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††††National Center for Ecological Analysis and Synthesis, 735 State Street Suite 300, Santa Barbara, CA 93101, U.S.A.
‡‡‡‡Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, U.S.A.
§§§§Suri Sehgal Centre for Biodiversity and Conservation, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal
Enclave, Sriramapura, Jakkur, PO Bangalore- 560064, India
∗∗∗∗∗U. S. Geological Survey, WERC, Channel Islands Field Station, 1901 Spinnaker Drive, Ventura, CA 93001, U.S.A.
†††††Archbold Biological Station, P.O. Box 2057, Lake Placid, FL 33862, U.S.A.

Abstract: Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is
rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents
explained and predicted plant population dynamics. We parameterized stage-based matrix models with de-
mographic data from individually marked plants and determined how well these models forecast population
sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics
poorly; only 40% of observed population sizes fell within our forecasts’ 95% confidence limits. However, these
models explained population dynamics during the years in which data were collected; observed changes in
population size during the data-collection period were strongly positively correlated with population growth
rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not
associated with the number of individual plants or years of data. We tested whether vital rates were density
dependent and found both positive and negative density dependence. However, density dependence was not
associated with forecast error. Forecast error was significantly associated with environmental differences
between the data collection and forecast periods. To forecast population fates, more detailed models, such
as those that project how environments are likely to change and how these changes will affect population
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dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make
risk-averse decisions than to expect precise forecasts from models.

Keywords: density dependence, ecological forecasting, environmental change, matrix projection models, plant
population dynamics, population viability analysis, precipitation, temperature

Habilidad de los Modelos Matriciales para Explicar el Pasado y Predecir el Futuro de las Poblaciones de Plantas

Resumen: La incertidumbre asociada con el pronóstico ecológico ha sido reconocida durante un largo
tiempo pero rara vez se cuantifica su seguridad. Evaluamos que tan bien la información de 82 poblaciones
de 20 especies de plantas a lo largo de 3 continentes explica y predice la dinámica de población de las plantas.
Realizamos parámetros con modelos matriciales con base en estadios con datos demográficos a partir de
plantas marcadas individualmente y determinamos que tan bien estos modelos pronostican el tamaño de
las poblaciones al menos 5 años en el futuro. Los modelos demográficos simples pronosticaron pobremente
las dinámicas de población; solamente el 40% de las poblaciones observadas cayó dentro de los ĺımites
de confianza de 85% de nuestros pronósticos. Estos modelos sin embargo explicaron la dinámica de población
a lo largo de los años en los que se colectaron datos; los cambios observados en el tamaño de la población
durante el periodo de colecta de datos estuvieron positivamente correlacionados con la tasa de crecimiento de
la población. Aśı, estos modelos son por lo menos una manera segura de cuantificar el estado de la población.
Los pronósticos débiles no estuvieron asociados con el número de plantas individuales o con los años de
datos. Probamos si las tasas vitales dependı́an de la densidad y encontramos que existe dependencia hacia
la densidad tanto positiva como negativa, sin embargo la dependencia de densidad no se asoció con el error
de pronóstico. El error de pronóstico estuvo significativamente asociado con diferencias ambientales entre
la recolección de datos y los periodos de pronóstico. Para predecir el destino de las poblaciones se necesitan
modelos más detallados, como aquellos que proyectan los cambios probables en el ambiente y como estos
cambios afectarán a la dinámica de las poblaciones. Tales modelos tan detallados no siempre son factibles.
Por ello puede ser mejor tomar decisiones aversas a riesgos que esperar pronósticos precisos de los modelos.

Palabras Clave: análisis de viabilidad poblacional, dependencia de la densidad, dinámica poblacional de plantas,
modelos de proyección matricial, precipitación, pronóstico ecológico, temperatura

Introduction

Ecologists are increasingly asked to forecast how pop-
ulations will respond to anthropogenic environmental
changes such as habitat loss or climate change or to
management actions such as control of invasive species.
Matrix projection models are the primary models used
to study plant and animal population dynamics (Morris &
Doak 2002; Crone et al. 2011). Part of the appeal of matrix
models is that their relative transparency and ease of use
makes them widely accessible. These models combine
age- or stage-specific vital rates (birth, death, and growth
rates) to project population change through time. Model
projections are used in 2 distinct ways (roughly analogous
to projection versus prediction [sensu Caswell 2001]).
First, they integrate multiple vital rates into a single met-
ric, the population growth rate. This integration is useful
when management affects some vital rates positively and
others negatively (e.g., Lennartsson & Oostermeijer 2001;
Crone et al. 2009a; Farrington et al. 2009) or when some
vital rates have much larger effects than others on pop-
ulation growth rate (e.g., Crouse et al. 1987; Biek et al.
2002; Adams et al. 2005). Second, model projections can
be interpreted as forecasts of populations’ future fates, for
example, in population viability analysis for endangered
species (Brook et al. 2000; Menges 2000).

Matrix models are more often used to integrate vi-
tal rates than to make forecasts (Beissinger & Westphal
1998; Caswell 2001; Crone et al. 2011), and modelers
have cautioned for decades against interpreting projec-
tions as forecasts (cf. Caswell 1989). Nonetheless, about
one-third of published studies present matrix model re-
sults as literal forecasts of population fates (Crone et al.
2011), and growing demand for ecological forecasts
(Clark et al. 2001; Carpenter 2002) has led to interest in
using such models to predict population dynamics (Brook
et al. 2000; Coulson et al. 2001; Ellner & Holmes 2008).
Similarly, listing and recovery decisions for endangered
species that include quantitative population projections
from matrix models have been presented as a standard
of excellence (Schemske et al. 1994; Morris et al. 2002;
Neel et al. 2012).

Because of their relative simplicity, matrix models
have been criticized as possibly not realistic enough to
make meaningful projections or forecasts (Beissinger &
Westphal 1998; Bierzychudek 1999; Coulson et al. 2001).
Numerous researchers have proposed more realistic ex-
tensions to these models (e.g., Rees & Ellner 2009;
Tuljapurkar et al. 2009; Ezard et al. 2010). An additional
concern is that most matrix models are density indepen-
dent, whereas many populations have density-dependent
vital rates (Beissinger & Westphal 1998; Bierzychudek
1999). Finally, a widely cited caution against interpreting
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model projections as forecasts is that predictions only
apply to the environmental conditions that occurred dur-
ing data collection for model parameterization (Caswell
2001; Coulson et al. 2001).

We explicitly tested the utility of matrix models for
understanding and predicting plant population dynam-
ics by comparing model predictions to observed popu-
lation changes. We know of only one other broad test
of demographic model predictions. Brook et al. (2000)
evaluated population viability forecasts for 21 verte-
brate populations and concluded that population models
accurately forecast population fates. However, their con-
clusions have been criticized on several levels, includ-
ing the fact that they were based only on species with
unusually extensive demographic data. We know of 5
tests of population model forecasts for individual plant
species (Kephart & Paladino 1997; Bierzychudek 1999;
Lindborg & Ehrlén 2002; Van Mantgem & Stephenson
2005; Schodelbauerova et al. 2010). Model predictions
were accurate in at most 3 of these (Kephart & Pal-
adino 1997; Van Mantgem & Stephenson 2005; Schodel-
bauerova et al. 2010). Relative to these past studies, our
analyses provide a more comprehensive test of models
fit to typical plant population data. We also evaluated
whether matrix models explain population dynamics dur-
ing the study period and forecast future dynamics (i.e.,
testing utility for projection and prediction). Although it
may seem obvious that models should reproduce popu-
lation dynamics during the data-collection period, there
are several reasons why they might not. For example,
calculated growth rates would not match observed pop-
ulation dynamics if demographic parameters were poorly
estimated, if population age or stage structure were not at
equilibrium (e.g., Ezard et al. 2010), if vital-rate variation
was not incorporated into the model appropriately (e.g.,
confounding estimation error or differences among indi-
viduals with environmental stochasticity) (Kendall & Fox
2002), or if parameters were averaged inappropriately
(Tuljapurkar et al. 2003).

If forecasts fail to predict what populations actually do,
then to identify methods to produce better forecasts, one
must pinpoint the causes of that failure. We explored
3 possible causes: sample sizes are too small or fore-
cast periods too long relative to the data-collection pe-
riod; density-independent models fail to account for im-
portant density-dependent processes; and environmental
changes produce vital-rate changes between the data-
collection and forecast periods.

Methods

Demographic Data and Matrix Construction

In our analyses, we used data from 82 populations of
20 plant species. All data were collected by one or more

coauthors of this paper. We included only populations for
which stochastic population models with independent,
identically distributed variation seemed to us ecologi-
cally appropriate. For example, we excluded populations
affected by disturbances such as mowing or fire. Our
study-specific methods, transition matrices, and popula-
tion vectors are available through the Ecological Society
of America’s Ecological Archives (Ellis et al. 2012).

The study sites for most species (13) were in the United
States; others were in Mexico, India, or Sweden (Support-
ing Information). The number of populations per species
varied from 1 to 10. Plant vital rates are typically esti-
mated from plot-based monitoring and annual surveys
(Lesica 1987). All our studies used plot-based methods,
included 3 or more annual matrices, and were followed
by a population survey conducted at least 5 years after the
last year of demographic data collection (see Ellis et al.
[2012] for details). For cases in which demographic data
were collected continuously up to the final survey, we
deleted the final 5 or more years of demographic data to
create a forecast period. For these data sets, we used the
population structure of the last year as the final survey.

For each population, we defined stages appropriate
to the species’ biology and the sampling effort and cre-
ated stage-based annual matrices from demographic data
on individually marked plants. The number of matrices
per population varied from 3 to 12 (median = 5) (Ellis
et al. 2012). We calculated stage-based vital rates (stasis,
growth, and regression) directly from observed individual
fates with our own code and functions from the popbio
package in R (Stubben & Milligan 2007). Small sample
sizes occasionally required us to calculate some vital rates
from data pooled across years or estimated from other
sources (Ellis et al. 2012). Methods for estimating fecun-
dity parameters varied by study but generally followed
published models for each species and were usually cal-
culated either from ratios of new recruits to numbers of
reproductive plants in the previous year or from annual
seed counts combined with germination and seed-bank
studies (Ellis et al. 2012). Vital rates for cryptic stages
(e.g., seeds in the seed bank or dormant plants) were
estimated with diverse methods, typically relying on data
from additional experiments (e.g., buried seed bags [Ellis
et al. 2012]).

We calculated metrics related to total population size
(N), both observed and predicted, only for visible stages.
We did not include dormant individuals, those in seed
banks, and some other stages (depending on the species)
(Ellis et al. 2012).

Testing Model Predictions

First, we tested whether models were a meaningful way
to integrate vital rates within a study period. We com-
pared asymptotic measures of population change (deter-
ministic and stochastic population growth rates, λ and λS,
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Figure 1. Timeline of data
collection relative to observed
population growth rates, �Nstudy

and �Nforecast.

respectively) with observed changes in population size
during the years when data were collected for model pa-
rameterization (hereafter, data-collection period) (Fig. 1).
To calculate λ, we used the leading eigenvalue of the
mean of the matrices. We calculated λS with Tuljapurkar’s
(1982) approximation for realized population growth
in the presence of independently and identically dis-
tributed environmental fluctuations. We calculated ob-
served changes in abundance as annual per capita popu-
lation growth rates, �Nstudy, defined as (Nx/N0)1/x, where
x is the length of the data-collection period and N0 and Nx

are population sizes (i.e., the sum of the stage distribution
vector) in the first and last years of this period, respec-
tively. We evaluated several kinds of population growth
rates, some calculated with matrix models and others
calculated from population size observations. Although
all are per capita growth rates, we used �Nsubscript to rep-
resent growth rates calculated from ratios of observed
total population sizes in different years and λsubscript to
represent growth rates calculated from models (Table 1).

Second, we tested the ability of models to forecast
future population fates. We did this by comparing model
predictions to population sizes in the final survey (here-
after, forecast period) (Fig. 1 & Table 1). As above, we
compared λ and λS with observed annual per capita

growth rates (�Nforecast, defined as [Nx+n/Nx]1/n, where
n is the length of the forecast period).

In addition, we evaluated predictions of transient pop-
ulation dynamics during the forecast period (see Ezard
et al. [2010] for discussion of transient versus asymptotic
forecasts). To make transient forecasts, we projected
populations forward from the last observed stage vector
in the data-collection period. For stochastic simulations,
we used matrix selection (sensu Kaye & Pyke 2003) (i.e.,
sampling with replacement from the available matrices
with equal probability). Matrix selection is the most
typical way in which plant ecologists incorporate en-
vironmental stochasticity into demographic projections
(Crone et al. 2011). We estimated transient population
growth rates, λtrans = (Ñx+n/Nx)1/n, where Ñx+n is the
median predicted population size from 1000 stochastic
simulations. We also tabulated the number of observed
population sizes at the end of the forecast period (Nx+n in
Table 1) that fell within the 95% confidence limits (i.e.,
between the 2.5th and 97.5th percentile) of simulated
values of the final population sizes. As additional tests
of model forecasts, we repeated the asymptotic analy-
ses twice. First, we weighted the stage vector by the
reproductive values of each stage class. Second, we used
only the stage class with the largest reproductive value.

Table 1. Definitions of symbols used in analyses of projections and forecasts from matrix population models.

Metric Description

Variables calculated from observed number of individuals
Nx total population size at start of forecast period, observed (noncryptic) stages only
Nx+n total population size at end of forecast period, observed (noncryptic) stages only
�Nstudy observed population growth rate over the data-collection period: (Nx/N0)ˆ(1/x)
�Nforecast observed population growth rate over the forecast period: (Nx+n/Nx)ˆ(1/n)

Variables calculated from matrices and simulations
λ deterministic population growth rate from the mean matrix
λS stochastic population growth rate computed from Tuljapurkar’s (1982) approximation
Ñx+n median total projected population size at the end of the forecast period (observed stages only)
λtrans transient population growth rate (Ñx+n/Nt)ˆ(1/x)

Covariates of forecast error, calculated from the data
x number of annual transition matrices (i.e., number of annual population surveys during the study period minus 1)
n forecast period: number of years between the end of the original study and the end of the forecast period
SS mean sample size (weighted by elasticities)
CTLS conditional total lifespan (computed with Cochran and Ellner’s [1992] method)
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Table 2. Results of analyses signed and absolute (unsigned) prediction error as functions of covariates calculated from the demographic data.∗

Years in forecast Conditional total
Sample size (SS) No. of matrices (x) period (n) lifespan (CTLS)

Analysis type t p t p t p t p

Signed prediction error, �Nforecast – λtrans

fixed, multivariate –1.28 0.203 2.01 0.048 0.26 0.792 1.11 0.273
fixed, univariate –1.30 0.199 1.92 0.058 –0.46 0.643 0.58 0.565
mixed, multivariate –1.44 0.141 2.11 0.044 –0.40 0.367 0.53 0.345
mixed, univariate –1.43 0.143 2.23 0.035 –0.99 0.243 0.19 0.390

Absolute prediction error, |�Nforecast – λtrans|
fixed, multivariate 0.06 0.956 –0.43 0.668 –0.44 0.660 –1.56 0.124
fixed, univariate –0.07 0.984 –0.00 0.996 –0.25 0.804 –1.59 0.135
mixed, multivariate 0.47 0.356 –0.79 0.290 –0.05 0.397 –0.99 0.242
mixed, univariate 0.37 0.371 –0.68 0.315 0.24 0.368 –1.02 0.236

∗Abbreviations are as in Table 2.

The reproductive-value-weighted vector is insensitive to
transient dynamics (Engen et al. 2009), and both response
variables are less sensitive than λ or λS to fluctuations in
stage classes with low reproductive value (e.g., seedling
pulses followed by seedling mortality). The reproductive-
value-weighted analyses did not reveal stronger correla-
tions between observed and forecasted changes in pop-
ulation size and are not discussed further.

We calculated both Pearson correlations and Kendall’s
rank correlations between observed (�Nstudy or
�Nforecast) and modeled (λ, λS, or λtrans) population
growth rates with all populations and with arithmetic
mean values for each species. For species with 3 or more
populations, we calculated Pearson and rank correlations
among populations. We evaluated the significance of
analyses of multiple populations within species on the
basis of a single p value for combined probabilities from
independent tests (Sokal & Rohlf 1995). In addition, we
calculated the ratio of observed to modeled population
growth rates from zero-intercept regressions of observed
versus modeled population growth rates. If estimated
population growth rates are unbiased, the slope of this
line should be one.

Causes of Forecast Error

We evaluated possible causes of forecast error with 3
separate analyses. First, we conducted exploratory anal-
yses of metrics that could be calculated directly from
the demographic data and were likely to be associated
with forecast error. Second, we estimated the strength of
density dependence in each population and then tested
whether density dependence was associated with fore-
cast error. Third, we related changes in temperature and
precipitation between the data-collection and forecast
periods to forecast error.

We selected 4 covariates that could be straightfor-
wardly calculated from demographic data and that we
thought would most likely affect forecast error: number

of matrices used to parameterize models (x in Tables
1 and 2); length of the forecast period (n in Tables 1
and 2); sample size (mean number of individuals per
stage per year, weighted by the matrix-column-wise sum
of each stage’s elasticity); and conditional total lifespan
(Cochran & Ellner 1992). We expected predictions of
population size to improve with a longer data-collection
period (more matrices), shorter forecast period, larger
sample size, and longer lifespan (because a larger fraction
of the plants from the data-collection period would still
be alive in the test year).

We conducted multiple regressions to relate both
signed and unsigned prediction error to these 4 covari-
ates. We modeled signed prediction error, which was ap-
proximately normal, with linear regression. We modeled
absolute (unsigned) prediction error, which was skewed
and (by definition) bounded at zero with gamma-family
generalized linear regressions. For our first analysis, we
treated populations as independent observations. To en-
sure that our analyses were not omitting key explanatory
covariates, we also analyzed prediction error with univari-
ate regressions for each covariate and used mixed models
with species included as a random effect. These results
were not statistically significant and are not discussed
further.

Density dependence, often cited as a reason why ma-
trix models may not explain past or predict future pop-
ulation dynamics (e.g., Bierzychudek 1999), generates
specific expectations about forecast error. If vital rates
are negatively density dependent, forecasts of population
size should be too high for populations that grew during
the data-collection period and too low for populations
that declined. Positive density dependence (i.e., Allee
effects) produces the opposite pattern (see Supporting
Information).

To quantify density dependence, we estimated the
leading eigenvalue for each annual transition matrix for
each year t of the study, λt, and the total population size
each year, Nt, defined as the sum of all plants over all
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observed (noncryptic) stages. We estimated density de-
pendence from a linear mixed model of λt versus Nt, with
species and population nested within species as random
effects. The leading eigenvalue for each annual transition
matrix for each year t of the study is an integrated mea-
sure of the asymptotic effect of density Nt on all vital
rates. If population growth declines as density increases
(i.e., a negative slope), this linear function can be repa-
rameterized as the discrete logistic model of population
growth. A positive slope indicates an Allee effect over the
range of densities observed in the study years. To com-
pare density dependence across taxa and populations,
we standardized both λt and Nt to have a mean of zero
and a standard deviation of one for each population. This
rescaling allowed us to compare the effects of density
across species with disparate growth forms.

The expected association between density depen-
dence (slope of λt vs. Nt, hereafter β) and prediction
error depends on the population growth rate during the
data-collection period. From first principles, we expected
a positive correlation between signed prediction error
(�Nforecast – λtrans) and the product of (�Nstudy – 1) and
β (Supporting Information). However, in our data, λtrans

and �Nstudy were strongly positively correlated, and β

was usually negative (see Results), which would also
produce a positive correlation. Therefore, we evaluated
the statistical significance of this association relative to
a null distribution. To obtain the null distribution, we
created bootstrapped data sets in which observed values
of β were combined with random pairs of values for
prediction error and λtrans (selected by sampling with
replacement from the full set of pairs). We also explored
correlations between β and signed and unsigned predic-
tion error to look for possible alternative associations.

We obtained climate data for populations in the con-
tinental United States (59 populations of 13 species)
from Parameter-elevation Regressions on Independent
Slopes Model (PRISM) (Daly et al. 2010). For each popu-
lation, we calculated 4 metrics, the mean and the among-
year variance for both annual precipitation (μprecip and
σ 2

precip) and mean daily maximum temperature (μtmax

and σ 2
tmax). We compared values of these 4 variables

between the data-collection period plus 2 prior years (to
account for the potential effects of prior conditions on
demographic rates) and the forecast period.

We used the standard deviation of annual precipitation
and mean daily maximum temperature from 1960 to 2009
to calculate the expected differences in each response
variable between the 2 periods. If a variable is approxi-
mately normally distributed, the expected standard error
of the mean, X̄, and the variance, S2, for a sample of i
years are

SEX̄ =
√

σ 2

i

and

SES2 =
√

σ 2

(
2

i − 1

)
.

The variance of the difference of each variable (be-
tween the 2 periods) is the sum of the squared standard
errors for each period (calculated by substituting x and
n for i in the equations above). The expected difference
is the 50th percentile of the distribution defined by this
variance.

To test whether values of each variable differed sig-
nificantly between the data-collection and forecast pe-
riods, we analyzed the absolute value of the observed
minus expected difference with one-sample t tests. To
test whether change in these variables were associated
with poor forecast ability, we calculated a multiple regres-
sion between the absolute value of the prediction error
and the absolute value of the difference in each variable
with gamma-family generalized linear regressions.

Results

Matrix population models successfully integrated vital
rates of individual plants. The �Nstudy variable was
strongly positively correlated with both λ and λS (r =
0.65 and r = 0.77, respectively) (Figs. 2a & b). Other
patterns also matched expectation from general theory.
The stronger correlation of �Nstudy with λS than with λ

is consistent with the expectation that stochastic popula-
tion models are more realistic than deterministic ones.
Lambda tended to predict population sizes that were
slightly too large (slope of zero-intercept regression of
�Nstudy vs. λ, 0.976 [SE 0.015]), whereas λS was an un-
biased predictor (slope of zero-intercept regression of
�Nstudy vs. λS = 1.017 [SE 0.010]) (Figs. 2a & b), which
is consistent with the assumption that environmental
stochasticity generally results in lower population growth
rates than predicted by deterministic models.

Matrix models did not successfully forecast future fates
of the populations we studied. Neither λ nor λS was
correlated with �Nforecast (Figs. 2c & d) (r = 0.01, p =
0.91; r = 0.01, p = 0.95, respectively). Furthermore,
model predictions were biased; final population sizes
tended to be smaller than predicted by either λ or λS

(Figs. 2c & d) (ratio of �Nforecast to λ and λS, from zero-
intercept regressions: 0.855 [SE 0.027] and 0.893 [SE
0.025], respectively). These errors were not caused by
transient population dynamics. Observed and simulated
transient population growth rates were not significantly
correlated (among all populations: r = 0.04, p = 0.76;
among species means: r = –0.02, p = 0.94, and among
populations within species: r̄ = 0.04, p > 0.99), and only
40% of observed population sizes fell within the 95%
limits of transient model forecasts, although these limits
were usually very wide (Fig. 3).
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Figure 2. (a, c) Deterministic and
(b, d) stochastic population growth
rates (λ and λS, respectively)
versus population growth rates
during (a, b) data-collection and
(c, d) forecast intervals (�Nstudy

and �Nforecast, respectively).
Ellipses indicate 90% confidence
intervals of correlations, and lines
are the 1:1 association that would
be expected if forecasts were
unbiased and precise.

Covariates calculated from the demographic data were
not strongly associated with prediction error. Models
based on fewer annual matrices tended to forecast larger
population sizes than we observed (t = 1.92, p = 0.06).
No other covariates of prediction error (shorter forecast
period, larger number of plants per stage class [weighted
by reproductive value], or longer lifespan) significantly
predicted forecast accuracy (Table 2). These results sug-
gest that forecasts could be improved by including more
data, but only if those data increased the time period.

We detected density dependence. On average, density
dependence was negative (Fig. 4a) (range of β values:
–0.525–0.132 [Supporting Information]). However, β

was not associated with prediction error in the expected
direction (Supporting Information) (bootstrap p = 0.50)
(Fig. 4b). The β values were also uncorrelated with signed
and absolute prediction error (r = –0.021, p = 0.85,
and r = 0.123, p = 0.27, respectively). Therefore, there
was little evidence that use of density-dependent models
would substantially improve forecasts.

In contrast, the analyses of temperature and precip-
itation data supported the hypothesis that models did

not forecast future population sizes due to temporal
environmental change. Temperature and precipitation
differed more between the data-collection and forecast
periods than expected on the basis of temporally uncor-
related interannual variation alone (Fig. 4c) (observed
vs. expected change between the data collection and
forecast periods for mean annual precipitation [t = 2.62,
p = 0.01], mean daily maximum temperature [t = 3.85,
p < 0.001], variance in annual precipitation [t = 4.30,
p < 0.001], and variance in daily maximum temperature
[t = 1.21, p = 0.16]). Furthermore, prediction error
was associated with environmental differences between
the 2 periods (correlation of observed vs. expected
r = 0.51, likelihood-ratio test of multiple regression
with 4 environmental covariates compared with a null
model: χ2 = 13.4, df = 4, p = 0.01). The covariate
most strongly associated with poor forecasts was the
change in variance of annual precipitation (Fig. 4d)
(t = 2.01, p = 0.05). However, because these climate
variables were strongly correlated, it was not possible
to attribute poor forecasts to changes in any particular
variable.
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Figure 3. Observed population size at the end of the
forecast period (filled circles, Nx+n) in relation to
forecasted population size from population models
(open circles, Ñx+n) (lines, 95% forecast limits). Species
codes appear opposite populations of each species and
are defined in Supporting Information.

Discussion

Our results point to 3 broad conclusions about the use
and interpretation of population models. First, very sim-
ple demographic models are an ecologically meaningful
way to integrate multiple aspects of individual perfor-
mance into a single metric of population status. This con-
clusion implies that simple population models work well
for common uses such as projecting population growth
rates under current conditions and assessing the net con-
sequences of management alternatives. In this light, more
complicated approaches such as integral projection mod-
els (Rees & Ellner 2009), transient analysis (Ezard et al.
2010), and serially correlated variance structures (Tul-
japurkar et al. 2009) could be viewed as a way to further
improve these relatively good projections.

Second, in contrast to the findings of Brook et al.
(2000), simple models failed to forecast the future of the
populations we studied. The time horizons for these 2
studies were similar. The animals studied by Brook et al.
(2000) had a median maximum age of 12 years (range

4–50; see their Supplementary Table 2) and a median
forecast period of 10.5 years (range 7–28), whereas the
plants in our study had a median conditional total lifespan
of 12 years (range 5–326) and median forecast period of
10 years (range 5–18). Our conclusions about forecast-
ing ability may be less favorable because we evaluated
the ability of models to predict individual population
fates, whereas Brook et al. (2000) based their conclu-
sions on ensemble predictions, which are expected to
be more precise (Ellner et al. 2002). Still, predictions for
individual populations should show the same trends as
ensemble predictions (Ellner et al. 2002), and forecasts
were not correlated with observations in our analyses
(Fig. 2). One possible explanation is that habitat selec-
tion by animals could moderate environmental change,
making forecasts for animal populations more accurate
than those for plants. In addition, Brook et al. (2000)
based their analysis on extensive data sets (Coulson et al.
2001) for which model structures could be tailored to
match species-specific biology. In practice, management
plans are often made for animal and plant species whose
life histories are poorly known (Harding et al. 2001) or
on the basis of generic density-independent matrix popu-
lation models (e.g., Biek et al. 2002; Ellis & Elphick 2007;
Morris et al. 2011). Therefore, we strongly caution against
the expectation that reliable forecasts can be made from
simple population models.

Third, our results shed light on 2 ecological mecha-
nisms that are generally expected to be responsible for
poor forecasts. The effect of the first, density depen-
dence, was partially supported by our analyses; asymp-
totic population growth rates calculated from annual
transition matrices tended to be lower in years with
more plants. Vital rates of most plants are expected to
decline as density increases (Freckleton & Watkinson
2002). However, correlations of vital rates with density
do not always imply classical density dependence. For
example, density dependence of Phyllanthus emblica
was positive and was caused by decreasing habitat quality
(Supporting Information). This site has been colonized by
mistletoe (Taxillus tomentosus) in the canopy, which
reduces growth, reproduction, and survival of P. em-
blica, and by an understory shrub that limits recruitment.
As these invasive species have become more abundant,
P. emblica’s population size and vital rates have de-
clined (Ticktin et al. 2012). As another example, one of
our species, Astragalus scaphoides, alternates between
years with high flowering and high dormancy (Crone
et al. 2005, 2009b). Over decades, one would not ex-
pect model forecasts to deviate systematically from ob-
servations due to this kind of rapid population cycle.
In principle, one could develop species-specific mod-
els by regressing individual vital rates against population
size for each species and using these models to forecast
population dynamics. Such models are relatively rare in
plant ecology (Crone et al. 2011), can be problematic to
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Figure 4. (a) Density dependence estimated as the slope of expected population growth rate (i.e., leading
eigenvalue of the matrix associated with that year versus population size in each year) (different shading
indicates different species; thin lines, fitted functions for populations; thick line, mean relation across populations
and species). Fitted functions for individual populations are presented separately in Supporting Information. (b)
Density dependence versus signed prediction error (residuals of a regression model with [�Nstudy – 1] as a
predictor). (c) Observed versus expected change between the data-collection and forecast periods for mean annual
precipitation (closed circle), mean daily maximum temperature (closed triangle), variance in annual
precipitation (open circle), and variance in daily maximum temperature (open triangle) (line, 1:1 line shown for
comparison). (d) Forecast error versus change in the standard deviation of precipitation regimes (lines, fitted
function from linear model with confidence limits).

implement and interpret (Evans & Davis 2011), and are
beyond the scope of this paper. However, further analy-
ses could be done with our published database (Ellis et al.
2012).

Of the mechanisms we evaluated, the most plausible
explanation for why our forecasts failed appears to be
that the future environment differs from that of the past.
Temperature and precipitation affect plant growth, sur-
vival, and reproduction across many taxa (Schauber et al.
2002; Huxman et al. 2004), but they are only 2 of many

possible environmental features that could change in un-
expected ways over relatively short periods (Carpenter
2002; Doak et al. 2008). In some cases, one can make re-
alistic predictions of the dynamics of physical and biotic
environments and use these to drive population mod-
els (Menges 2000; Quintana-Ascencio et al. 2003; Gotelli
& Ellison 2006). Linking demographic patterns to their
drivers and incorporating these effects into demographic
forecasts is likely to be the best way to improve fore-
casts. However, tight associations between vital rates and
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environmental drivers can be difficult to detect (Knape
& de Valpine 2011). For example, we reviewed 396 pub-
lished demographic models for plants before designing
the methods for this paper (Crone et al. 2011). Only 52
(13.1%) of these linked demographic responses to a po-
tential environmental driver. Environmental change can
also be difficult to forecast; for example, for populations
in our data set, average conditions tended to be cooler—
not warmer, as might be expected—during the forecast
versus data-collection period (paired t test: t = –1.60,
p = 0.12).

On the basis of our results, there does not seem to
be a single simple solution that can dramatically improve
model forecasts for plant populations in general. There-
fore, in situations in which extensive system-specific
models are not feasible, one should not expect precise
model forecasts. Inability to forecast the future does not
mean populations cannot be managed, however. Rather
than using models to provide precise forecasts, manage-
ment alternatives can be assessed on the basis of their
ability to avoid undesirable outcomes (such as extinction
of endangered species) over a broad range of uncertainty
about a species’ biology and future environmental con-
ditions (Rosenberg & Restrepo 1994; Pielke & Conant
2003).
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