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Abstract
Blue carbon ecosystems such as mangroves and salt marshes store large amounts of carbon (C) in the form of plant biomass 
and soils that are often rich in organic matter. These C stocks have a high degree of spatial variability within and among 
coastal wetland ecosystem types, but quantifying location-specific C stocks is both labor intensive and time-consuming. 
Above- and belowground C stock data were compiled from field efforts in Southwest Florida and from published georefer-
enced C data. These data were used in conjunction with ecosystem maps, remote-sensing parameters, and existing vegetation 
models to create 30-m resolution spatial models quantifying aboveground C stocks and belowground C stocks up to 1-m 
depth in mangroves and salt marshes along 360 km of coast in Southwest Florida (Tampa Bay to the Everglades). Based on 
modeling results, mangroves and salt marshes in Southwest Florida store an average of 393.9 ± 107.1 and 286.7 ± 71.9 Mg C 
ha−1, respectively, in above- and belowground C stocks. Soil C density and belowground C stocks increased at lower latitudes 
within the study region. Total C stocks in mangroves increased from 265.1 ± 43.2 Mg ha−1 in Tampa Bay and Sarasota Bay 
to 409 ± 104.4 Mg ha−1 in the Everglades. Substrate stability and C stocks are susceptible to impacts from climate change, 
sea-level rise, hydrologic changes, and episodic disturbances such as tropical cyclones. The long-term storage of C in these 
ecosystem types depends on ecosystem stability in the face of these stressors.
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Introduction

Coastal wetlands are important to global carbon (C) cycles 
and store a disproportionately large amount of organic car-
bon (OC) per hectare compared to terrestrial ecosystems 
(Donato et al. 2011; Kauffman et al. 2011; Alongi 2014, 
2020). Coastal wetlands are known as blue C ecosystems 
due to their ability to capture atmospheric carbon dioxide 
through photosynthesis, convert it to OC in vegetative bio-
mass, and sequester it long-term in soil. The OC in blue 
C ecosystems is primarily stored belowground in live and 
dead roots and in the soil itself. Decomposition is slow 
within the anoxic and water-saturated soil, enabling the 
preservation of OC for centuries to millennia (Orson et al. 
1987; Donato et al. 2011; Alongi 2020; Feagin et al. 2020). 
Coastal wetlands can form peat deposits (soils with > 20% 
organic matter), which are formed through the accumula-
tion of roots with additional organic contributions from 
aboveground biomass and allochthonous inputs including 
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seagrass and estuarine particulate organic matter (Middleton 
and McKee 2001; Bouillon et al. 2003; Chmura et al. 2003; 
Maher et al. 2013; Alongi 2014, 2020).

Globally, mean above- and belowground C stocks are 
739 Mg C ha−1 in mangroves and 334 Mg C ha−1 in salt 
marshes (Alongi 2020). However, these estimates vary 
widely with latitude, climate, vegetation type, soil bio-
geochemistry, and local geomorphology (Kauffman et al. 
2011; Sanders et al. 2016; Ewers Lewis et al. 2018). On 
a global scale, both above- and belowground C stocks in 
mangroves are generally greater at lower latitudes, but there 
can be considerable local variability (Alongi 2014; Hutch-
ison et al. 2014; Sanders et al. 2016; Simard et al. 2019a, 
b). This trend is largely driven by climate. Mangroves can 
grow taller and have greater biomass near the equator due 
to the warm temperatures, high precipitation, and reduced 
cyclone frequency (Simard et al. 2019a). However, tree 
height can be quite variable on a local scale depending on 
distance from the coast, inundation frequency, salinity, and 
geomorphic characteristics (Lara and Cohen 2006; Simard 
et al. 2006). Belowground C stocks also tend to be higher 
at lower latitudes as the increased precipitation can increase 
water logging, thus decreasing rates of decomposition in 
the saturated soil (Alongi 2013; Sanders et al. 2016). On a 
smaller scale, belowground C stocks are also influenced by 
allochthonous input, nutrient enrichment, vegetation assem-
blages, root biomass, wetland elevation, tidal amplitude, and 
local geomorphology (Kauffman et al. 2011; Sanders et al. 
2016; Gress et al. 2017; Ouyang et al. 2017; Rovai et al. 
2018; Simard et al. 2019a; Worthington et al. 2020).

Location-specific quantification of above- and below-
ground C stocks has been the primary focus of many blue C 
studies and is critical to accurately understanding and quan-
tifying coastal biogeochemical cycles (e.g., Bouillon et al. 
2008; Alongi 2012, 2014; Bauer et al. 2013). However, the 
expensive and labor-intensive nature of C stock quantifica-
tion has led to several efforts to model coastal C stocks at 
both regional and global scales to improve C inventories and 
to explore the underlying drivers (e.g., Gress et al. 2017; 
Byrd et al. 2018; Sanderman et al. 2018; Campbell et al. 
2022). Global models of soil C in mangrove forests have 
generally relied on latitude and climatic variables such as 
precipitation and temperature to predict much of the vari-
ability found in C stocks (Hutchison et al. 2014; Jardine and 
Siikamäki 2014; Rovai et al. 2018). Remote-sensing pre-
dictors of more localized factors, such as total suspended 
sediment, canopy height, and spectral data from Landsat 
imagery, have sometimes been included for additional 
explanatory power (Sanderman et al. 2018; Simard et al. 
2019a, b; Campbell et al. 2022).

Aboveground C stocks in coastal wetlands are typi-
cally smaller compared to belowground stocks (Alongi 
2020; Kauffman et al. 2020). Aboveground plant biomass 

comprises only 1% of total C stocks found in salt marshes 
and 15% in mangroves, with the remaining C stocks found 
belowground as roots and in soil (Alongi 2020). The above-
ground biomass of mangroves and other forests has been 
modeled with the use of airborne or satellite-based lidar 
and radar, which makes use of tree height as a predictor of 
forest biomass (Simard et al. 2006, 2019a; Lu et al. 2016; 
Fatoyinbo et al. 2018; Stovall et al. 2021). These biomass 
estimates can then be converted into aboveground C stocks 
based on the average C content of the vegetation (Howard 
et al. 2014; Stringer et al. 2015). Modeling aboveground 
biomass or C content in salt marshes is more challenging 
than in mangrove forests due to the broad variety of species 
found in salt marshes, including mixes of herbaceous and 
woody vegetation. It is also challenging to use remote sens-
ing to measure vegetation height or elevation in salt marshes 
as measurements on the top of the plants are more accurate 
than ground measurements due to the inability of lidar to 
penetrate dense graminoid vegetation (Hladik and Alber 
2012; Medeiros et al. 2015; Enwright et al. 2017; Thomas 
et al. 2019).

Global C stock averages and C models for mangroves 
are often dominated by data acquired in low-latitude Indo-
Pacific mangrove forests (Alongi 2012, 2014). The nature 
of global models does not allow for the incorporation of the 
wide ecosystem variability found across the climatic gradi-
ent in Florida. Approximately 246,000 ha of mangroves and 
151,000 ha of salt marshes remain in Florida, with South-
west Florida containing nearly 58% of the state’s remain-
ing coastal wetlands (SFWMD 2018; SWFWMD 2019). 
Mangroves and salt marshes intermix in Southwest Florida; 
thus, a complete understanding of C stocks requires region-
specific quantification and high-resolution consideration 
of both ecosystems and the transition zones between them. 
This study combined in situ field efforts, data from previ-
ously published studies, and remote-sensing data to quantify 
regional OC storage and model spatial variability of above- 
and belowground OC stocks at a 30-m resolution in man-
groves and salt marshes in Southwest Florida. The objectives 
of this study were to model above- and belowground OC 
stocks across Southwest Florida coastal wetlands in order 
to examine large- and small-scale spatial trends of regional 
C stocks within the context of long-term ecosystem stability.

Methods

Study Region

This study focused on the coast of Southwest Florida, from 
Tampa Bay through the Everglades (Fig. 1). The region 
spans a climatic gradient, from a humid subtropical climate 
in the north to a tropical savanna climate in the south (Kottek 
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et al. 2006). Salt marsh and mangroves are found through-
out the region and have a year-round growing season, with 
increased rates of growth in the summer rainy season (Lugo 
and Snedaker 1974). Mangrove species include Rhizophora 
mangle (red mangrove), Avicennia germinans (black man-
grove), and Laguncularia racemosa (white mangrove). The 
mangrove associate Conocarpus erectus (buttonwood) is 
also common. Dominant salt marsh species include Jun-
cus roemerianus (black needlerush) and Spartina alterni-
flora (smooth cordgrass), which are intermixed with other 
graminoids (e.g., Spartina spp., Panicum spp., Sporobolus 
virginicus, and Muhlenbergia capillaris), succulents (e.g., 
Batis maritima, Sesuvium portulacastrum, Blutaparon 

vermiculare, and Salicornia spp.), ferns (Acrostichum dan-
aeifolium), and small trees (e.g., Baccharis halimifolia and 
Iva frutescens). Mangroves are typically found closest to 
the shoreline, with salt marshes often present farther inland 
(Fig. 1).

Field Data Collection

A total of 25 10 × 10-m plots were sampled in mangroves 
and salt marshes across Southwest Florida (locations listed 
in Tables S1 and S2 in Electronic Supplementary Materials). 
A real-time kinematic global-positioning system (RTK-GPS) 
Champion WR1 receiver (Champion Instruments, Norcross, 

Fig. 1   Coastal wetland extent 
and ground-truthing data 
(including both novel data 
collected for this study and pub-
lished datasets) in Southwest 
Florida. Ranges of four regions 
used for data comparison are 
shown at the left of the figure. 
Salt marsh and mangrove extent 
obtained from water manage-
ment district land use/land 
cover maps (SFWMD 2018; 
SWFWMD 2019)
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GA) and coupled HC1 data collector running Carlson SurvCE 
v 5.07 (Carlson Software Inc., Maysville, KY) were used to 
measure elevation and location at the corners of each 10 × 10-m 
plot. Real-time base-station corrections were made via direct 
cellular data connection to the Florida Permanent Reference 
Network (FPRN) maintained by the Florida Department of 
Transportation (https://​www.​fdot.​gov/​geosp​atial/​fprn.​shtm).

Woody vegetation was classified based on height and 
diameter at breast height (130 cm above the ground, d130). 
Vegetation categories included trees (d130 > 5  cm), sap-
lings (d130 < 5  cm and height > 130  cm), shrubs (height 
30–130 cm), and seedlings (height < 30 cm). The d130, spe-
cies, and status (live, recently dead with minimal decay, or 
decaying) were recorded for all trees within the 10 × 10-m 
plot. Saplings, shrubs, and seedlings were measured in a 
5 × 5-m subplot that was established in the corner most rep-
resentative of woody vegetation within the plot. The d130, 
species, and status were recorded for each sapling. Species, 
diameter at 30 cm above the ground (d30), canopy dimensions 
(length, width, and depth), and total height of up to 25 shrubs 
were recorded, and the total number of shrubs was counted. 
The total number of mangrove seedlings was recorded along 
with the heights of up to 30 seedlings, and percent species 
composition of all seedlings was visually estimated.

In plots with herbaceous vegetation, 30 × 30-cm subplots 
were created in each corner of the 10 × 10-m plots. Heights 
of up to 25 stems of each species within each subplot were 
then recorded, along with the total number of stems and the 
ratio of live:dead stems. For herbaceous species and seed-
lings without published allometric equations relating plant 
height to biomass (see Tables S3 and S4 in Electronic Sup-
plementary Materials), approximately 50 stems of varying 
height of each species were harvested for the creation of 
new allometric equations. Collected plants were refrigerated 
upon return from the field.

Two cores were retrieved per 10 × 10-m plot, collected in 
opposite corners of the plots. A D-type half-cylinder “Rus-
sian” peat corer (Eijkelkamp USA, Morrisville, NC) was 
used to remove an uncompacted soil core (5-cm diameter) to 
a depth of up to 50 cm. If surficial peat extended to a depth 
greater than 50 cm, a second core was removed adjacent to 
the original core up to a depth of 100 cm. Cores were pho-
tographed and stored in a half-cut polyvinylchloride (PVC) 
pipe wrapped in PVC food-service cling wrap. Cores were 
refrigerated upon return from the field to prevent desiccation 
or oxidation prior to analysis.

Laboratory Methods

Plants collected in the field (salt marsh plants and some 
woody seedlings) were measured and dried within a few 

days of collection. Stem lengths were recorded to the nearest 
0.5 cm, then dried in an Isotemp 500 series or Heratherm 
OGS60 drying oven (Thermo Fisher Scientific, Waltham, 
MA, USA) at 60 °C until mass stabilized, usually around 
72 h. Dry biomass was measured using an Ohaus Adven-
turer analytical balance (Ohaus Corporation, Parsippany, 
NJ, USA). Allometric equations were generated following 
the methods in Radabaugh et al. (2017) and are listed in 
Table S4 of Electronic Supplementary Materials.

Sediment cores were analyzed following a staged loss-
on-ignition (LOI) combustion protocol to determine organic 
matter content of the soil and associated fine roots (the OC 
in roots and soil is collectively referred to as belowground 
C in this study). The LOI protocol used methods originally 
described by Ball (1964) and Dean (1974) with modifica-
tions suggested by Craft et al. (1991) and use of temperatures 
and ignition times recommended by Bengtsson and Enell 
(1986) and Plater et al. (2015). Each core was sectioned into 
1-cm intervals, and a cylindrical aliquot of known volume 
(1.131 cm3) was removed from each interval and placed into 
a pre-weighed crucible. The soil aliquots were then dried in 
a Thermolyne furnace (Thermo Scientific, Waltham, MA) at 
105 °C for 24 h, and their dry weights were recorded using 
a Mettler Toledo NewClassic MF balance (Mettler Toledo, 
Columbus, OH, USA). Dry bulk density was calculated as 
dry mass divided by initial aliquot volume. The samples 
underwent combustion at 550 °C for 3 h to remove organic 
matter. The percent organic matter that was lost on ignition 
(%LOI) was calculated as a function of dry mass (mdry, g) 
and mass after combustion at 550 °C (m550, g):

Location and ecosystem-specific conversion equations 
were used to derive %OC from %LOI. Equation 2 (derived 
from Tampa Bay mangrove samples; Radabaugh et al. 2018) 
was used for Tampa Bay and Charlotte Harbor mangroves. 
Equation 3 was used for Tampa Bay and Charlotte Harbor 
marshes and salt flats (equation derived from Tampa Bay 
salt marsh samples; Radabaugh et al. 2018). Equation 4 was 
used for all other samples; this equation is a statewide, Flor-
ida-specific equation developed from mangrove soils with a 
wide variety of organic content (see Figure S1 and Table S5 
in Electronic Supplementary Materials for further details).

(1)%LOI =

(

mdry − m
550

mdry

)

× 100

(2)%OC = 0.42374 ∗ %LOI

(3)%OC = 0.50396 ∗ %LOI

(4)%OC = 0.001 ∗ %LOI2 + 0.371 ∗ %LOI + 0.460

https://www.fdot.gov/geospatial/fprn.shtm
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Compilation of Published Datasets and Calculations

Aboveground data collected during field efforts in this study 
were combined with aboveground data from Radabaugh et al. 
(2018, 2020) and Peneva-Reed and Zhu (2019; see Table S1 
in Electronic Supplementary Materials). The aboveground 
dataset included C stocks from 86 locations (Fig. 1). Field 
work for these 86 locations was conducted between 2015 and  
2020. Hurricane Irma made landfall in Southwest Florida in 
September of 2017 and caused extensive damage to mangrove 
forests (McCarthy et al. 2020; Osland et al. 2020; Radabaugh 
et al. 2020; Lagomasino et al. 2021). Aboveground data  
were either collected before Hurricane Irma, in locations not 
significantly impacted by Irma, or in the case of Radabaugh  
et al. (2020), data collected post-storm on recently felled trees 
were used to calculate pre-storm forest biomass.

Novel and previously published allometric equations 
(listed in Tables S3 and S4 in the Electronic Supplementary 
Materials) were used to calculate the aboveground biomass 
of woody and herbaceous vegetation. Biomass of woody veg-
etation was converted to C stock using a C conversion factor 
(proportion of C in dry biomass) of 0.44, based on data from 
Florida mangroves (Ewe et al. 2006; Bouillon et al. 2008). 
In locations where data were collected after Hurricane Irma, 
aboveground biomass of recently dead trees was calculated 
the same as live trees in order to calculate biomass prior 
to the hurricane. Aboveground biomass of decaying trees 
was calculated by using live tree equations and then sub-
tracting 30% of biomass to account for loss of tree limbs and 
canopy (Howard et al. 2014). A carbon conversion factor of 
0.5 was used for standing dead trees (Kauffman and Donato 
2012; Howard et al. 2014). Carbon conversion factors for 
live herbaceous vegetation were obtained from Radabaugh 
et al. (2017), using species-specific C conversion factors 
when available or a factor of 0.411 for all other species. A 
C conversion factor of 0.45 was used for dead herbaceous 
vegetation (Howard et al. 2014). All aboveground C com-
ponents were summed per plot area and used to calculate 
aboveground carbon stock (Mg ha−1). All above- and below-
ground ground-truthing data were classified by ecosystem 
type as either (1) mangroves or (2) salt marsh/other ecosys-
tems (including sparsely vegetated salt flats or salt marshes 
mixed with woody vegetation such as C. erectus, B. halimi-
folia, or occasional small mangroves).

Additional belowground OC stock data (including 
belowground vegetation and soils) were compiled from 
the Coastal Carbon Atlas (Coastal Carbon Research 
Coordination Network, CCRCN; https://​ccrcn.​shiny​apps.​
io/​Coast​alCar​bonAt​las/) and other available data sources 
(see Table  S2 in Electronic Supplementary Materials). 
Belowground C data sources included Cahoon and Lynch 
(1997), Chen and Twilley (1999), Breithaupt et al. (2014, 
2017, 2020), Marchio et al. (2016), Gerlach et al. (2017), 

Osland et al. (2012, 2016), and Radabaugh et al. (2018, 
2020, 2021). If data from the CCRCN included %OC, 
the published %OC values were used as provided. If only 
%LOI was provided, %LOI was converted using Eqs. 2 and 
3 for Tampa Bay and Charlotte Harbor mangroves and salt 
marshes, respectively. Equation 4 was used for all other 
samples south of Charlotte Harbor.

Years of core collection, from the CCRCN dataset and 
cores collected for this study, ranged from 1995 to 2020, 
with the majority of cores collected after 2010. Core data 
were not included from areas heavily impacted by Hurricane 
Irma. Cores from created wetlands were not included in the 
dataset. Only data from the top 1 m of soil were used for the 
model. The decision to limit the model to 1-m depth was 
based on recommendations of standard blue C procedures 
(Howard et al. 2014) and the paucity of deep sediment data 
(only 6 of the 421 cores in the dataset used to build the 
model extended to depths beyond 1 m). Multiple datasets 
from cores extending to 1 m depth were available for Tampa 
Bay and Sarasota Bay, Charlotte Harbor, and the Ten Thou-
sand Islands. Cores from the Everglades reached a maximum 
of 60-cm depth.

Model Methods

Machine-learning models were created in R version 3.6.2 
(R Core Team 2019) using the randomForest package (Liaw 
and Wiener 2002). The random forest approach enables mod-
eling of non-linear relationships between predictors and C 
stocks (Hengl et al. 2017). Two-thirds of the datapoints in 
each dataset were randomly assigned to a calibration dataset 
and one third retained for cross-validation and to test for over-
fitting. Separate models were created for aboveground OC 
stocks (Mg ha−1) and depth-specific soil OC density (kg C 
m−3). The belowground model predicted soil C density rather 
than total C stocks to model changes in C density with depth 
and because the maximum depth of cores within the dataset 
varied. Random forest models were created using spatially 
explicit predictor variables derived from remote-sensing data. 
These predictors, which were all obtained as rasters with a 
30-m spatial resolution, included the following:

•	 Maximum canopy height of mangroves in 2000 (nominal 
year) from Simard et al. (2019b)

•	 Percentage of tree canopy cover in 2000 from Hansen 
et al. (2013)

•	 Landsat 8 data (Bands 1–8 and 10–11) from February 
2015, obtained from USGS Global Visualization Viewer 
(GloVis; https://​glovis.​usgs.​gov/)

•	 Normalized difference vegetation index (NDVI), as cal-
culated from Landsat 8 bands 4 and 5 from February 
2015, obtained from USGS Global Visualization Viewer 
(GloVis; https://​glovis.​usgs.​gov/)

https://ccrcn.shinyapps.io/CoastalCarbonAtlas/
https://ccrcn.shinyapps.io/CoastalCarbonAtlas/
https://glovis.usgs.gov/
https://glovis.usgs.gov/
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•	 arc-second DEM (USGS 2019), obtained from https://​
apps.​natio​nalmap.​gov/​downl​oader/#​produ​ctGro​upSea​rch

Values for the predictors listed above were extracted 
using the package raster (Hijmans 2020) using the latitude 
and longitude for the location of each core and for the center 
of each vegetation plot. The Simard et al. (2019b) mangrove 
height data were limited to areas covered by mangroves; 
all locations lacking mangrove height data were assigned a 
value of zero. The number of predictors for the final models 
was selected based on the minimum error using the cross-
validation procedure in the randomForest package.

A grid of points spaced at 30 × 30-m intervals was created 
in QGIS (version 3.14.15; QGIS Development Team 2020) 
in mangrove or salt marsh as mapped in Water Management 
District Land Use/Land Cover maps, which were created 
based on imagery collected in 2014–2017 (SFWMD 2018; 
SWFWMD 2019). Carbon density in soils at depths of 0–1, 
15–16, 30–31, 50–51, and 100–101 cm and aboveground 
C stocks were then predicted using the two random forest 
models based upon predictor data extracted for each of the 
gridded points. Belowground C stocks were integrated as a 
function of C density across depths 0–100 cm using the trap-
ezoidal rule (Hengl et al. 2017). Above- and belowground C 
stocks (Mg ha−1) were plotted as rasters across Southwest 
Florida. An online version of this model was created using 
ArcGIS Experience Builder (ESRI, Redlands, CA, USA).

Statistical analyses were completed in R version 3.6.2 (R 
Core Team 2019). Significance was assessed at an alpha of 
0.05. Data were examined for normality using Shapiro–Wilk 
tests, probability plots, and quantile plots. A two-tailed t-test 
was used to test for differences by ecosystem type for above-
ground C stocks at ground-truthed sites. A Wilcoxon rank-
sum test was used to test for differences by ecosystem type 
for modeled C stocks and for C density of surficial soil at 
ground-truthed sites. Two-tailed t-tests were used to test the 
difference in tree cover, NDVI, and tree height between eco-
system types across Southwest Florida. Pearson’s correlation 
coefficient was used to assess the relationship between C 
stock and model predictors.

Results

Belowground C Model Development

The soil dataset, compiled from novel and published 
data, included 8459 values from 421 cores (core locations 
shown in Fig. 1). Soil data were evenly divided between 
mangroves and salt marsh/other ecosystems, with over 
half of the available values from the top 30 cm of soil 
(Fig. 2). Soil C density was generally higher in mangroves 

compared to salt marsh/other ecosystems, but it decreased 
with depth in both types of ecosystems (Fig. 2). Carbon 
density of surficial soils (from 0–1 cm depth) was sig-
nificantly higher in mangrove ecosystems, although there 
was considerable overlap between the two ecosystem types 
(Wilcoxon rank-sum W = 3517, p < 0.0001).

The model focused on OC only and did not incorporate 
inorganic carbon from sources such as calcium carbonate. 
The four most important variables for predicting soil C 
density in the belowground model, in order of importance, 
were soil depth, Landsat 8 Band 7 (shortwave infrared; 
SWIR at 2.11–2.29  µm), Landsat 8 Band 11 (thermal 
infrared; TIR at 11.50–12.51 µm), and mangrove height 
(Fig. 3a); these four variables were used to generate the 
final random forest model predicting belowground C 
density. The model predicted C density with a root mean 
square error (RMSE) of 5.26 kg C m−3 and R2 value of 
0.877 for the calibration dataset. The cross-validation 
dataset had a RMSE of 6.99 kg C m−3 and R2 value of 
0.784 (Fig. 3b, c).

Fig. 2   Density scatterplots depicting soil C density as a function of 
depth for datasets compiled from mangrove (a; n = 4,079 soil sam-
ples) and salt marsh and other ecosystems (b; n = 4,383 soil samples)

https://apps.nationalmap.gov/downloader/#productGroupSearch
https://apps.nationalmap.gov/downloader/#productGroupSearch
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Aboveground C Model Development

The sample size for the aboveground dataset was considera-
bly smaller and included data from 86 plots. Aboveground C 
stocks at the ground-truthing sites showed a clear separation 
based on ecosystem type (Fig. 4), with significantly higher 
C stocks at mangrove sites compared to salt marsh and other 
ecosystem types (t2 = 19.145, df = 77.385, p < 0.0001).

Four predictors were also used to create the aboveground 
C model: ecosystem type, percent tree cover, NDVI, and 
mangrove height (Fig. 5a). The random forest model pre-
dicted aboveground C stocks with an RMSE of 9.87 Mg ha−1 
and R2 value of 0.864 for the calibration dataset and an 
RMSE of 12.68 Mg ha−1 and R2 value of 0.709 for the cross-
validation dataset (Fig. 5b, c).

Extrapolated Models

The above- and belowground models were then used to 
predict C stocks at a 30-m resolution across Southwest 
Florida as a function of ecosystem type as determined by 
classification of each 30 × 30-m pixel as either mangrove 
swamp or salt marsh by SFWMD (2018) and SWFWMD 
(2019) land-cover maps (Figs. 6 and 7; model results are 
available for online viewing and download at https://​gis.​
myfwc.​com/​SWFLC​arbon​Stock​sMap/). Modeled above-
ground C stocks in salt marshes/other ecosystems ranged 
from 8.3 to 51.9 Mg ha−1, with a mean of 13.4 ± 7.5 Mg ha−1 
(Table 1; Figs. 5c and 7a). Pixels classified as salt marsh/
other ecosystems in land-cover maps may still contain some 
trees (Table 1). Modeled aboveground C stocks in man-
groves ranged from 21.5 to 71.3 Mg ha−1, with a mean of 
46.4 ± 14.1 Mg ha−1. The range of predicted belowground C 
stocks showed even more overlap than aboveground C stocks 
between the salt marsh/other ecosystems and mangroves 
(Fig. 6b). Modeled belowground C stocks in salt marshes/
other ecosystems up to a depth of 1 m ranged from 70.5 to 
594.3 Mg ha−1, with a mean of 273.4 ± 70.7 Mg ha−1. Mod-
eled belowground C stocks in mangroves ranged from 70.7 
to 628.9 Mg ha−1, with a mean of 347.5 ± 100.6 Mg ha−1. 
Modeled total C stocks were significantly higher in man-
groves compared to salt marshes/other ecosystems (Wil-
coxon rank-sum W = 8.1611e + 11, p < 0.0001). Both 
above- and belowground C stocks were also significantly 
greater in mangroves compared to salt marshes/other 
ecosystems (Fig.  8a; aboveground Wilcoxon rank sum 
W = 9.8626e + 11, p < 0.0001; belowground Wilcoxon rank 
sum W = 7.2714e + 11, p < 0.0001).

Total C stocks of both mangroves and salt marshes/other 
ecosystems were generally higher in the southern regions 

Fig. 3   Variable importance (a) 
for predicting soil C density of 
calibration (b) and cross-vali-
dation (c) datasets. The top four 
variables in panel a were used 
to create the final model shown 
in panels b and c. Acronyms 
include shortwave infrared 
(SWIR), thermal infrared (TIR), 
digital elevation model (DEM), 
normalized difference vegeta-
tion index (NDVI), near infrared 
(NIR), and root-mean square 
error (RMSE)

Fig. 4   Histogram showing frequency of calculated aboveground C 
stocks at ground-truthing sites

https://gis.myfwc.com/SWFLCarbonStocksMap/
https://gis.myfwc.com/SWFLCarbonStocksMap/
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of Ten Thousand Islands and the Everglades compared 
to the northern regions of Tampa Bay/Sarasota Bay and 
Charlotte Harbor (Figs. 7 and 8b, Table 1). Total modeled 
C stock was negatively correlated with latitude (Pearson’s 
r =  − 0.348, df = 2,847,057, p < 0.0001). Aboveground 
C stock was positively correlated with NDVI (Pearson’s 
r = 0.764, df = 2,847,057, p < 0.0001). Mangroves were 
taller in the southern regions of the study area (Table 1). 
Tree height averaged 11.6 ± 7.5 m in the Ten Thousand 
Islands and 8.5 ± 6.5 m in the Everglades, while they were 
only 6.1 ± 4.5 m tall in Tampa Bay and Sarasota Bay. How-
ever, percent tree cover in areas classified as mangroves was 
lower in southern regions (Table 1); tree cover was only 
62.4 ± 32.3% in the Everglades compared to 75.0 ± 29.6% 
in Tampa Bay and Sarasota Bay (Table 1). Salt marshes/
other ecosystems had lower C stocks than mangroves in each 
region (t2 test p values < 0.0001). Areas classified as salt 
marshes/other ecosystems had significantly lower percent 
tree cover, maximum mangrove height, and NDVI compared 
to mangrove forests (t2 test p values < 0.0001; Table 1).

In addition to latitudinal trends, C stocks and several of 
their predictors showed spatial trends related to distance 
from shore (Figs. 7 and 9). Both above- and belowground C 
stocks generally decreased further inland (Fig. 9a, b). Man-
grove tree height and percent tree cover also declined inland 
(Fig. 9c, d). NDVI values were higher and SWIR values 
were lower closer to shore (Fig. 9e, f).

Discussion

Comparison with Local and Global Blue C Stocks

In this study, modeled C stock (aboveground and 
belowground up to 1-m depth) in Southwest Florida 
mangroves contained significantly higher C stocks compared 
to salt marshes/other ecosystems (393.9 ± 107.1  Mg C 
ha−1 and 286.7 ± 71.9 Mg C ha−1, respectively; Table 1). 

Globally, C stocks in mangroves average 739 Mg C ha−1 
and salt marshes average approximately 334 Mg C ha−1 
(aboveground and belowground C up to 1-m depth; Alongi 
2020). Florida mangroves do not reach the higher range of C 
stocks found in Indo-Pacific mangroves (Donato et al. 2011; 
Alongi 2014, 2020; Doughty et al. 2016; Jerath et al. 2016; 
Radabaugh et al. 2018). Florida has a comparatively drier 
and cooler climate and higher tropical cyclone frequency 
relative to equatorial mangroves, leading to smaller 
mangroves and less organic matter in the soil (Radabaugh 
et  al. 2018; Simard et  al. 2019a). Shallow peat layers 
(< 50 cm in depth) are not uncommon in many mangrove 
forests in Florida, particularly in the mangrove forests found 
in the subtropical/temperate climate in the northern limit of 
Florida’s mangrove range (Doughty et al. 2016; Radabaugh 
et al. 2018; Steinmuller et al. 2022).

Mangrove aboveground C and biomass have been mod-
eled before, primarily with the use of tree height (Simard 
et al. 2006, 2019a, b; Lu et al. 2016; Fatoyinbo et al. 2018; 
Navarro et al. 2020). In this study, modeled aboveground C 
stocks in Southwest Florida mangroves ranged from 21.5 to 
71.3 Mg ha−1, with a mean of 46.4 ± 14.1 Mg ha−1. Simard 
et al. (2019b) modeled Florida mangrove biomass on a 
similar scale, with statewide values ranging from 0.52 to 
97.46 Mg ha−1 and a mean of 33.6 ± 26.23 Mg ha−1. For 
comparison, the tallest mangrove forests in the world reach 
an average height of 16.6–30.7 m (compared to 6.1–11.6 m 
in Southwest FL; Table 1) and contain 212–595 Mg ha−1 
(Simard et al. 2019a).

Total C stocks in mangroves were highest in South Flor-
ida and increased from an average of 265.1 ± 43.2 Mg ha−1 
in Tampa Bay/Sarasota Bay to 409 ± 104.4 Mg ha−1 in the 
Everglades (Table 1; Figs. 7 and 8). C stocks are lower 
in Tampa Bay for a variety of reasons. First, many of the 
mangrove forests in Tampa Bay are relatively young due to 
habitat switching from salt marsh to mangrove forest (Raabe 
et al. 2012; Jackson et al. 2021). Mangroves in Tampa Bay 
are also smaller trees than their counterparts in South 

Fig. 5   Variable importance (a) 
for predicting aboveground C 
stocks of calibration (b) and 
cross-validation (c) datasets.  
The top four variables in panel  
a were used to create the final  
model shown in panels b and c. 
Both ecosystem types (man-
groves, shown as open circles, 
and salt marshes/other ecosys-
tems, shown as filled circles) 
were included in the same model
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Florida (Simard et al. 2006; Radabaugh et al. 2018). Addi-
tionally, belowground C stocks increase at lower latitudes in 
Florida as a result of a higher proportion of organic matter 
in the soil and deeper layers of peat (Cohen 1968; Doughty 
et al. 2016; Radabaugh et al. 2018; Toscano et al. 2018). 
Additionally, the mangrove soil organic matter itself has a 
higher proportion of OC in south Florida compared to north 
Florida (Breithaupt et al. 2023).

Whereas peat layers are often shallow (or absent) in 
Tampa Bay coastal wetlands, restricting the model to 1-m 
depth underestimated belowground C stocks in other areas 
of Southwest Florida (Kauffman et al. 2020). Peat deposits 
3–4 m in depth have been found in the Shark River Slough 
and near Whitewater Bay in the Everglades (Cohen 1968). 

Just outside the boundaries of this study, peat deposits 
5–7 m deep have been found in Swan Key south of Bis-
cayne Bay and Snipe Key in the Lower Florida Keys (Khan 
et al. 2017, 2022; Toscano et al. 2018). Thus, average C 
stocks in Florida mangroves are likely underestimated by 
this model and the latitudinal trends in C stocks are likely 
more pronounced than this model suggests.

Carbon stocks vary widely in mangrove and salt marsh 
ecosystems. On a small scale (10 s to 100 s of meters), 
belowground C stock tends to increase with distance 
from shore (Fujimoto et al. 1999; Kauffman et al. 2011; 
Breithaupt et al. 2017; Gress et al. 2017; Ouyang et al. 
2017). This trend is largely driven by increasing soil 
density in the landward part of the transect, resulting in 
greater C stocks, especially in deeper (> 50 cm) parts 
of the cores (Kauffman et al. 2011). On a larger scale 
(kilometers), this model clearly shows that C stocks 
decrease inland as the ecosystem changed into salt marsh 
or transitional ecosystems (Figs. 7 and 9). Belowground 
C stocks also vary among forests dominated by different 
mangrove species (Paolini and Sánchez-Arias 2008; Liu 
et al. 2014; Gress et al. 2017). Mangrove species in Florida 
often separate based on elevation and geomorphology 
(Lugo and Snedaker 1974; Rovai et al. 2018).

While there was a significant correlation between mod-
eled above- and belowground C stocks of mangrove and 
salt marsh/other ecosystems in this study, Pearson’s r value 
of this relationship was only 0.45. Other blue C studies 
in mangrove forests have found a weak or unpredictable 
relationship between above- and belowground C stocks 
(Gress et al. 2017; Kauffman et al. 2020). Belowground 
C stocks and C burial rates are often more dependent on 
rates of primary productivity, accretion, deposition of 
allochthonous organic matter, decomposition, and export 
of OC than on aboveground biomass (Bouillon et al. 2003; 
Maher et al. 2013; Saintilan et al. 2013; Roner et al. 2016). 
This emphasizes the importance of creating independent 
models for above- and belowground C stocks.

Carbon burial rates exhibit significant variability 
within and among regions of Southwest Florida. For 
example, the 100-year average burial rates that have 
been reported for the southernmost sites in the coastal 
Everglades mangroves range from 69 to 212 g m−2 yr−1 
(Breithaupt et al. 2019). Slightly north of the Everglades, 
rates of 20–162 g m−2 yr−1 have been reported in the Ten 
Thousand Islands (Lynch 1989; D. Cahoon and J. Lynch, 
[unpublished, 1994] in Chmura et al. 2003, Schafer 2020), 
and rates of 47–162 g m−2 yr−1 were measured in Naples 
Bay for sites including disturbed and natural conditions 
(Marchio et al. 2016). For our northernmost sites, rates 
of 82–185 g m−2 yr−1 have been reported in Tampa Bay 
(Gonneea 2016). Marsh burial rates in southwest Florida 
are sparse in the literature, but 100-year average rates 

Fig. 6   Histograms showing frequency of modeled C stocks in 
30 × 30-m pixels across Southwest Florida for aboveground C (a); 
and belowground C up to 1-m depth (b)
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of 29.7 and 49.3 g m−2 yr−1 have been recorded for the 
coastal Everglades (Breithaupt et al. 2020).

Belowground C Model

Global models of C stock in mangrove soils include Rovai 
et al. (2018), which found that tidal amplitude and mini-
mum temperature explained 20% of the global variability 
in soil OC stocks. Sanderman et al. (2018) created a global 
model of mangrove soil C density based on a suite of vari-
ables with training and testing RMSEs of 6.9 and 10.9 kg 
C m−3, respectively. The belowground C model developed 
in this study offers both improved accuracy and decreased 
overfitting with training and testing RMSEs of 5.26 kg C 
m−3 and 6.99 kg C m−3, respectively, while also incorporat-
ing both mangrove and salt marsh/other ecosystems. Soil 
depth is by far the most important factor predicting soil C 
density not only in coastal wetlands (Fig. 3; Sanderman 
et al. 2018) but also in global modeling of all terrestrial 
soils (Hengl et al. 2017). Unlike the aboveground model, 
ecosystem type was the least important predictor variable 
for soil C density, which is not surprising given the overlap 
in soil C density in mangrove and salt marsh ecosystems 
(Fig. 2; Steinmuller et al. 2022).

The regional focus of this study allows for optimized use 
of hyperspectral remote sensing data and local vegetation 
models to reduce RSME. In addition to depth and mangrove 
height, other important predictors of soil C density were 
SWIR (Landsat 8 Band 7) and TIR (Landsat 8 Band 11). 
Absorption of SWIR is an indicator of soil and vegetation 
wetness, while TIR is an indicator of heat. By providing 
information on surface temperature, TIR is useful for identi-
fying water bodies and inundated vs. non-inundated patches 
of land (Leblanc et al. 2011, Amani et al. 2018, Mahdavi 
et al. 2018). Both SWIR and TIR have proven useful in 
prior studies for identifying and mapping wetland types 
(Amani et al. 2018, Mahdavi et al. 2018), mangrove extent 
and species (Shi et al. 2016; Wang et al. 2018; Baloloy et al. 
2020), mangrove canopy cover (Abd-El Monsef and Smith 
2017), and C stocks (Wicaksono 2017; Hickey et al. 2018). 
Wet and dry soil can be identified using SWIR; therefore, 
SWIR is useful for differentiating between wetland and 
non-wetland vegetation (Wang et al. 2018). In this study, 
absorption of SWIR was generally higher (and thus SWIR 
reflectance lower) in mangrove forests compared to salt 
marshes (Fig. 9f) due to the increased absorption of SWIR 

by the high moisture content in healthy mangrove canopies 
(Wicaksono 2017).

Aboveground C Model

The most important factors for predicting aboveground C 
stocks were ecosystem type, percent tree cover, NDVI, and 
mangrove height. The incorporation of ecosystem type (i.e., 
mangrove and salt marsh/other vegetation) as a parameter 
allowed the model to fine-tune the remaining predictors for 
each ecosystem individually. Together, these four metrics 
provide information on the ecosystem structure (e.g., tree 
abundance and size) and function (e.g., type and quality). 
NDVI quantifies the reflection of near-infrared wavelengths 
by vegetation and the absorption of red wavelengths. High 
NDVI values indicate the presence of dense, green veg-
etation. Generally, low NDVI values are an indicator of 
moisture-stressed vegetation, values near 0.1 indicate bare 
soil, and negative values are indicative of water or clouds. 
NDVI thus provides a way to differentiate between types 
of vegetation, density of leaves, and other factors such as 
moisture stress (Carlson and Ripley 1997). As expected, 
NDVI had a positive correlation with modeled aboveground 
C stocks in this study. In other studies, NDVI proved use-
ful to detect different species of mangroves (Valderrama-
Landeros et al. 2018), density of mangrove trees (Thu and 
Populus 2007), dominance of live vs. dead trees (Valderrama-
Landeros et al. 2018), stress and degradation in mangrove 
forests (Alatorre et al. 2016; Saravanan et al. 2019), and 
to estimate mangrove biomass (Patil et al. 2015; Winarso  
et al. 2017).

Salt marsh vegetation is more challenging to model than 
mangrove forests due to the broad variety of species, growth 
patterns, and density of vegetation. Several local studies 
have sought to model aboveground biomass or C stocks in 
salt marshes using lidar (e.g., Medeiros et al. 2015; Rogers 
et al. 2015), or lidar coupled with hyperspectral data (e.g., 
Kulawardhana et al. 2014; Wang et al. 2017). Large-scale 
modeling efforts for aboveground biomass in salt marshes 
rely on satellite-derived data as predictive parameters. 
Byrd et al. (2018) modeled aboveground C stocks in salt 
marshes in the conterminous United States using satellite-
derived vegetation indices. The best model in Byrd et al. 
(2018) explained 61% of variability and was created using 
six vegetation indices, including NDVI, and a soil-adjusted 
vegetation index. The model presented here explained 86.4% 
and 70.9% of variability in the calibration and cross-valida-
tion datasets, respectively (Fig. 5). This improvement in R2 
values is, in part, attributable to the inclusion of both salt 
marshes and mangroves in the model. Mangrove biomass is 
inherently easier to model due to quantifiable relationships 
with predictors such as canopy height and tree cover, and 
the incorporation of both mangroves and salt marshes in the 

Fig. 7   Map of total OC in coastal wetlands in Tampa Bay and 
Sarasota Bay (a), Charlotte Harbor (b), Ten Thousand Islands (c), 
and the coastal Everglades (d). Values are sums of the above- and 
belowground modeled C stocks at a 30-m resolution. Model results 
can also be viewed or downloaded online at https://​gis.​myfwc.​com/​
SWFLC​arbon​Stock​sMap/

◂

https://gis.myfwc.com/SWFLCarbonStocksMap/
https://gis.myfwc.com/SWFLCarbonStocksMap/
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model enables ecosystem type to predict a large degree of 
variance. The model does not require any estimate of salt 
marsh vegetation height, which has been a notably difficult 
variable to quantify given the short and dense nature of the 
vegetation in salt marshes (Hladik and Alber 2012; Medeiros 
et al. 2015).

The location and ecosystem type of the ground truthing 
sites were not necessarily proportionate to the areal cov-
erage of the variety of salt marshes and mangroves found 
across all of Southwest Florida. However, averaged ground 
truthing and model datasets resulted in similar values. For 
instance, average aboveground mangrove C stock for the 
ground truthing dataset was 51.93 ± 15.6 Mg ha−1 for man-
groves, while the average for mangroves in the model was 

46.4 ± 14.1 Mg ha−1. Average aboveground C stock for salt 
marshes/other ecosystems was 7.81 ± 5.5 Mg ha−1 while the 
average in the model was 13.4 ± 7.5 Mg ha−1.

Sources of Error

Discrepancies between the spatial and temporal resolu-
tion of ground-truthing data and remote-sensing predictors 
introduced some inherent error in the models. Whereas all 
remote-sensing predictors considered for the model were 
available at a 30-m resolution, the soil cores used to model 
soil C density were point data. Using point data to represent 
a 30 × 30-m area does require some assumption of strati-
graphic homogeneity. Likewise, the vegetation data used to 
estimate aboveground C stocks were collected from multi-
ple circular plots along a 100-m transect (following Howard 
et al. 2014) or from 10 × 10-m plots. Thus, the spatial resolu-
tion of the field data was either larger or smaller (depending 
on the sampling method) than the resolution of the satellite 
imagery. While a direct pairing of spatial scale between the 
two datasets would likely improve modeling efforts, other 
studies have found that it is still possible to join multiple 
datasets for C stock modeling purposes despite differences 
in spatial resolution (Hengl et al. 2017; Wicaksono 2017; 
Sanderman et al. 2018; Simard et al. 2019a).

Land-cover mapping also introduces a degree of error, 
as it classifies complex vegetation distributions into simpli-
fied categories. The minimum mapping unit for wetlands 
in Water Management District Land Use Land Cover maps 
is 0.2 ha (SFWMD 2018, SWFWMD 2019). In this map-
ping, coastal wetland parcels that contain both salt marsh 
and mangrove vegetation were classified as the vegetation 
type that occupied the greatest proportion of the area. This 
can lead to underrepresentation of mangroves in land cover 
classification schemes, as mangroves often grow as patches 
or fringes in salt marshes, particularly at the edges of their  
distribution (Bardou et al. 2023). The patchiness of man-
grove growth (and presence of woody vegetation, such as 
B. halimifolia in salt marshes) could explain why areas 
classified as salt marshes in Southwest Florida contained 
22–50% tree cover, and why areas classified as mangrove  
forests contained less than 100% tree cover (Table 1).

Not all vegetation present in coastal wetlands will be vis-
ible from an aerial view, and thus it cannot all be detected 
using remote-sensing platforms. Whereas the shrubs, seed-
lings, and fallen dead wood are often included in blue C 
accounting protocols for mangrove forests, it is generally not 
possible to detect these understory components via remote 
sensing. The thickness of the canopy makes it difficult to 
include sub-canopy vegetation in biomass estimates derived 
from canopy height or remote sensing data (Wicaksono 
2017). However, most mature mangrove forests have mini-
mal understory compared to terrestrial forests (Smith 1993), 

Fig. 8   Modeled above- and belowground C stocks across ecosystem 
types (a) and ecosystem types and regions (b) in Southwest Florida. 
Error bars show standard deviation and are shown in negative direc-
tion only for clarity



	 Estuaries and Coasts

1 3



Estuaries and Coasts	

1 3

so the biomass contribution of the understory is small rela-
tive to that of mature trees. Understory seedlings and shrubs 
comprised only 1.2 ± 2.0% of the total aboveground C stocks 
in the 14 mangrove sites sampled for this study, and only 
1.5 ± 0.3% of aboveground C stocks in Tampa Bay man-
groves (Radabaugh et al. 2018).

Temporal variability in collection of ground-truthing 
data and remote-sensing data may also impact the fit of the 
model. The images used for the Water Management District 
maps used in this model were collected in 2014–2017. The 
tree cover data were obtained from Hansen et al. (2013), 
which modeled tree cover in the year 2000. The mangrove 
height data from Simard et al. (2019b) were calculated for 
the nominal year 2000, while the Landsat 8 data used for the 
modeling were collected in 2015. The aboveground ground-
truthing dataset was based on field work conducted between 
2015 and 2020, and cores were collected for the below-
ground dataset from 1995 to 2020. Locations that had mark-
edly different aboveground C stocks than expected (Fig. 5) 
may have had either increased or decreased abundance of 
woody vegetation between the time of ground truthing and 
the time of remote-sensing data collection.

Habitat switching between salt marshes and mangroves 
is in continuous flux in Florida as a result of temperature 
fluctuations and sea-level rise, with mangroves generally 
encroaching into salt marshes in the time frame of interest 
in this study (2000–2020) (Krauss et al. 2011; Cavanaugh 
et al. 2014). Mangrove extent in the Ten Thousand Islands, 
for instance, increased by 35% from 1925 to 2005 (Kruass 
et al. 2011). Cold events impact both the spatial extent and 
spectral characteristics of mangrove forests (Cavanaugh 
et al. 2014; Zhang et al. 2016; Bardou et al. 2023). Winter 
cold events, such as the ones that occurred in Florida in 
2010 (Zhang et al. 2016), may introduce some variability in 
spectral signatures in the compilation of data used to create 
the model.

Mangrove extent is also temporally variable due to hur-
ricanes. The ground-truthing and remote sensing data used in 
this study were compiled to avoid the influence of Hurricane 
Irma (2017), given the temporal and spatial variability in 
mangrove coverage that occurred in Southwest Florida there-
after (McCarthy et al. 2020; Osland et al. 2020; Radabaugh 
et al. 2020; Lagomasino et al. 2021). Other storms such 
as Hurricanes Charlie and Wilma (which made landfall in 
Southwest Florida in 2004 and 2005, respectively) impacted 
the extent of mangrove coverage in the region (Zhang et al. 

2016; Han et al. 2018; Peneva-Reed et al. 2021). However, 
the tree cover and mangrove height data used in this study 
were collected well before (around the year 2000) and remote 
sensing and mapping data were collected well after these hur-
ricanes (2015–2017). Following the 2004–2005 hurricanes, 
most of the mangrove forest in South Florida recovered by 
2008 (Han et al. 2018). Because the mangrove forests had 
a decade to recover, Hurricanes Charlie and Wilma are not 
expected to have a large influence on the data sets used for 
this model, with the possible exception of mangroves that 
failed to recover as a result of additional stress such as altered 
hydrology (Peneva-Reed et al. 2021).

Long‑term Stability of C Stocks

Total C stocks were generally greatest in the lower latitudes 
of Florida, particularly in mangroves near the coast (Fig. 7). 
The proximity of these mangroves to the coast also makes 
them vulnerable to the impacts of sea-level rise and hur-
ricane damage. The future of C stocks in Southwest Florida 
(and globally) depends on ecosystem stability in the face 
stressors brought about by climate change, sea-level rise, 
altered hydrology, and hurricanes (Smith et al. 2009; Smoak 
et al. 2013; Macreadie et al. 2019; Osland et al. 2020). In 
addition to vegetative stress as a result of increased inunda-
tion, saltwater intrusion associated with sea-level rise also 
changes the physicochemical conditions of soil, which can 
stress the limits of salt tolerance of vegetation and accelerate 
the rate of organic matter transformation and decomposi-
tion (Chambers et al. 2011, 2013, 2014; White and Kaplan 
2017; Wilson et al. 2018). The retention of C stocks within 
these ecosystems will also depend largely on the ability of 
wetlands to accrete sediment at a rate meeting or exceeding 
the rate of sea-level rise (McKee 2011; Smoak et al. 2013).

Estimates of accretion rates in Florida mangroves vary 
widely and are highly dependent on location (Jones et al. 
2019). Some evidence of increasing rates of accretion and C 
burial in the face of sea-level rise has been found in South-
west Florida (Jones et al. 2019; Breithaupt et al. 2020). 
However, it is expected that mangroves will not be able to 
sustain accretion rates necessary to keep up with accelerat-
ing sea-level rise once rates exceed 6.1 mm yr−1 (Saintilan 
et al. 2020). If a wetland fails to accrete soil at a sufficient 
rate or if the vegetation succumbs to chronic or acute stress-
ors, the ecosystems and their associated C stocks are at risk 
of instability or collapse (Ellison and Stoddart 1991). Root 
growth is a key component of peat accumulation and stabil-
ity, so vegetation mortality and the resulting loss of live 
root biomass can cause a loss of soil substrate and eleva-
tion (Cahoon et al. 2003; Whelan 2005; Krauss et al. 2018; 
Chambers et al. 2019; Radabaugh et al. 2021). This loss of 
elevation can, in turn, cause increased hydrologic stress for 
the vegetation, resulting in further mortality and elevation 

Fig. 9   Maps of modeled aboveground C (a) and belowground C 
to 1-m depth (b) in the Ten Thousand Islands region of Southwest 
Florida. Predictors for the models included maximum mangrove 
height from Simard et al. (2019b) (c), percent tree canopy cover from 
Hansen et  al. (2013) (d), NDVI (e, from Landsat 8), and shortwave 
infrared reflectance (f, from Landsat 8 Band 7)
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loss (Lewis III et al. 2016; Krauss et al. 2018; Andres et al. 
2019; Cahoon et al. 2019). Coastal wetlands that succumb 
to this trend of vegetation mortality and peat collapse fol-
lowing disturbances such as hurricanes or altered hydrology 
can turn into mud flats (Smith et al. 2009; Lewis III et al. 
2016; Osland et al. 2020), resulting in remineralization of 
belowground C stocks.

Rates of sequestration and C stocks may also increase in 
parts of Southwest Florida as a result of mangrove expansion 
into salt marsh habitat. Mangroves have significantly greater 
above- and belowground C stocks compared to salt marshes 
(Fig. 8), so the increase of C sequestration that occurs as 
mangrove coverage increases may help counterbalance loss 
of C and coastal wetlands due to the stressors mentioned 
above. However, the impacts on belowground C will vary by 
region. Belowground C stock depends as much upon plant 
productivity, geomorphic characteristics, soil chemistry, and 
rates of decomposition as on aboveground biomass (Charles 
et al. 2020; Osland et al. 2022). Whereas some studies do 
indicate that mangrove encroachment will increase below-
ground C stocks (Doughty et al. 2016; Simpson et al. 2019), 
other studies do not show evidence of a significant impact 
(Henry and Twilley 2013; Macy et al. 2021; Steinmuller 
et al. 2022). Continued study of accretion, ecosystem sta-
bility, habitat switching, and C cycling will be necessary to  
understand the ultimate effects of climate change and its 
associated impacts on C stocks in Southwest Florida coastal 
wetlands.

Conclusion

The regional nature of this study enabled model develop-
ment with improved accuracy to predict blue C stocks in 
the complex coastal wetlands of Southwest Florida. The fre-
quent intermixing of mangroves with salt marsh vegetation, 
variety in mangrove height, and the diverse array of herba-
ceous vegetation and occasional woody plants found in Flor-
ida’s salt marshes and transitional ecosystems necessitates 
consideration of a wide variety of plant species and charac-
teristics to accurately calculate and model aboveground C 
stocks. The local model also improves upon global soil C 
models to predict the widely variable belowground C stocks.

Southwest Florida contains over half of Florida’s remain-
ing coastal wetlands and stores approximately 96 Tg of C 
(Table 1). The stability of Southwest Florida’s coastal wet-
lands and their C stocks will depend on the ability of these 
ecosystems and their peat deposits to withstand chronic 
stress resulting from sea-level rise, climate change, and 
altered hydrology as well as the acute stress caused by hur-
ricanes and other disturbances.
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