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ABSTRACT

Aim Niche-based distribution models are often used to predict the spread of
invasive species. These models assume niche conservation during invasion, but
invasive species can have different requirements from populations in their native
range for many reasons, including niche evolution. I used distribution modelling to
investigate niche conservatism for the Asian tiger mosquito (Aedes albopictus
Skuse) during its invasion of three continents. I also used this approach to predict
areas at risk of invasion from propagules originating from invasive populations.

Location Models were created for Southeast Asia, North and South America, and
Europe.

Methods I used maximum entropy (Maxent) to create distribution models using
occurrence data and 18 environmental datasets. One native model was created for
Southeast Asia; this model was projected onto North America, South America and
Europe. Three models were created independently for the non-native ranges and
projected onto the native range. Niche overlap between native and non-native
predictions was evaluated by comparing probability surfaces between models using
real data and random models generated using a permutation approach.

Results The native model failed to predict an entire region of occurrences in
South America, approximately 20% of occurrences in North America and nearly all
Italian occurrences of A. albopictus. Non-native models poorly predict the native
range, but predict additional areas at risk for invasion globally. Niche overlap
metrics indicate that non-native distributions are more similar to the native niche
than a random prediction, but they are not equivalent. Multivariate analyses
support modelled differences in niche characteristics among continents, and reveal
important variables explaining these differences.

Main conclusions The niche of A. albopictus has shifted on invaded continents
relative to its native range (Southeast Asia). Statistical comparisons reveal that the
niche for introduced distributions is not equivalent to the native niche. Further-
more, reciprocal models highlight the importance of controlling bi-directional
dispersal between native and non-native distributions.
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INTRODUCTION

Invasive species potentially threaten global biodiversity, cause

economic loss and contribute to the spread of disease

(Lounibos, 2002; Lockwood et al., 2007). Understanding the

factors that make non-native species successful invaders is an

important step to managing geographic spread. Niche-based

models predict species distributions based on occurrence points
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and climate and environmental datasets (Guisan & Thuiller,

2005; Phillips et al., 2006) and have recently been extended to

predict the geography of species invasions (Peterson, 2003; Reed

et al., 2008). A central assumption of such models is that a

species’ niche is conserved during invasion.

Niche conservatism is the tendency for a species to retain

ancestral niche characteristics. This property is useful for under-

standing historical biogeography, patterns of species diversity,

community ecology and speciation, and has been assumed when

predicting the spread of invasive species (Wiens & Graham,

2005). While niche conservatism is probably the rule in several

of these frameworks, the ability of non-native species to adapt to

novel conditions could explain successful species invasion over

modern time-scales. If this is the case, niche-based models will

not accurately predict the spread of invasive species, and char-

acteristics of the niche for non-native distributions will not

accurately predict the native range. Indeed, this ‘reciprocal dis-

tribution modelling’ (RDM) approach revealed a niche shift for

spotted knapweed and fire ant invasions in the United States

(US; Broennimann et al., 2007; Fitzpatrick et al., 2007). RDM

proceeds by creating a model using native occurrences and pro-

jecting the model onto invaded regions to compare to the actual

invasion. A second model using invasive occurrences is created

and projected back onto the native distribution (Fitzpatrick

et al., 2007). If the native model accurately predicts the intro-

duced distribution, and vice versa, the niche has been conserved.

Discrepancies between models can facilitate hypothesis genera-

tion and the elucidation of processes influencing successful

invasions (Fitzpatrick et al., 2007).

One explanation for incongruence between model predic-

tions is the ‘enemy release hypothesis’ (ERH). The ERH predicts

that release from native biotic interactions could allow non-

native species to colonize novel habitats, provided that the

invader is already adapted to local abiotic conditions (Richard-

son et al., 2000; MacIsaac et al., 2001; Keane & Crawley, 2002).

Thus, to best test ideas about niche conservation during inva-

sion, species must be selected that minimize the likelihood of

enemy release, such as a dominant competitor.

This study tests hypotheses using the invasion of the Asian

tiger mosquito (Aedes albopictus Skuse). This species is native to

Southeast Asia, and has invaded five continents in the last c. 25

years. Experiments evaluating competitive interactions between

US populations of A. albopictus and the introduced Aedes

aegypti have revealed A. albopictus consistently emerges as the

superior competitor (Braks et al., 2004; Juliano & Lounibos,

2005, and references therein). Furthermore, the native range of

A. albopictus overlaps with other native and non-native mosqui-

toes in Southeast Asia. Thus, it is unlikely that competition

constrains the extent of its native range.

In the current study, I used an RDM approach with maximum

entropy models to test the null hypothesis that the niche for the

Asian tiger mosquito (A. albopictus) has been conserved during

its invasion of three continents. Niche conservation is indicated

if the native model accurately predicts non-native distributions

and non-native models accurately predict the native distribu-

tion. Alternatively, if reciprocal models poorly predict one

another, a niche shift is indicated. To support these reciprocal

comparisons, I used two recently developed metrics of niche

overlap (equivalency versus similarity; Warren et al., 2008) to

compare RDMs. I also applied multivariate analyses to visualize

and evaluate statistical differences in multidimensional climate

and environmental characteristics among continental distribu-

tions. Finally, I evaluated the risk of range expansion in South-

east Asia using non-native model predictions of the native range

and highlight the potential for dispersal from invasive popula-

tions to other continents to increase the global invasiveness of

the species.

METHODS

Species occurrence data

All recorded occurrences of A. albopictus were compiled from

the literature (Rossi et al., 1999; Schaffner & Karch, 2000;

Chadee et al., 2003; Bennett et al., 2005; Aranda et al., 2006;

Klobučar et al., 2006; Benedict et al., 2007; Krueger & Hagen,

2007). Occurrences were represented as points (latitude and

longitude), except in the US where data were county-level. These

data were converted to points by digitizing the centroid of each

positive county in a GIS (Arcgis, Environmental Systems

Research Institute, Redlands, CA, USA). Literature reports of

occurrence of A. albopictus without evidence of establishment

were not included in the dataset. In total, 6599 occurrence points

were compiled: 236 points for the native range (Asia, Indonesia

and Japan), 73 points for Europe, 1052 points for North America

and 5238 points for South America. To reduce sampling bias and

autocorrelation of climatic data during model generation, I ran-

domly selected 200 occurrence points from each of Asia, North

America and South America using Hawth’s Tools (http://

www.spatialecology.com). All 73 points were used for Europe

because sample locations were not as clustered as for other

continents, and to improve balance in the number of data

points between continents for multivariate analyses (see ‘Niche

comparisons among continents’ below). Comparable occur-

rence data were not available for Africa.

Climate layers

Climatic and environmental datasets were chosen based upon

their ability to affect the physiological ecology of A. albopictus

(Pumpuni et al., 1992; Alto & Juliano, 2001; Lounibos et al.,

2002; e.g. Armbruster & Conn, 2006; Table 1). Variables that

were highly correlated (r � 0.70) were excluded from the final

models, resulting in seven variables representing temperature

and precipitation from the WORLDCLIM database (Hijmans

et al., 2005), eight layers representing relative humidity and

photoperiod from the IWMI database (http://dw.iwmi.org),

land cover (Global Land Cover Facility) and mean frost days and

mean wind speed obtained from the CRU CL 2.0 database

(Table 1; New et al., 2002). WORLDCLIM and land-cover data

were obtained at 5-arcmin resolution and the remaining four

layers were obtained at 10-arcmin resolution. To maintain the
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highest data resolution, data at 10 arcmin were resampled to

5-arcmin resolution in Arcgis using bilinear interpolation, and

were clipped to the same extent as the WORLDCLIM layers. All

layers were exported as ASCII grids. Although the datasets

include both climate and local environmental data, the complete

dataset will hereafter be referred to as ‘environmental data’ for

simplicity.

Modelling approach

All models were developed using a maximum entropy algorithm

implemented using Maxent software (Phillips et al., 2004,

2006). Maximum entropy is a machine-learning technique that

predicts species distributions using detailed climatic and envi-

ronmental datasets together with species occurrence data; it

generally performs better than other algorithms in tests of

model performance (Elith et al., 2006; Phillips et al., 2006;

Ortega-Huerta & Peterson, 2008). Maximum entropy is more

robust to spatial errors in occurrence data and uses presence-

only datasets to predict the suitability of habitat (Phillips et al.,

2006; Graham et al., 2008).

Reciprocal models

I generated reciprocal models by first creating a model for the

native range and a model for each invasion (South America,

North America and Europe) using occurrence points and envi-

ronmental data clipped to the appropriate continent. I then

projected the native model onto each invasive distribution and

compared it with the model generated using occurrences from

each invaded range. I also projected each invasive distribution

onto the native range and compared them with the distribution

generated with native occurrences. Finally, to explore areas at

risk of invasion globally from propagules originating from inva-

sive distributions, I projected each invasive model onto all con-

tinents. To improve the transferability of models across space, I

used a regularization modifier of 1 (Phillips & Dudík, 2008).

Regularization reduces the likelihood of overfitting models, thus

increasing the predictive ability of models beyond the training

region (Phillips & Dudík, 2008).

To evaluate model accuracy, I randomly selected 40% of

occurrence points (from the set of 200 points selected for Asia,

North America and South America and from the full set of 73

points for Europe) to train each model and used the remainder

to test each model using both binary tests of omission and

analysis of the area under the curve (AUC) of the receiver

operating characteristic (ROC) plot (Phillips et al., 2006). I cal-

culated binary omission rates as the proportion of test points

that were not predicted at a threshold probability that equalled

the minimum probability of any pixel containing an occur-

rence point. AUC is a composite measure of model perfor-

mance, and provides a global comparison of model fit to that

of a random prediction. AUC values range from 0 to 1, where

1 is a perfect fit. Useful models produce AUC values of 0.7–0.9,

and excellent models produce AUC values above 0.9 (Swets,

1988).

Table 1 Climate and environmental layers used in models. Principal components analysis (PCA) eigenvalues are presented for all variables.
Eigenvalues for the most important variables in the PCA are in bold. Additional source information and citations are provided in the text.

Data source Variable Description

PCA eigenvalues

Axis 1 Axis 2 Axis 3

WORLDCLIM BIO1 Annual mean temperature -0.77 -0.57 -0.14

BIO5 Mean maximum temperature of the warmest month -0.09 -0.72 0.25

BIO6 Mean minimum temperature of the coldest month -0.85 -0.39 -0.23

BIO12 Annual precipitation -0.77 0.19 0.10

BIO13 Precipitation of the wettest month -0.81 -0.16 0.00

BIO14 Precipitation of the driest month -0.07 0.55 0.22

IWMI SUNFEB Per cent maximum sunlight hours during February -0.10 -0.63 0.49

SUNJUN Per cent maximum sunlight hours during June 0.50 -0.32 -0.49

SUNAUG Per cent maximum sunlight hours during August 0.53 -0.26 -0.57

SUNNOV Per cent maximum sunlight hours during November -0.04 -0.78 0.25

REHFEB Per cent relative humidity during February -0.57 0.36 -0.62

REHMAY Per cent relative humidity during May -0.74 0.29 -0.21

REHAUG Per cent relative humidity during August -0.47 0.38 0.66

REHNOV Per cent relative humidity during November -0.57 0.50 0.02

CRU Cl 2.0 FRS Days with ground frost per month 0.77 0.40 0.30

WIND Mean wind speed 0.54 0.02 0.18

GLCF LANDCOV Land cover 0.22 -0.16 0.33

Eigenvalue 5.53 3.34 2.19

Percentage variance 30.73 18.57 12.19

Cumulative percentage variance 30.73 49.3 61.49
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Niche comparisons among continents

I used principal components analysis (PCA) to compare envi-

ronmental data among distributions using pc-ord 5 (MjM Soft-

ware, Gleneden Beach, OR, USA). I extracted environmental

data at each occurrence point in a GIS (Arcgis). To conform to

the assumption of normality, I log-transformed Bio 3 and Bio 4

WORLDCLIM data and all relative humidity data from IWMI,

and square-root transformed the mean number of frost days. To

assess significance, I compared variation explained by each PCA

axis to that obtained from 1000 PCAs conducted on matrices

containing random values. A significant result indicates that

PCA axes are significantly better than a random configuration

(McCune & Grace, 2002). I used multi-response permutation

procedures (MRPP) in pc-ord 5 to test the null hypothesis that

environmental data at occurrence points in the native range for

A. albopictus were no different from those data at occurrence

points on other continents. MRPP is a non-parametric proce-

dure that tests differences between groups, and is conceptually

similar to ANOVA in that it assesses within-group similarity

compared with among-group similarity (McCune & Grace,

2002). Finally, I correlated each environmental variable with

scores from the most important PCA axes to evaluate the most

important variable(s) in the PCA.

In addition to evaluating environmental differences among

continents at occurrence points, I used two new approaches to

evaluate niche characteristics between modelled distributions

(Warren et al., 2008). Evaluating differences only at known

occurrences biases environmental values towards sampling

locations. Comparisons between entire distributions provide a

broader estimate of the niche for each distribution, includ-

ing potential occurrences within distributions. I used a

permutation-based approach to evaluate niche similarity and

niche equivalency between distributions. Both values compare

niche overlap between a pair of real models with niche overlap

between a real model and a model generated using either ran-

domly generated occurrence points (niche similarity) or a ran-

domly selected subset of the pooled occurrences for both

distributions in the comparison (niche equivalency). For both

comparisons, I calculated niche overlap between pairs of models

using the metric I (Warren et al., 2008), which ranges from 0 (no

overlap) to 1 (identical). The metric compares probability values

for individual pixels between two distributions. Thus, I evaluates

differences in potential occupancy predictions between two

models. I provide specific methods for niche similarity and

niche equivalency below.

Niche similarity

Niche similarity compares models created with real occurrences

with models created with randomly generated occurrences over

the same geographic area (Warren et al., 2008). To evaluate

niche similarity, I calculated I between two models based upon

real occurrences: one (focal) distribution generated with occur-

rences in that range (e.g. the native model) and another model

generated with occurrences in another range (e.g. the South

American model) that was projected onto the geographic space

of the focal distribution. Then I created models with 200 ran-

domly generated points in each distribution and replicated this

100 times in a script written in R 2.8.1 using the sp package. I

calculated I between each random model and the focal model,

and compared the I-value calculated between real models with a

histogram of I-values between the focal model and random

models. A significant (one-tailed) test indicates niche overlap

between real models is higher than niche overlap between real

and random models.

Niche equivalency

Niche equivalency compares models created with real occur-

rences with models created with occurrences randomly selected

from real occurrences (Warren et al., 2008). For this study, the

geographic extent of each distribution in the comparison was

the combined size of two distributions. The metric I was calcu-

lated in the same way as for niche similarity, except that permu-

tations used a random subset of 200 of the actual pooled

occurrence points for both distributions included in each

calculation. The probability that distributions are significantly

different is indicated by the calculated I relative to a histogram of

I-values calculated from random distributions. A significant

(two-tailed) test indicates that niche overlap between real

models is not equivalent to niche overlap between real and

random models.

RESULTS

Models for individual distributions were all significantly better

than random and predicted occurrences within the training

region with low omission and high AUC values, indicating

excellent model performance (Table 2). However, modelled dis-

tributions for one continent did not accurately predict the

distributions for other continents. The native model (Fig. 1a)

predicted a broad distribution for South America with high-risk

areas in the south-east and north-west of the continent, and

Table 2 Model accuracy results using area under the curve
(AUC) and binary tests of omission. AUC is a global assessment
of model performance and values range from 0–1, where 1 is a
perfect fit. A binomial omission test evaluated the rate of failure
for test point prediction for each model. A significant binomial
test indicates that the predicted omission rate was less than a
random prediction. P-values for all omission tests were less than
0.001.

Model

Omission rate (% of test

points not predicted) AUC

Native (Southeast Asia) 4.9 0.989

South America 0.2 0.985

North America 0.5 0.993

Europe 0.0 0.998
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failed to predict many occurrences along the north-east coastal

region and Amazon Basin (Fig. 1b). Reciprocally, the South

American model (Fig. 1c) predicted a portion of the native dis-

tribution, but also predicted high-risk areas in eastern India and

northern Australia (Fig. 1d). For North America, the native

model (Fig. 2a) predicted a large portion of actual occurrences

(c. 80%, Fig. 2b), but failed to predict its northward and west-

ward expansion (Fig. 2c). Rather, the native model shifted high-

risk areas into Mexico and the Caribbean islands (Fig. 2b).

Reciprocally, the North American model (Fig. 2c) predicted a

very small native distribution (Fig. 2d) that was a subset of the

actual native distribution and extended slightly north-east

beyond the distribution predicted with the native model. Finally,

the native model (Fig. 3a) predicted a European distribution

along the border between Italy and France, Switzerland and

Germany, and areas along the eastern Adriatic coast (Fig. 3b),

but failed to predict nearly all actual occurrences in Italy. The

European model predicted much higher local probabilities of

occurrence in Italy (Fig. 3c). When projected onto the native

range, the European model predicted a wide band of high risk

near the northern border of the native distribution (south-

central China), and failed to accurately predict the distribution

in Southeast Asia (Fig. 3d).

Statistical comparisons between continents supported differ-

ences among modelled distributions. PCA ordination revealed

three axes that were significantly different from random (P <<
0.001), and indicated clear shifts in the niche space at occurrence

points in the four distributions (Fig. 4). Variables that were

strongly correlated (r > 0.70) with the first axis were annual

mean temperature, mean minimum temperature for the coldest

month, annual precipitation, precipitation of the wettest month,

relative humidity during May and number of frost days

(Table 1). Mean maximum temperature for the warmest month

and November photoperiod correlated most with the second

axis (Table 1). MRPP analyses revealed that environmental

characteristics at occurrence points were significantly different

A B

CD

Figure 1 Distributions based upon maximum entropy niche models using environmental data and point occurrences for Aedes albopictus.
Colour darkens on a ramp from low to high probability of occurrence (0–100%). White dots represent occurrences for A. albopictus. (A)
Native model generated with occurrences in the native range (Asia, Japan, Indonesia). (B) Native model (Asia, Japan, Indonesia) projected
onto South America. (C) Model generated with occurrences in South America. (D) South American model projected onto the native range.
Arrows indicate the direction of model projections.
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between all pairs of continents. Tests for niche similarity

revealed that all native and introduced distributions were more

similar than random (Table 3). However, for all comparisons,

the niche for introduced distributions was not equivalent to the

native niche (Table 3).

Projecting invasive distributions onto all continents revealed

areas at risk of invasion and/or further spread (Fig. 5). In addi-

tion to predicting high-risk areas in north Australia, the South

American model predicted a broad area of high risk in Africa

(Fig. 5a). The North American model predicts a high-risk area

along the north-east coast of South America (Fig. 5b), and the

European model predicts high-risk areas in north-western

South America where populations have not yet established

(Fig. 5c).

DISCUSSION

Niche shifts are apparent for three invasions (North and South

American, Europe) of A. albopictus, based upon reciprocal

niche-based distribution models, ordination and measures of

niche similarity and equivalency. Ordination techniques such as

PCA are commonly employed to evaluate niche differences

between distributions, but because this approach only considers

the environment at sampling points, information from other

areas where populations probably exist (but aren’t sampled) is

lost. In the current study, some error could have been intro-

duced into the ordination (PCA) by extracting environmental

data from the centroid of US counties, but a more comprehen-

sive comparison of the niche was possible by using newly devel-

oped permutation-based niche overlap statistics (Warren et al.,

2008). These statistics revealed that the niche for introduced

distributions was more similar than expected by chance, but the

niche for invasive distributions was not equivalent to the native

niche. The niche between populations of the same species and

even closely related species is expected to be similar (Wiens &

Graham, 2005), so the result that native and invasive popula-

tions of A. albopictus were more similar than random is not

surprising. Niche divergence between native and introduced dis-

tributions revealed by niche equivalence statistics, however,

leads to hypotheses explaining mechanisms for divergence

during invasion.

Differences in niche characteristics among all current dis-

tributions of A. albopictus could result from a shift in the

fundamental or realized niche, where the realized niche is a

subset of the fundamental niche because of biotic interactions

(Hutchinson, 1957). By definition, occurrence points used to

A B

CD

 

Figure 2 Distributions based upon maximum entropy niche models using environmental data and point occurrences for Aedes albopictus.
Colour darkens on a ramp from low to high probability of occurrence (0–100%). White dots represent occurrences for A. albopictus. (A)
Native model generated with occurrences in the native range (Asia, Japan, Indonesia). (B) Native model (Asia, Japan, Indonesia) projected
onto North America. (C) Model generated with occurrences in North America. (D) North American model projected onto the native range.
Arrows indicate the direction of model projections.
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generate niche-based distribution models represent the realized

niche (Phillips et al., 2006), but sampling efforts can incorporate

a broad range of environmental heterogeneity. Phillips et al.

(2006) recommend that models be calibrated with occurrence

data from a broad geographic extent so that they approximate

the fundamental niche as much as possible. Because the native

range for A. albopictus is quite broad, it should encompass suf-

ficient environmental variation to predict invasive ranges well.

However, patterns of biotic interactions that could constrict the

niche throughout the native range are not known, although

ecological experiments suggest limited effects of biotic interac-

tions on A. albopictus. For instance, recent experiments reveal A.

albopictus as a consistently dominant competitor, providing evi-

dence that A. albopictus is probably not constrained by compe-

tition from other mosquitoes (Braks et al., 2004; Juliano &

Lounibos, 2005, and references therein). In addition, invasive

populations of A. aegypti in the US have contracted their range

since the invasion of A. albopictus and now occur primarily in

urban areas in the south-east US (Juliano & Lounibos, 2005).

This pattern suggests competitive exclusion of A. aegypti by A.

albopictus, though A. aegypti may exclude A. albopictus from

heavily urban areas. Despite this latter possibility, exclusion

from habitat patches does not constrain the extent of the US

distribution of A. albopictus. Therefore, enemy release seems

unlikely for A. albopictus, and niche shifts appear to be in the

fundamental niche rather than the realized niche, although veri-

fying this hypothesis requires direct empirical evaluation.

Potential explanations for niche shifts niche include adaptive

evolutionary changes or sampling of genetic material due to

founder events. Several cases of adaptive evolution during

species invasions have been recently documented. The cane toad

invasion of Australia corresponded with greater hind leg length

for toads at the invasion front, suggesting an adaptive advantage

to colonizing new habitats (Phillips et al., 2006). In England,

climate change resulted in range expansion and increased niche

breadth for two butterfly species, and selected for flight in a

dimorphic cricket (Thomas et al., 2001). Other explanations for

apparent niche shifts result from founder events. Founding

populations are a genetic subset of the source population, which

probably results in a loss of genetic diversity (Holgate, 1966).

This should result in lower fitness, but some alleles that are lost

during founder events could have previously masked the expres-

sion of other alleles (i.e. epistasis). Thus, founder events during

invasion could allow expression of beneficial fitness-related

alleles in novel environments (Blows & Hoffmann, 2005). Fur-

thermore, multiple introductions could result in novel genetic

combinations and allow invasive species to rapidly adapt to

different conditions (Kolbe et al., 2004).

A B

CD

Figure 3 Distributions based upon maximum entropy niche models using environmental data and point occurrences for Aedes albopictus.
Colour darkens on a ramp from low to high probability of occurrence (0–100%). White dots represent occurrences for A. albopictus. (A)
Native model generated with occurrences in the native range (Asia, Japan, Indonesia). (B) Native model (Asia, Japan, Indonesia) projected
onto Europe. (C) Model generated with occurrences in Europe. (D) European model projected onto the native range. Arrows indicate the
direction of model projections.
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Experimental and observational studies with A. albopictus

support evolutionary changes in the fundamental niche. In the

US, northern populations of A. albopictus have refined the

ability to diapause and can withstand periods of severe cold and

desiccation (Focks et al., 1994; Hanson & Craig, 1995). This is

expected because evidence suggests northern Asian populations

to be the source of the US invasion and these populations are

more likely to need diapause to persist in the temperate climate

(Hawley et al., 1987). However, populations in south Florida

have recently reduced the expression of diapause (Lounibos

et al., 2003). Armbruster & Conn (2006) detected geographic

differences in larval growth rate partially due to temperature on

the northern edge of the US range. In South America, genetic

evidence points to non-diapausing populations in Southeast

Asia as the source of introduction (Kambhampati et al., 1991).

Interestingly, the southernmost populations of A. albopictus in

South America have now developed diapause (Lounibos et al.,

2003). It is unclear whether this is due to local adaptive diver-

gence or the introduction of propagules from source popula-

tions that express diapause (as discussed above).

A mechanistic understanding of the apparent niche shifts

observed here for A. albopictus requires empirical evaluation. For

example, range margins can expand as a result of local adaptation

by sink populations. Dispersal and gene flow may influence this

process, though this relationship is equivocal (Garant et al.,

2007). Experiments designed to detect adaptation over modern

time-scales are challenging, and understanding evolution in sink

populations is difficult given the transient nature of such popu-

lations. Thus, much work in this area has involved simulation

modelling (Holt et al., 2003, 2004), which provides a sound

foundation for experimental tests of niche shifts.

If niche conservatism doesn’t apply to the spread of invasive

species, niche conservation remains useful to predict the loca-

tion of introduction. A study examining niche shifts in spotted

knapweed in the western US showed that models poorly pre-

dicted spread in the invasive range, but accurately predicted sites

of introduction (Broennimann et al., 2007). The current study

showed a similar result. The first recorded occurrence of A.

albopictus in the US was in Houston, Texas, in 1985 (Hawley

et al., 1987). This area was predicted by the native model, but the

species has since spread into areas not predicted by this model.

The first occurrence of A. albopictus in Europe was recorded in

Albania in 1979, and was predicted by the native model (Adhami

& Reiter, 1998). Subsequent spread into Italy in 1990 (Sabatini

et al., 1990), however, was not predicted by the native model. In

South America, Rio de Janeiro was probably the first location of

establishment for A. albopictus (Lounibos, 2002). Again, this

location was predicted by the native model, but the subsequent

northward spread of the invasion was not well predicted.

The poor ability of niche-based distribution models to

predict invasive distributions is probably not due to insufficien-

cies in the Maxent algorithm. This algorithm predicted the

native range with high accuracy using native occurrences

(Table 2), and many studies comparing this algorithm with

others consistently show Maxent is the most accurate

(Hernandez et al., 2006; Phillips et al., 2006; Graham et al., 2008;

Ortega-Huerta & Peterson, 2008). Rather, such reciprocal com-

parisons can be used to understand the process of invasion and

broader questions about biogeography.

Projecting non-native models onto the native distribution

provides information about independent invasions and
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Figure 4 Principal components analysis (PCA) ordination of 18
environmental characteristics at known occurrences for Aedes
albopictus. Symbols represent continents: black triangle, South
America; grey triangle, North America; hollow circle, Asia; square,
Europe. The three axes shown explain 62% of the variance for the
PCA (axis 1 = 31%, axis 2 = 19%, axis 3 = 12%). Multi-response
permutation procedures revealed that all paired comparisons were
significantly different (P << 0.001).

Table 3 Values for niche overlap (I) and statistics evaluating
niche similarity and niche equivalency between distribution
models. Significant values for niche similarity indicate that the
two distributions are more similar than random. For niche
equivalency, significant values indicate that the two distributions
are not equivalent. All comparisons reveal that niche is more
similar between native and introduced distributions than expected
by chance, but they are not equivalent. For niche similarity, the
first I-value reported in the pair represents the comparison
between the native and introduced model projected onto the
introduced distribution. The second value represents the
comparison between the native and introduced model projected
onto the native range.

Comparison I P

Niche similarity

Europe and Asia 0.50, 0.59 < 0.01

North America and Asia 0.66, 0.62 < 0.01

South America and Asia 0.72, 0.54 < 0.01

Niche equivalency

North America and Asia 0.39 < 0.01

South America and Asia 0.39 < 0.01

Europe and Asia 0.48 < 0.01
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indicates risk for expansion of the native range. Projecting the

South American model onto the native range suggests that

initial propagules probably originated from Taiwan or north-

east India and Burma/Myanmar. Based on model results, North

American propagules probably originated from Indonesia,

northern China or Japan. Japan or northern China had previ-

ously been considered sources for the initial introduction into

Houston based on incidence of egg diapause in colonists

(Hawley et al., 1987). Interestingly, high-probability areas pre-

dicted in Indonesia by the North American model suggest that

Indonesian populations may also have been a viable source of

founding propagules. Projecting the European model onto Asia

reveals a wide, high-probability band on the northern edge of

the native distribution, suggesting that dispersal from Europe

into Asia could cause a northward and westward expansion of

the native range.

Projecting invasive models onto all continents reveals areas at

risk of further expansion and alternate explanations for sources

of invasions. High-risk areas predicted in Australia suggest that

propagules from South America could establish in Australia. The

South American model also predicts a large area of suitability

from the centre of the African continent southward. The current

known extent of African populations of A. albopictus is rather

narrow (Fig. 5a, circle), so it appears that propagules originating

from South America could contribute to a southern expansion

in Africa. To evaluate invasion into South America, Lounibos

et al. (2003) examined diapause incidence in South American

populations of A. albopictus. They found that populations in São

Luis on the north-east coast of Brazil had an unusually high

diapause response compared with other South American popu-

lations, and pointed to an independent invasion from a temper-

ate source. Interestingly, the North American model predicts a

high-probability area near São Luis, suggesting that North

America could have been the source of this local invasion

(Fig. 5b, arrow). Finally, the high-risk area predicted in north-

western South America by the European model is currently

unoccupied by A. albopictus (Fig. 5c). These comparisons col-

lectively reveal that dispersal from native to non-native areas,

subsequent niche shifts and dispersal from invasive distributions

could serve as an ‘invasion ratchet’ that broadens the overall

niche and the potential for propagules to invade new areas

globally. In support of this hypothesis, recent work has shown

A

B  

C  

Figure 5 Models from non-native distributions
projected across the globe: South American (A), North
American (B) and European (C). The darkest shading
shows areas at risk of invasion from propagules
originating from non-native distributions. The ellipse
in (A) shows the approximate distribution for Aedes
albopictus in Africa. The arrow in (B) shows a
population postulated to have been founded from a
temperate source (Lounibos et al., 2003). Maps are
projected using the Robinson projection.
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that models using both native and invasive occurrence points

together to predict invasive species spread are generally more

accurate at predicting the extent of spread and the pattern of

risk for invasive distributions (Mau-Crimmens et al., 2006;

Broennimann & Guisan, 2008).

These results show that successful invasions might best be

explained by a combination of ecology (initial establishment)

and evolutionary changes (spread) allowing species to occupy

novel habitats and spread into new regions. Furthermore, these

models illustrate the importance of monitoring both export of

propagules from the native range and then from introduced

ranges to prevent further expansion in the native range and

globally.

CONCLUSIONS

The analyses herein resulted in two important conclusions: the

niche for invasive populations of A. albopictus has shifted from

its native state during invasion of North and South America and

Europe, and propagules dispersing from invasive populations

have the potential to increase the extent of global spread. These

results are important in the broader context of predicting the

spread of invasive species because niche-based distribution

models may not be an appropriate tool for predicting patterns of

spread. However, because the locations of introduction appear

to be predicted accurately, niche-based models can be used to

focus eradication efforts at ports of entry. Furthermore, these

results highlight the importance of controlling transport of

invasive species from non-native areas into other areas, as niche

shifts in invasive areas and subsequent spread may lead to ‘inva-

sion ratcheting’, a process that increases the global invasive

potential for the species.
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