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Abstract
Matrix projection models are among the most widely used tools in plant ecology. However, the way in which plant ecologists use and

interpret these models differs from the way in which they are presented in the broader academic literature. In contrast to calls from earlier

reviews, most studies of plant populations are based on < 5 matrices and present simple metrics such as deterministic population growth

rates. However, plant ecologists also cautioned against literal interpretation of model predictions. Although academic studies have

emphasized testing quantitative model predictions, such forecasts are not the way in which plant ecologists find matrix models to be most

useful. Improving forecasting ability would necessitate increased model complexity and longer studies. Therefore, in addition to longer

term studies with better links to environmental drivers, priorities for research include critically evaluating relative ⁄ comparative uses of

matrix models and asking how we can use many short-term studies to understand long-term population dynamics.
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INTRODUCTION

For more than 40 years, ecologists have used matrix projection models to understand

and guide management of plant populations. By now, hundreds of demographic studies

have been published for plants (see, e.g., Menges 2000a,b; Burns et al. 2010) and dozens

more are published annually. These models combine multiple vital rates – and the

possible effects of changes in these rates – into integrative measures of population

dynamics. Therefore, they are a potentially powerful tool for assessing population status

and extinction risk, as well as effects of past or future changes in management or in the

environment. During the past two decades, population ecologists have repeatedly

argued for increased use of quantitative demographic analysis to guide management

(Schemske et al. 1994; Morris et al. 2002; Bakker & Doak 2009). Because demographic

studies have been conducted with relatively similar methods for hundreds of species

worldwide, they are also a powerful resource for comparative analysis (see, e.g.,

Silvertown et al. 1993 through Salguero-Gómez & de Kroon 2010).

A robust body of literature has discussed the merits of demographic models,

particularly in the context of their utility for management (Beissinger & Westphal 1998;

Menges 2000a; Coulson et al. 2001; Ellner et al. 2002; Simberloff 2003; Ellner &

Holmes 2008). These papers tend to focus on how models should be used and

interpreted, based on the authors� perceptions about available data and typical study

goals. However, best practices surely depend on how well these perceptions reflect

typical model use. Therefore, to assess the ways in which models are useful, it is also

important to know how models are constructed and interpreted in practice. In this

article, we systematically review how matrix models have been applied to plant

populations. Our review is motivated by a general sense of disconnect between recent

academic assessments of matrix models and our experience as plant ecologists using

these models. Academic assessments have tended to focus on evaluating the ability of

increasingly sophisticated models to accurately forecast population dynamics or

extinction risk, using relatively extensive data sets. In contrast, our impression was that

plant ecologists apply much simpler models to much more limited data sets, with little

expectation that the models would literally forecast the future, even when we refer to

them using terms that imply prediction, such as �sustainable yield� or �population

viability analysis�.

To evaluate these general impressions, we review three aspects of model use and

construction, in relation to available data and trends through time. First, what have

been the broad objectives of each study (such as basic research or management of

endangered, harvested, or invasive species)? Second, what metrics have been calculated

from models to reach these objectives? And, third, how have users of matrix models

interpreted their own work? Our review updates Menges (2000a) by adding a decade of

additional studies (Fig. 1), and by analysing trends in model use and interpretation

through time, as a function of management goals. We do not repeat Menges� basic

introduction to matrix models, but refer readers to his summary (Menges 2000a, his

boxes 1 and 2). We also systematically surveyed our collective view of the strengths and

weaknesses of matrix models, as a representative group of practicing plant

demographers (Box 1). This self-survey updates previous reviews of population

models for plants or animals (e.g., Beissinger & Westphal 1998; Fieberg & Ellner 2000;

Menges 2000a) by explicitly identifying areas where a group of experts with similar

backgrounds agree and disagree. Together, the literature review and self-survey allow us

to detect general consistencies and inconsistencies, and strengths and weaknesses, in

the use of matrix models in plant ecology. Only by identifying and understanding these

weaknesses can we move forward and propose better ways to work with these data.

REVIEW OF MATRIX MODELS

We attempted to census all matrix models for plant populations, published in peer-

reviewed English-language journals through April 2009. To create this list of papers, we

started with citation lists from previous reviews and meta-analyses conducted by

members of our group (e.g., Menges 2000a; Burns et al. 2010; J.L. Williams, M.M. Ellis,

M.C. Bricker, J.F. Brodie and E.W. Parsons, unpublished data) and with a prior

database (Menges 2000b), updating these resources through additional literature

searches and personal knowledge. We also searched Web of Science (http://

www.isiknowledge.com) for all papers that cited reviews of matrix models, scanned

all issues of key journals that publish large numbers of matrix model papers and

updated this merged list with the reference libraries of all 16 working group members.

We screened more than 400 candidate papers and found 396 published modelling

studies for plant populations (a full citation list for these papers is accessible at: http://
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Nacional Autónoma de México, Ciudad Universitaria, 04510, México
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knb.ecoinformatics.org/knb/metacat/nceas.961/nceas). Of these, 355 papers included

stage-, size- or age-based matrix models, highlighting the broad importance of matrix

models as the dominant approach in plant population ecology. These studies include

20 papers on 25 species of annual plants, 194 papers on 189 species of herbaceous

perennial plants and 139 papers on 154 species of woody plants. Of the 355 matrix

model papers, 341 included enough information to be categorized systematically (see

Table 1; our classifications of these papers are also available at: http://knb.ecoinfor-

matics.org/knb/metacat/nceas.961/nceas). These papers, as well as our interpretation

of models (Box 1), provide the basis for our systematic review.

Uses of matrix models

First, we categorized the overall goals and objectives of each published paper. Half

(170) of the studies used matrix models for basic research and half (171) used matrix

models to address management questions. Through time, however, the use of matrix

models has shifted from basic to management questions (logistic regression of the

proportion of studies directed at management questions: b = 0.064, N = 341 studies,

d.f. = 1, Z = )5.57, P = 0.0003). Most applications to basic research (78%) used

matrix models to study life history and population ecology. A substantial minority

(11%) of basic research studies used matrix models for conservation biology or

invasion biology, such as studies of effects of habitat fragmentation, studies of the rate

of spread of non-native species or studies of how to best construct population viability

models. This proportion has also increased through time (logistic regression:

b = 0.108, n = 170 basic research studies, d.f. = 1, F = 2.02, P = 0.0165).

Management studies most frequently modelled at-risk (38%), harvested (26%) and

invasive (18%) plant populations; matrix models were also occasionally used to assess

management of populations affected by fire (9%), grazing (6%) or restoration (3%)

(Fig. 2). Goals of application to management have tended to shift through time,

primarily due to increases in the proportions of studies investigating at-risk and invasive

species (multinomial logistic regression, v2 = 23.9, d.f. = 6, P < 0.001). For manage-

ment-oriented papers, we also recorded the ways in which models were used to guide

management (�additional management objectives� in Table 1). Forty-six per cent of

papers measured some aspect of population status or population viability (defined

broadly to include trends in population size over time as well as extinction risk per se;

we discuss this issue further, below), 40% used matrix models to identify which life

stages were most important to target for management and 27% used models to conduct

simulation �experiments� asking what-if questions about possible consequences of

changes in vital rates, species interactions or the environment. Studies that made

explicit relationships between vital rates and environmental factors were less common:

28% of studies used models to relate population dynamics to environmental drivers,

such as fires, floods or climate factors, 19% of studies used demographic models to

interpret consequences of short-term experiments and 8% of studies explicitly

compared status of different sites or populations. Only 16% of studies used matrix

models to explore consequences of species interactions; half of these looked at some

aspect of biological control of invasive species.

Spatial and temporal extent of data in matrix models

Menges (2000a) and Morris & Doak (2002) have previously noted that matrix models

for plants tend to be based on relatively few years of data, across relatively few

populations and over relatively small proportions of species� ranges. For our census of

matrix models, we recorded the number of distinct matrices and the number of sites or

populations in each study. For studies that included only one site and treatment, the

number of matrices is a measure of study length. Thirty-four percent of matrix model

papers for plant populations included only one projection matrix and 48% used data

from only one site and ⁄ or treatment. The mean number of matrices per site or

treatment was two; this is partly because one-third of the studies combined data from

multiple sites to obtain one matrix, hence had < 1 matrix per site. Studies including

data from only one site or treatment had a mean of 3.1 annual projection matrices

(SD = 3.0, range 1–15). There has been some increase over time in the number of

matrices per study, although this trend was only marginally statistically significant

(Table 2A), and was largely driven by management-oriented studies (Fig. 3). There was

no trend over time in the number of sites or treatments per study (Table 2B).

Management-oriented studies tended to draw on more matrices than basic research

studies, even after accounting for trends through time (Table 2A; Fig. 3). However, the

number of matrices used also differed among management studies with different goals.

Relative to basic research, studies focused on population viability and, to a lesser extent,

fire management, used more matrices, and studies focused on harvest used fewer

matrices (Table 2A). The number of sites did not differ significantly between

management-oriented and basic research studies, but did differ among manage-

ment goals. Studies requiring an understanding of changing dynamics due to

disturbance and ⁄ or recovery (fire, restoration and at-risk species) included more sites,

whereas studies focused on harvest had fewer sites (Table 2B).

PREDICTIONS FROM MATRIX MODELS

After recording the objectives of each study, we recorded the metrics that were

calculated from matrix models to address those objectives. Plant ecologists most often

use matrix models to calculate three basic kinds of statistics (Fig. 4): (1) population

growth rates (deterministic and ⁄ or stochastic k), (2) relationships between changes in

vital rates on population growth rates (such as sensitivity analysis) and (3) extinction

risk. We encountered other uses of matrix models, but these were relatively rare.

Transient analysis (an alternative to calculating long-term population growth rates and

other asymptotic statistics) was first used by Caswell & Werner (1978) for life history

analysis, and the technique was picked up by other plant demographers in the late

1980s. However, transient analyses remain infrequent (9% of all studies to date), and

their use has not increased significantly over time (Fig. 4f; Table 3F). Only a handful of

studies have used matrix models to analyse optimal disturbance frequencies or return

intervals for floods, fires or hurricanes (16 studies, 5% of all matrix papers), and use of

this metric has not changed significantly through time (though non-significance may be

due to very small sample size, Table 3G). Below, we discuss how plant demographers

use the three most commonly reported types of metrics.

Population growth rates

Most studies in our database (85%) used matrix models to calculate deterministic

population growth rates (k), the rate at which population size would change if vital rates

remained constant over time. Only 22% of studies presented stochastic population

growth rates (kS), the expected rate of change in variable environments. The proportion

of studies using stochastic population models has increased over time, but even in the

past decade, 46% of studies reported only deterministic population growth rates

(Fig. 4a,b; Table 3B). For plant populations, stochastic population growth rates have

most often been calculated using simple random matrix selection or element selection

(sensu Kaye & Pyke 2003); fewer than half (45%) of studies that calculated kS included

an environmental driver of stochasticity. Studies that report kS are based on

significantly more matrices than other studies (Table 3B), but even these studies used a

median of three matrices, and 75% of these studies used five or fewer matrices.

Reliance on simple density-independent population growth rates could be

interpreted as evidence that plant ecologists are naı̈ve about key population processes

such as density dependence (cf. Bierzychudek 1999). However, an alternative

interpretation may be that plant ecologists choose density-independent deterministic

models because they are more appropriate for typical data sets. For example, many

species (and probably most rare species) may be more influenced by environmental

factors and interspecific competition than by their own densities. Typical demographic

studies for plants parameterize �density independent� models at realized levels of

interspecific and intraspecific competition, not in the absence of competition.

Therefore, these density-independent models may be reliable indicators of population

dynamics in many contexts.

Similarly, stochastic population models are relatively uncommon in plant demog-

raphy, in spite of the fact that vital rates of plants obviously vary among years.

However, most published studies are based on few years of data, in spite of modest

increases over time in the number of matrices used to parameterize models. Relative to

stochastic population growth rates, deterministic population growth rates are more

precise under some conditions (e.g., high variance and < 5 years of data), with a

directional and therefore correctable bias (Doak et al. 2005). Therefore, deterministic

1960 1970 1980 1990 2000 2010

0
50

10
0

15
0

Year

# 
m

at
rix

 m
od

el
 p

ap
er

s

All studies
Management studies

Figure 1 Number of published matrix models for plant populations through time. Data for

2009 are not shown, because we only included papers published through April 2009.
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models may be the most appropriate analysis for typical data sets. When we assessed

our own opinions, we all felt that some aspects of matrix models could be improved,

but there was little consensus about specifically how models should be improved

(Fig. 5b.4, 5, 7, 8 and 9). Switching to more detailed or sophisticated models might

require collecting much larger data sets, possibly at the expense of implementing

management actions (cf. Simberloff 2003).

Sensitivity analyses

Matrix models can be used to evaluate the effects of possible changes in vital rates on k,

or to analyse the mechanisms behind observed changes in k. The second most

common metric reported from matrix models was assessment of the relative

contributions of different vital rates to the population growth rate, using sensitivities

or elasticities (73% of papers). These were used with equal frequency in management

and basic research studies, as they can be interpreted as the expected consequences of

management that affects vital rates (Crouse et al. 1987) or the contributions of different

vital rates to fitness (Lande 1982). Interestingly, only 40% of management-oriented

studies had assessment of which life stages to target for management as a management

objective (see above), much lower than the proportion that report some kind of

sensitivity analysis. Life table response experiments (LTREs) retrospectively quantify

mechanisms behind observed changes in k, and were reported in 22% of studies.

LTREs are typically used to quantify how the effects of experimental treatments or

B o x 1 S e l f - s u r v e y

The peer-reviewed literature does not necessarily include all of the ways in which models are useful in practice. For example, not all models are published in peer-reviewed

journals. Similarly, the review process is known to bias the results that get published, and could also bias the ways in which authors present their results. We evaluated our own

opinions of how matrix models are most useful and reliable, and how much we agree on the strengths, limitations and most important improvements for matrix models.

Three of the authors (Crone, Menges and Ellis) assembled a working group of scientists (the authors of this paper) of varying backgrounds, but with these commonalities.

All of us had: collected demographic data on plant populations, assembled projection matrices, analysed and ⁄ or modelled population dynamics based on these matrices and

published their results and discussed the implications of this modelling with land managers and other conservation professionals. All literature reviews include some element of

the authors� opinions; by presenting ours quantitatively, we identify (at least in part) where we agree and where there is little consensus, in spite of shared experiences and

background.

We quantified our opinions using a combination of survey and discussion. This survey assayed each person�s view of how well matrix models would predict population

dynamic and management metrics such as growth rates and extinction probabilities (Fig. 5). Following standard risk assessment procedures for eliciting expert opinion

(Burgman 2005), we began with an initial �naive� survey, meant to help us articulate our own opinions. We then discussed areas where our answers differed, and the rationale

behind our opinions. After group discussion, individuals retook the same survey. The results of this second survey are expected to identify true areas of agreement and

disagreement, as opposed to individual differences in the interpretation of survey language.

The survey questions (Fig. 5) focused on subjective model interpretation in terms of how we think models are most useful (a) and how they might be best improved (b).

Our responses show some areas of clear consensus [see Fig. 5a.8, b.1 (extinction risk) and b.5 (extinction risk)]. However, we were divided on many issues. Overall, we tended

to agree more about how models are best interpreted as generally applied (a) than about why they fail (a measure of how they should be improved) (b).

(a)

(b)

Figure 5 Our opinions about when matrix models are useful. (a)

Utility as typically applied and (b) reasons why they fail. Graphics

are boxplots: thicker horizontal lines are medians, boxes enclose

25th and 75th percentiles, error bars span 10th and 90th

percentiles, and circles are outliers.
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natural variation of individual vital rates contribute to differences in population growth

rate. Therefore, the technique is potentially useful in guiding management. However, in

practice, LTREs have been used more often for basic research than for management-

oriented research (Table 3D).

During the past 15 years, ecologists have widely debated the merits of different

forms of prospective and retrospective sensitivity analysis (Heppell et al. 2000). Use

of both prospective sensitivity ⁄ elasticity and retrospective LTREs has increased over

time (Table 3C,D), though the increase in LTREs has been faster. All of the various

forms of sensitivity analyses (including deterministic and stochastic sensitivities,

elasticities, LTREs and numerical methods that incorporate empirically estimated

effect sizes) depend on the assumption that k or kS is a meaningful way to integrate

vital rates. If this assumption is reasonable, and if practitioners choose the

appropriate sensitivity metric for their situation, then, by definition, sensitivity

analyses should provide reasonable guidance. However, all of us thought that

inappropriate use of sensitivity ⁄ elasticity at least �sometimes� lead to misleading model

outputs (Fig. 5b.11). For example, using effects of small changes in vital rates

(analytical sensitivities or elasticities) to assess the consequences of management may

be inappropriate, as the responses of vital rates to management may be large.

Similarly, most sensitivity metrics are based on the assumption that vital rates can

change independently, when, in fact, these may tend to change in variable ways in

response to management.

Extinction risk

Use of matrix models to predict population fates has been considered broadly

equivalent to population viability analysis (e.g., Menges 2000a; Kaye & Pyke 2003).

However, only a small proportion (23%) of matrix models used in plant ecology are

used for population viability analysis in the narrow sense of calculating extinction risk,

including time to (quasi-) extinction and probability of (quasi-) extinction. Not

surprisingly, extinction risk was calculated more often in management-oriented than

basic research studies, and was most often presented in studies of at-risk species

(Table 3E). Still, only about half (56%) of the studies of at-risk species calculated

extinction risk. Extinction risk was also more likely to be presented in fire-management

studies (38%), and, relative to basic research, was less likely to be presented in studies of

invasive species (7%). There was a marginally significant trend towards presenting

extinction risk more often over time, possibly reflecting increasing use of stochastic

modelling as well as increased interest in population viability per se.

Limited emphasis on extinction risk could reflect realistic assessment of what can be

done with available data. For example, Fieberg & Ellner (2000) calculated that

extinction risk was only predictable with at least a 5 : 1 ratio of data years to forecast

years. Holmes et al. (2007) suggested extinction risk could be predicted from as few as

1 : 1.5 (data years: forecast years). Even the more optimistic of these two guidelines

would imply that we will rarely be capable of making meaningful forecasts of extinction

risk for plants, given typical study lengths. In addition, predicting true extinction risk

may be more problematic for plants than animals, because many plants have at least

one unobservable life stage (sensu Kendall & Nichols 2002), such as dormant seeds

and ⁄ or prolonged dormancy (sensu Lesica & Steele 1994) of mature plants (see

Fig. 5b.6). These life stages are rarely surveyed, and are potentially quite long lived.

Furthermore, we tended to believe that factors that cause extinctions are typically

outside the scope of demographic studies: changes in the environment (Fig. 5b.8),

social factors such as changes in land use (Fig. 5b.10) or stochastic processes that are
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Figure 2 Number of matrix model papers, in relation to study objectives and model

interpretation. Basic research studies are plotted on the left horizontal axis and management

studies are plotted on the right axis.

Table 2 Analysis of data used in matrix models, in relation to study goals and year of

publication

Metric Factor Estimate* SE Z� P

A. Number

of matrices

Management 0.145 0.096 1.68 0.093

Fire 0.357 0.206 1.73 0.084

Grazing 0.256 0.242 1.06 0.288

Harvest )0.279 0.139 )2.00 0.045

Invasion )0.045 0.166 )0.27 0.787

Restoration 0.313 0.314 1.00 0.318

Viability 0.353 0.105 3.35 0.001

Year 0.009 0.006 1.44 0.151

B. Number of sites

or treatments

Management 0.085 0.099 0.83 0.259

Fire 0.477 0.229 2.18 0.029

Grazing 0.190 0.272 0.70 0.484

Harvest )0.336 0.156 )2.14 0.032

Invasion )0.198 0.192 )1.03 0.302

Restoration 0.703 0.349 2.02 0.044

Viability 0.226 0.125 1.80 0.072

Year 0.007 0.001 1.00 0.318

*In all analyses, the reference group is studies with no management goal, and coefficients are

differences between each group and the reference group.

�Z-statistics from generalized linear models (glm.nb function; R Development Core Team

2009), with negative binomial error structure to account for overdispersed count data.

All statistical tests have model d.f. = 1. Sample sizes for different metrics are shown in Fig. 2.

Statistically significant relationships are shown in bold font.
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not captured by typical stochastic population models (Fig. 5b.5). Therefore, even if

plant ecologists are interested in using models to predict extinction risk, we are sceptical

that we have the necessary information to make these predictions.

In the past 10 years, some ecologists have noted a different possible use of quasi-

extinction risk calculations: the minimum expected population size over some time

horizon may be a robust measure of population status (McCarthy & Thompson 2001).

Rather than calculating the probability that a population reaches some arbitrary size

threshold during a specified time period, traditional extinction risk calculations can be

rearranged to estimate the minimum size a population is likely to reach during that time

period. Only one study in our database used extinction risk in this way (Keith et al.

2008), but this could be an intriguing use of extinction risk in future plant demography,

or an interesting metric to calculate from existing demographic studies.

INTERPRETATION OF MODEL PREDICTIONS

Relatively early in the development and use of matrix models for population biology,

Caswell (1989) cautioned that projections from matrix models should be interpreted as

how a population might perform if the vital rates used to parameterize the model were

to remain constant over time, a call that has been widely restated since then (Beissinger

& Westphal 1998; Bierzychudek 1999; Akçakaya & Sjögren-Gulve 2000; Menges 2000a;

Morris & Doak 2002; Reed et al. 2002). Nevertheless, as matrix models have become

widely used to direct management actions, interest has grown in testing model

predictions. Some researchers have concluded that these models make robust and

reliable, �accurate� predictions (Brook et al. 2000), whereas others have concluded that

matrix models are unable to make forecasts with realistic amounts of data (Ludwig

1999; Fieberg & Ellner 2000; Coulson et al. 2001; Ellner et al. 2002).

We evaluated how users of matrix models interpreted their own work by scoring

how each paper�s author(s) interpreted their results. We scored papers using a five-

point scale, from �strict literal interpretation of model predictions� to �containing

numerous caveats that model results are not to be taken literally� (Table 1, final entry).

In about half of the studies (52%), authors cautioned against interpreting quantitative

model predictions literally (score of 1 or 2). In 32%, the language used by authors

suggested that they were interpreting the quantitative metrics as literal predictions of

population behaviour (score of 4 or 5), though this interpretation was rarely stated

explicitly. We judged that the remainder (16%) was intermediate or else that they

provided few clues about the authors� interpretation of these metrics (score of 3). There

were no trends in model interpretation through time, or as a function of the number of

matrices in each study (Table 4).

Management studies were more likely than basic research studies to caution against

literal interpretation of model predictions, and were less likely to be unclear about

their interpretation (Table 4). However, this broad difference reflects considerable

heterogeneity among studies with different management goals. Relative to basic

research studies, studies focused on harvest were more likely to present results

literally, whereas studies focused on population viability were more likely to explicitly

caution against literal interpretation of model results (Table 4; Fig. 2). This difference

may be partly justified based on differences in the objectives of the management

studies. Harvest studies were less likely than endangered species studies to calculate

extinction risk, a metric that can be highly sensitive to estimation error (Fieberg &

Ellner 2000). Harvest studies may also be based on larger populations and therefore

larger numbers of individual plants, which should increase predictive ability of models.

At the same time, however, harvest studies tended to be based on fewer transition

matrices (Table 2A).

Interpretation of models presented in the published literature may reflect biases in

the review process, or in what users of matrix models expect reviewers to be looking

for. Our self-survey (Box 1) was intended to remove some of these potential biases and

provide more specific information about how we – as users of matrix models – usually

interpret model outputs. This survey revealed broad consensus at the extremes of

model interpretation, but also considerable heterogeneity of opinion. At the extremes,

we agreed that matrix models are usually useful for guiding discussion of management

options (Fig. 5a.8), and none of us expected models to forecast future population size,

population structure or extinction risk with precision (Fig. 5a.2–4). We were more

divided about whether matrix models would distinguish relative extinction risk,

accurately weigh relative benefits of different management options within populations

or discriminate growing from declining populations (Fig. 5a.5–7). We were most

divided over whether population growth rates from matrix models would accurately

reflect actual changes in population size at the sites and during the years the data were

collected (Fig. 5a.1). This division of opinions is interesting because it is easily testable

with existing data from demographic studies. To our knowledge, such a test has

never been performed, perhaps because testing against the data used to construct the

model superficially seems circular. In fact, factors such as poorly estimated vital rates,

poor models for variation in vital rates and transient dynamics in populations far

from a stable stage structure could cause typical population models to fail even this

obvious test.

CONCLUDING REMARKS

To an outsider, it might seem puzzling that plant ecologists continue to rely on matrix

models, more often than not with the explicit caveat that output from these models

should not be taken literally. Why do we use this technique if we do not trust model

predictions? Perhaps the most important message from this apparent contradiction is
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that the primary function of models is not to forecast the future. Because they are based

strongly in basic biology, matrix models force us to outline how different aspects of the

life cycle interact, and what aspects of natural history are known vs. unknown. It is

tempting to speculate that the overwhelming popularity of matrix models in plant

ecology stems from the fact that these models take biology that we can see and measure

in the short term (stage-specific birth, growth and death rates), and calculate the logical

long-term consequences of that biology. Setting up matrix models also emphasizes that

management of one life stage, or of one vital rate, only affects population dynamics

through its effect on the full life cycle. For example, a key and longstanding insight

from matrix models is that not all vital rates are equally important for population

dynamics or fitness (e.g., Crouse et al. 1987; Crone 2001). Therefore, users of matrix

models can calculate the logical outcomes of observed environmental conditions and

experimental manipulations, and use models to examine what-if scenarios that explore

possibilities outside the range of observed conditions. These benefits do not require

that matrix models make accurate predictions, simply that they integrate field data in a

biologically meaningful way. Model predictions are also likely to be more robust and

less biased than management assessments based on subjective judgment (McCarthy

et al. 2004).

A second insight from the state-of-the-art of plant demography is that plant

ecologists define �population viability� broadly as the future fate of plant populations

(Menges 2000a). In contrast, most previous assessments of population viability

analysis have focused narrowly on testing our ability to forecast extinction risk (Brook

et al. 2000; Coulson et al. 2001; Ellner et al. 2002; Holmes et al. 2007; Ellner & Holmes

2008). These reviews include very few data for plant populations, so it may be that

animal ecologists – for whom it is easier to define �individual� organisms and who may

also tend to draw on longer data sets for fewer species – take the concept of

extinction risk much more literally than do plant ecologists. This does not mean that

plant ecologists are not concerned about extinction. Rather, we tend to use population

growth rates, rather than extinction risk per se, as a metric of relative viability: rapidly

declining populations are likely to become extinct (even if they are large now), rapidly

growing populations are likely to expand until resources and space limit growth, and

populations near k = 1 require more biological understanding to accurately predict

their fates. Expected minimum population sizes (modified from quasi-extinction

calculations) may be an equally robust or superior metric of relative population

viability, at least over short time frames. However, we do not expect that plant

ecologists will be able to calculate or precisely predict extinction risk for typical plant

populations.

Our review revealed considerable variation in how much we trust the predictions of

matrix models, both among published studies and within our working group. Most of

us felt that models should be approached in a relative ⁄ comparative way, but a

substantial minority of papers present results as literal predictions, and there has been

no trend away from literal model interpretation through time. If we intend to use

models to make predictions that are as accurate as possible, then it is also disturbing

that recent studies also do not make use of the most sophisticated tools available. For

example, methods for transient analysis have been around for decades, and they are

likely to be relevant at the time scales over which we evaluate management, but these

are rarely used in practice. However, it may be plant ecologists use matrix models

specifically because these models lead to simple metrics that are consistent across

studies, such as the asymptotic population growth rate, k. These simple metrics are

often omitted from or buried in more sophisticated analyses. Given limited data, it is

also not clear that making quantitative predictions is realistic in most cases, even with

the best models. Therefore, rather than recommending use of more sophisticated

models, many (but not all) of us tend towards recommending more caution regarding

literal interpretation of model outputs.

Finally, in spite of differences of opinion in some areas (Box 1), we agreed strongly

that better understanding of environmental drivers of population dynamics would be

likely to substantially improve models and model predictions. Correct understanding of

drivers of stochasticity is also central to expectations for long-term population

dynamics and evolution. Use of stochastic population models is growing in plant

ecology, but these rely on very short data sets, and stochasticity is not often linked to

environmental factors. For example, a number of recent studies have begun to use

published matrix models for plant populations to explore patterns of stochasticity in

natural populations (Morris et al. 2008; Jongejans et al. 2010; Buckley et al. 2010).

Because most published matrix models are for very short time series, these comparative

analyses use studies with as few as two or three estimates of each vital rate for

stochastic modelling.

In this context, our review of plant demography implies two key needs for future

research. First, we need better study designs and more long-term demographic data,

Table 3 Analysis of metrics calculated from matrix models, in relation to study goals, year of

publication and amount of data

Metric Factor* Estimate� SE Z� P

A. Deterministic

growth rate (k)

Management 0.369 0.334 1.10 0.269

Year )0.012 0.024 )0.49 0.623

# Matrices )0.021 0.054 )0.39 0.699

B. Stochastic

growth rate (kS)

Management 0.148 0.284 0.52 0.601

Year 0.060 0.026 2.35 0.019

# Matrices 0.166 0.049 3.40 < 0.001

C. Sensitivity

or elasticity

Management 0.147 0.264 0.56 0.577

Year 0.054 0.017 3.11 0.002

# Matrices )0.038 0.043 ).877 0.380

D. LTRE Management )0.547 0.279 )1.96 0.050

Year 0.191 0.035 5.49 < 0.001

# Matrices 0.037 0.044 0.85 0.394

E. Extinction

risk

Management 0.803 0.289 2.78 0.005

Fire 1.190 0.645 1.84 0.065

Grazing 0.916 0.747 1.23 0.220

Harvest )0.515 0.577 )0.89 0.372

Invasion )1.703 1.053 )1.62 0.106

Restoration )0.044 1.151 )0.04 0.970

Viability 1.745 0.343 5.08 < 0.001

Year 0.047 0.026 1.78 0.074

# Matrices 0.124 0.053 2.33 0.012

F. Transient

analysis

Management 0.064 0.423 0.15 0.880

Year )0.014 0.028 )0.48 0.633

# Matrices 0.059 0.058 1.02 0.309

G. Disturbance

return intervals

Management 1.170 0.788 )0.69 0.491

Fire 3.551 0.952 3.73 < 0.001

Grazing )15.244 > 1000 0.00 0.997

Harvest 1.376 1.024 1.34 0.179

Invasion )15.419 > 1000 0.00 0.994

Restoration )15.546 > 1000 0.00 0.997

Viability 1.790 0.854 2.10 0.036

Year 0.061 0.064 0.96 0.336

# Matrices 0.091 0.066 1.38 0.167

LTRE, life table response experiment.

*Specific management goals are separated only when subdividing management objectives

significantly improved model fit (likelihood ratio test of nested models, P < 0.05; for all

others, P > 0.15).

�In all analyses, the reference group is studies with no management goal, and coefficients are

differences between each group and the reference group.

�Statistical tests based on logistic regressions (glm function; R Development Core Team

2009), after testing for overdispersion (for all statistics, scale factors were between 0.9 and 1.1,

quite close to the expected value of 1.0). All statistical tests have model d.f. = 1. Sample sizes

for different metrics are shown in Fig. 2. Statistically significant relationships are shown in

bold font.

Table 4 Interpretation of matrix models, in relation to study goals, year of publication and

available data*

Factor

Unclear vs. literal Qualitative vs. literal Overall test of

interpretation�

Coefficient SE Coefficient SE v2 P

Management )0.74 0.36 0.14 0.26 19.18 0.038

1�: Fire )0.25 0.04 )0.57 0.06 0.67 0.714

1�: Grazing )216.47 NA 0.35 0.03 4.95 0.084

1�: Harvest )1.61 0.07 )0.43 0.33 7.68 0.022

1�: Invasion 0.76 0.23 0.73 0.26 2.08 0.353

1�: Restoration )182.5 NA 0.85 0.00 2.65 0.266

1�: Viability )0.79 0.11 0.52 0.27 8.42 0.015

Year )0.03 0.00 )0.03 0.00 0.81 0.668

# Matrices 0.04 0.06 0.02 0.05 0.81 0.667

*Multinomial logistic regression of data pooled into three categories (fit using multinom

function in R, nnet package; Venables & Ripley 2002): literal (4 or 5), qualitative (1 or 2) or

unclear (3). Coefficients represent contrasts between literal and unclear or qualitative groups.

�Chi-square statistics from likelihood ratio tests, relative to reduced models with linear

coefficients set to 0 (for tests of year and # matrices) or different management goals pooled

with the reference group, basic research studies. All statistical tests have model d.f. = 2.

Sample sizes for different metrics are shown in Fig. 2. Statistically significant relationships are

shown in bold font.
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particularly in relation to drivers of variation in vital rates. This call cannot be repeated

too often, but it is also important to remember that more detailed and long-term studies

may come at a cost of breadth across populations and species. Our review shows, at

best, modest increases study length through time (Table 2; Fig. 3). Although we have

been conducting demographic studies for decades, plant ecologists have tended to

accumulate short-term studies for more species, rather than longer term studies. Some

constraints to study length are obvious, but others are probably much less so.

In practice, we will always have more short-term studies than long-term studies.

Therefore, the second need is to investigate critically how we can use these short-term

studies. We need to focus on developing methods and tests for dealing with and

quantifying the limitations of shorter term studies, as well as emphasizing the need for

long-term data. It would also be interesting to know whether we can use short-term

studies from hundreds of different species to understand long-term stochastic

population dynamics.
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