall, the all-metal detector detected all of the metallic targets in the research project; 

however, it had the fewest amounts of targets that were detected deepest with the tool.  As 

0
10
20
30
40
50
60
70
80
90

D
e

p
th

 o
f 

D
e

te
ct

io
n

 (
cm

)

Buried Miscellaneous Weapons (Longest to Shortest)

Miscellaneous Weapon Detection with 
High Setting and Large Coil 

All-metal

Magnetic 
Locator
Advanced



101 

 

expected, the magnetic locator detected ferric targets made of iron and steel and not those of 

non-ferric copper or aluminum composition.  Using the Minelab Explorer II
TM

 with the standard 

10.5” medium coil proved to be the best geophysical tool for detecting the metallic targets the 

deepest and reducing the number of scrap metals detected.  While this may seem like a negative 

result, it would actually be a beneficial ability in the field, as common types of scrap metals 

would be excluded from the search area, increasing the potential for finding the actual suspected 

weapon.  Finally, the advanced metal detector was able to detect the highest amount of 

miscellaneous weapons the deepest, and was unable to detect only two.  Again, this would be 

beneficial in the field, if investigators are not looking for screwdrivers or police batons.   

Taking all three geophysical tools and their multiple settings into consideration, Table 28 

illustrates which tool would be most useful in detecting each category of metallic target included 

in this project: 

 Table 28: Comparison of Geophysical Tools    

Category of Detection Fisher M-97 
Schonstedt 

 GA-72Cd  

Minelab  

Explorer II
TM

 

Unknown Metallic 

Composition 
X  X 

Known Ferromagnetic 

Composition 
X X  

Shallow Depth (<45cm) X X X 

Deeper Depths (>45cm)  X X 

Large Firearms to 

Deepest Depths 
 X  

Handguns to  

Deepest Depths 
 X X 

Scrap Metals to  

Deepest Depths 
 X  

Miscellaneous Weapons 

to Deepest Depths 
 X  
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Future Considerations 

 Although all current objectives were explored and answered, additional research options 

arose during the research.  Further controlled research projects could include such objectives as 

an assessment of the capabilities of each tool in different soil conditions, testing of a broader 

array of metallic targets, and utilization of additional advanced features of the Minelab Explorer 

II
TM

.  Any additional research can only strengthen the foundations of forensic investigation. 
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