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AVOIDING PITFALLS WHEN USING INFORMATION-THEORETIC 
METHODS 
DAVID R. ANDERSON,1,2 Colorado Cooperative Fish and Wildlife Research Unit, Room 201 Wagar Building, Colorado State 

University, Fort Collins, CO 80523, USA 
KENNETH P. BURNHAM,1 Colorado Cooperative Fish and Wildlife Research Unit, Room 201 Wagar Building, Colorado State 

University, Fort Collins, CO 80523, USA 

Abstract: We offer suggestions to avoid misuse of information-theoretic methods in wildlife laboratory and field 
studies. Our suggestions relate to basic science issues and the need to ask deeper questions (4 problems are noted), 
errors in the way that analytical methods are used (7 problems), and outright mistakes seen commonly in the pub- 
lished literature (5 problems). We assume that readers are familiar with the information-theoretic approaches and 
provide several examples of misuse. Any method can be misused-our purpose here is to suggest constructive ways 
to avoid misuse. 
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Key words: Akaike's Information Criterion, analysis guidelines, information-theoretic methods, Kullback-Leibler 
information, model selection uncertainty, modeling, P-values. 

Support for null hypothesis testing and associat- 
ed P-values has declined among statisticians over 
the past several decades (Anderson et al. 2000). 
Papers by Yoccoz (1991), Cherry (1998), Johnson 
(1999), and Anderson et al. (2000) outline the 
overuse, misuse, and limitations of null hypothe- 
sis testing in wildlife research. Guthery et al. 
(2001:379) note the "collapse of null hypothesis 
significance testing as a statistical paradigm...." 
Many wildlife biologists and ecologists have 

changed their perspectives regarding data analy- 
sis as a result of the limitations of null hypothesis 
testing. Some investigators have merely refocused 
attention on estimating effect sizes and measuring 
their precision, without the undo emphasis on a 
null hypothesis, test statistics, P-values, and arbi- 

trary notions of significance (Yoccoz 1991, Ander- 
son et al. 2001 b). This simple approach is effective 
for many biological questions. We support the 
estimation of effect size and use it in our own 
research work. Some investigators have begun to 

explore an assortment of Bayesian methods (Gel- 
man et al. 1995, Ellison 1996), often in close col- 
laboration with a statistician. Other researchers 
have begun to use the relatively new informa- 
tion-theoretic methods, especially for science 

problems involving some substantial complexity. 
Our review of several of the leading theoretical 
and applied ecological journals shows that use of 
the information-theoretic methods is increasing. 

Any methodology can be misused. In the sci- 
ences, this misuse usually is unintended; the 

investigator misunderstood some aspect of an 

approach and failed to use it appropriately. The 
information-theoretic approach can be misused, 
and we have observed that some misuse has 
occurred already. Our objective is to provide sug- 
gestions that we hope will allow investigators to 
reduce the inappropriate use of information-the- 
oretic approaches in wildlife studies that involve 

analysis of empirical data. 
We must assume that the reader is familiar with 

Kullback-Leibler (K-L) information and the relat- 
ed information criteria for model selection (i.e., 
AIC [Akaike's Information Criterion], AICc [AIC 
corrected for small-sample bias], and 

QAICc 
[AICc 

for overdispersed data]; these are defined 
and explained in Burnham and Anderson 2002). 
Furthermore, the reader must have an under- 

standing of information criterion differences 

(Ai); likelihood of model i, given the data 
[_(gi 

I 
data)]; Akaike weights (wi); evidence ratios (e.g., 
wi/wj); and simple approaches to incorporating 
model selection uncertainty into estimates of pre- 
cision (e.g., unconditional standard errors, model 

averaging). Assuming the reader has knowledge 
of the information-theoretic approaches, we pro- 
vide several suggestions to avoid misuse. 

SCIENCE ISSUES 
We outline 4 problems that deal with the underly- 

ing science of the issue under the information-the- 
oretic approach. These issues precede formal data 
analysis; they are the very reason for analysis and 
therefore of fundamental importance. 
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Poor Science Question 
The information-theoretic approach, as devel- 

oped by Akaike (1973, 1974), represents an inte- 

grated package; much of this package rests on 
the quality of the underlying science question 
and the specific alternative hypotheses. Good sci- 
ence questions should be addressed, and this is a 
continued challenge to us all (O'Connor 2000, 
Morrison 2001). We must move beyond null 

hypotheses (which usually are trivial) to more 

exciting, relevant questions at the edge of cur- 
rent knowledge. Instead of a (silly) null and a sin- 

gle alternative hypothesis, science is better served 

by multiple working hypotheses, a concept advo- 
cated by Chamberlin (1965). Science hypotheses 
and the specific data must be represented care- 

fully by well-chosen statistical models. Failure to 
achieve several good alternative science hypothe- 
ses and models to represent them leads to the 

problem that none of the models are useful-a 
recent concern of Leopold (2001). We urge addi- 
tional thought and consideration of the quality of 
the science question posed. 

The failure to properly address these basic 
issues often leads to a poor or even counter-intu- 
itive result. This undesirable endpoint is not the 
fault of the information-theoretic approaches; 
rather, one should not expect a good model, as 
an inference, if they start with only poor models, 

representing poor science hypotheses. The chal- 

lenge is to begin with better science questions. 

Too Many Models 
A common problem, related closely to the issue 

above, is that too often little thinking precedes 
data analysis; thus, the computer is asked to ana- 

lyze and compute results for many models. Often 
dozens, hundreds, or even thousands of models 
are analyzed using a statistical software package. 
It is not unusual to see papers in the published 
literature in which the number of models 
exceeds the number of data points (sample size, 
n), and this is certainly problematic (Freedman 
1983, Miller 1990). Fleishman et al. (2001) used 
over 8 million models to study butterflies as a 
function of 23 environmental variables. Results 
from such an analysis strategy will almost surely 
be spurious and are an example of Freedman's 
paradox (Freedman 1983). 

We recommend careful consideration of the 
science of the issue to reduce the number of 
models (Burnham and Anderson 1998:176-199). 
Use of all subsets regression is a flag that an 
unthinking approach has been employed. While 

this approach might be useful in exploratory 
work, or maybe if prediction is the only goal, it 
would seem better to first try to reduce the model 
set to a few where some a priori support exists. 

The True Model Is Not in the Set 
No models exist that exactly represent full 

truth, and researchers should not expect such a 
true model to be in the a priori set of models. 
This error in thinking lead to model selection cri- 
teria such as BIC (Bayesian Information Criteri- 
on, sometimes called SIC [Schwarz's Information 
Criterion]; Schwarz 1978) that attempt to esti- 
mate the dimension of the true model. Such cri- 
teria are not estimates of Kullback-Leibler infor- 
mation and generally are less useful since they 
are only asymptotic criteria and hinge on assump- 
tions that we believe are unreasonable. (Even 
then, BIC often will perform better than many 
standard approaches such as stepwise regression 
[McQuarrie and Tsai 1998].) The information-the- 
oretic approach does not assume that the true 
model is in the set and, in fact, does not assume 

any such full reality is even parameterized. 
The information-theoretic approach estimates 

the relative closeness of each fitted model to con- 

ceptual truth or full reality. The goal is to find the 
best fitted-model in the set; this is quite different 
than finding truth-finding full truth is unattain- 
able with a finite sample size. Bayesians are reaching 
this same view of models as good approximations 
to truth and not full truth (Spiegelhalter 2002). 

Information-theoretic Methods 
Are Not a "Test" 

Null hypothesis tests and associated P-values 
should not be mixed with various evidentiary 
results from an information-theoretic approach 
(e.g., AICc, Ai, wi); this mixing error has been 
common in recent issues of The Journal of Wildlife 
Management (e.g., Budnik et al. 2002). For exam- 

ple, once 
AICc 

has been used to rank models, no 

theory exists to suggest that a test statistic associ- 
ated with a test between any 2 models has some 
known distribution (i.e., For t or z or x2) as a basis 
for computing P-values. Hypothesis testing usual- 

ly involves nested models, and this is another lim- 
itation. There are other problems (e.g., P-values 
are not a valid measure of evidence; Sellke et al. 
2001) when mixing these 2 analysis paradigms, 
and we recommend strongly against this practice. 

The largely arbitrary notions of significance 
and P-values are not part of the information-the- 
oretic paradigm. There is no focus on a null 
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hypothesis that is nearly always false on a priori 
grounds (Cherry 1998, Johnson 1999, Anderson 
et al. 2000); instead, there is a focus on a small set 
of science hypotheses, all of which are plausible. 
There is no arbitrary, automatic decision to be 
reached (e.g., P < a); rather, quantitative evi- 
dence is provided to allow a careful interpreta- 
tion (e.g., Akaike weights and evidence ratios). 
Major advances have been made in the theory 
and application of data analysis methods in the 

past 10 years. It should not be surprising that null 

hypothesis testing is no longer very useful, con- 

sidering that it was developed 70-80 years ago. 
The information-theoretic approach allows a 

more extended analysis than that allowed by more 
traditional, testing-based approaches. For exam- 

ple, science hypotheses, represented by models, 
can be ranked from best to worst, and scaled to 
allow an understanding as to which hypotheses 
might be close, while others are separated widely, 
in terms of empirical support for them. The evi- 
dence, rather than the usual significant versus not 

significant, is quantified by the Akaike weights 
and evidence ratios. Model selection uncertainty 
can be incorporated easily into estimates of preci- 
sion; this feature is neither easy nor well-founded 
under the testing-based methods. Finally, formal 
statistical inference can be based routinely on all 
the models in the set (multimodel inference), 
rather than on merely the model estimated to be 
best. This inference feature is particularly useful 
in prediction, in which often 2-4 models may be 
nearly tied in their level of empirical support, but 
can often give quite different predictions. These 
additional levels of inference are not supported 
by the testing-based methods. 

METHODOLOGICAL ISSUES 
We provide 7 suggestions related to data analysis 

methodologies under an information-theoretic 

paradigm. In several instances, we cite an exam- 
ple to aid in understanding the various points. 

Poor Modeling of Hypotheses 
Once a set of alternative hypotheses have been 

defined, one must carefully represent these by 
mathematical models relevant to the data at 
hand. Such modeling may not always be easy, 
since the data and various sampling issues must 
enter consideration. The need for modeling 
expertise is an excellent reason to seek the help 
of a statistician. There is a great deal of sophisti- 
cation to allow good models of various hypothe- 
ses, but few biologists and ecologists are aware of 

these approaches. For example, one might first 
think of a set of multiple linear regression mod- 
els to represent hypotheses concerning some 
response variable (Y) as a function of wildlife 
habitat variables (Xi). While this is often taught, 
one should be leery of relationships that are 
hypothesized to be linear. Further thinking 
should lead one to consider asymptotes, thresh- 
olds, and other nonlinearities in modeling bio- 
logical systems. For example, rather than model- 

ing sage-grouse (Centrocercus spp.) abundance as 
a linear function of percent canopy cover of sage- 
brush (Artemisia spp.), it might be more relevant 
to hypothesize a quadratic relationship. This 
approach might suggest, for example, that sage- 
grouse abundance is at a maximum at 40% 
canopy cover, whereas abundance is less at both 
lesser and greater values than 40%. Such insights 
would not come from a linear model. Too little 
thought often is given to predictor variables mea- 
sured or constructed, and this represents an area 
for improvement. 

Binomial random variables are very common in 
wildlife research, but relatively few people realize 
the advantages of parameterizations based on the 

logit transform [logit(p) = 
loge 1 ] where p is 

a binomial parameter such as a survival, emigra- 
tion, capture, or transfer probability (McCullagh 
and Nelder 1989). Such models often allow mean- 
ingful nonlinearities without introducing addi- 
tional parameters to be estimated. A set of only 
linear models is another flag that modeling may 
be relatively poor. We urge that more expertise be 

brought to bear in modeling the science hypothe- 
ses of interest on relationship to the sampled data. 

Failure to Consider Various Aspects of 
Model Selection Uncertainty 

Estimates of precision should include a vari- 
ance component for model selection uncertainty; 
Breiman (1992) noted that failure to do so con- 
stituted a quiet scandal. Procedures such as step- 
wise regression often mislead the investigator 
concerning the large uncertainty in model selec- 
tion. This misimpression stems from the fact that 
so little output is given and the investigator is 

tempted to believe that a clearly best model has 
been found and is a solid basis for inference. 

One might have 10 models, each representing 
1 of 10 science hypotheses, and finds that 3 mod- 
els have similar levels of empirical support but 
provide substantially different predictions; the 
remaining 7 models have little support. In this 
example, uncertainty exists concerning which 
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model is best, and this uncertainty should be part 
of the estimate of precision; simple methods exist 
to allow this addition. 

Model selection uncertainty is a large, impor- 
tant issue. We have found that many advantages 
are gained by making formal statistical inference 
from all models in the set. Multimodel inference 
(Burnham and Anderson 2002) is useful in 
numerous science contexts, including the rank- 

ing of the relative importance of explanatory vari- 
ables and parameter estimators that tend to 
decrease model selection bias. Arnold et al. 
(2002) provide an interesting example in which 
model averaging might have provided valuable 

insights. 

Failure to Consider Overdispersion 
in Count Data 

Count data often are overdispersed, that is, the 
estimated theoretical sampling variance is too 
small, and this is often caused by a lack of inde- 

pendence. While a model might assume inde- 

pendence, the data may be somewhat depen- 
dent; thus, the data are said to be overdispersed 
and the sampling variances are underestimated if 
based only on theory. Numerous ways have been 

suggested to deal with this common case, and 
most methods fall under the name quasi-likeli- 
hood (Wedderburn 1974). A simple approach 
that has been shown to be effective is to estimate 
a variance inflation factor (c) based on a standard 

goodness-of-fit statistic (Burnham et al. 
1987:243-246) from a high-dimensioned model. 
Given an estimate of the variance inflation factor 

(c) one should use QAICc for model selection 
and inference and inflate the estimates of the 
variance-covariance matrix by 

F 
(i.e., c x 1, 

where I is the theoretical variance-covariance 

matrix). Franklin et al. (2002) examined long- 
term data sets for a variety of avian species and 
found overdispersion to be common, but not 

large. Only 17% of the 107 cases were found in 
which c > 1.8, and estimates of overdispersion 
ranged from 1.13 to 2.37. 

Heyde (1997) provides more advanced meth- 
ods for analysis of overdispersed data. Shefferson 
et al. (2001) provide an excellent example of the 
use of QAICc and variance inflation in estimating 
dormancy in a rare orchid species. 

Post hoc Exploration of Data Not Admitted 
After some post hoc examination of the data 

has been done, the publication of results should 
separate clearly those inferences arising from a 

priori considerations, which then tend to be 
more confirmatory, from the hunches developed 
after examining the data in detail (Anderson et 
al. 2001 a). While we fully support some post hoc, 
exploratory activities to better understand the 
data (or generate hypotheses), the results from 
such activities should be admitted in publication. 
One can always conduct analyses based on a pri- 
ori thinking, followed by some post hoc consid- 
erations; the reverse is never an option. 

Statistical Significance versus 
Quantitative Evidence 

Many of us were taught to think in terms of a- 
levels and P-values, and these numerical values 
made it seemingly easy to judge importance auto- 

matically (even if it was statistical rather than bio- 

logical importance; Yoccoz 1991). The new chal- 

lenge asks one to evaluate the quantitative 
evidence directly in terms of the biological sci- 
ence. For example, if the evidence ratio between 
models of compensatory and additive mortality 
was 150 (corresponding to a Ai value of about 10), 
nearly everyone would interpret this evidence as 

strong, whereas an evidence ratio of only 2.7 (cor- 
responding to a Ai value of 2) would not be 

strong at all. Some evidence is equivocal (Royall 
1997), such as an evidence ratio of 7.4 (corre- 
sponding to a Ai value of 4); here, there is no 

attempt at an automatic dichotomy (which is 

really a decision). Instead, a strength of evidence 
is given and open to biological interpretation; we 
should not expect everyone to agree on the same, 
exact interpretation of the evidence (just as juries 
often are not unanimous in judicial proceedings). 

Science is about evidence and conclusions, not 
so much about decisions (see e.g., Tukey 1960). 
The traditional Neyman-Pearson system of testing 
null hypotheses essentially was embedded in a 

decision-making context, not a weight of evi- 
dence context. Some people still misuse P-values 
as if they were a proper weight of evidence (Sell- 
ke et al. 2001). The usefulness of P-values is quite 
limited, and we continue to suggest that these 

procedures be euthanized. 

GOF Should Be Assessed Using 
the Global Model 

While computer software often computes a 
goodness-of-fit test for each model, this assess- 
ment should be done primarily for the global 
model or the most highly parameterized model. 
If the global model fits, then criteria based on 
K-L information will not select a parsimonious 
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model that does not fit (BIC does not have this 
property). 

Failure to Provide All the Needed Information 
We suggest presenting a table to show the value 

of the maximized log-likelihood [log(&)], num- 
ber of estimable parameters (K), the appropriate 
information criterion used (e.g., QAICc), 

the dif- 
ferences (Ai), and the Akaike weights (wi) for 
each model in the Results section. Failure to pro- 
vide this information limits certain kinds of 
interpretation and understanding. For example, 
consider model A with K parameters and model 
B with K + 1 parameters where A2 is approxi- 
mately 2. There are cases where the fit, as mea- 
sured by the log(L) value, remains nearly 
unchanged for model B; thus, the only reason 
model B seems competitive is that it is within 2 
units of the best model. Lacking knowledge of 
the maximized log-likelihood value one might 
conclude incorrectly that model B was a close 
competitor. None of the 6 papers using informa- 
tion-theoretic approaches in the January 2002 
issue of The Journal of Wildlife Management (vol. 66, 
no. 1) provided all the information needed for 
careful review and understanding. 

Relatively few published papers seem to recog- 
nize that inference is based on Kullback-Leibler 
information (Kullback and Leibler 1951) and 
that various information criteria (i.e., AIC, AICC, 
and 

QAICc) 
are estimators of relative K-L infor- 

mation (Burnham and Anderson 2002). While 
not a central point, it seems preferable to keep in 
mind that relative K-L information is the funda- 
mental issue and that there are simple ways to 
compute estimates of this quantity for each 
model in the set. A single AICc 

value is useless; it 
is the comparison of 

AICc 
values across the 

approximating models in the set that is relevant. 

OUTRIGHT MISTAKES 
Several misuses of the information-theoretic 

methods are merely mistakes; we offer 5 sugges- 
tions here. 

The Incorrect Number of Estimable 
Parameters, K 

In least squares regression it is easy to forget to 
include the estimate of 02 in K. In these cases, K 
should reflect the intercept (Po), the slope para- 
meters (Pi), and the residual variance a2. In mod- 
eling count data where a simple variance infla- 
tion inflation factor is used, K should include the 
estimation of c. In logistic regression, K should 

include the intercept and slope parameters (i.e., 
there is no (;2; instead, binomial variance is 
assumed). If a variance inflation factor (c) is used 
in logistic regression, this parameter must be 
counted in determining K. 

Use of AIC Instead of AICc 
A very common problem is the use of AIC when 

the sample size and/or number of estimable para- 
meters < 40 for the model with the largest K This 
error is often caused by computer software where 
only AIC values are computed and printed. How- 
ever, even books on statistical methods written by 
statisticians perpetuate the use of the wrong crite- 
rion. For instance, Leonard and Hsu (1999:23-26) 
provide an example where AIC is used when the 
sample size is only 16. They did not even report 
results from BIC because they felt that the sample 
was too small. When sample size is small or the 
number of parameters is large, it is critical to use 
the small sample criteria, 

AICc 
or 

QAICc. 
After a 

proper criterion has been established (e.g., AICc), it should be used for all the models in the set. 

Using AIC in All Subsets Selection 
Several software packages allow AIC to be used 

in all subsets selection in which all combinations 
of predictor variables are used automatically. This 
unthinking procedure represents a "just-the-num- 
bers" approach and violates the entire spirit of the 
information-theoretic approach. We should avoid 
believing that a computer alone can find the impor- 
tant relationships automatically from numerous 
models. The biology and underlying science 
should drive the hypotheses and modeling, rather 
than letting the computer analyze all possible 
models (even if a good selection criterion is used). 

Few investigators realize the issues in interpret- 
ing correctly the output from a stepwise regres- 
sion on a large number of variables (Miller 1990). 
For example, a common misuse is to assume that 
the variables in the selected model are impor- 
tant, while other variables are unimportant. 
Model selection uncertainty and bias are major 
issues in good data analysis when models with 
more than 3-5 parameters are estimated and 
sample size is small to moderate. 

Of all the possible models, the stepwise proce- 
dures fit only some of these models (and often a 
small number). Of those fit, even fewer model 
results are given explicitly. For example, with 13 
predictor variables there are 8,192 possible mod- 
els. However, even with sample sizes in the hun- 
dreds, most stepwise routines provide results for 
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only, say, 3-8 models (i.e., the best model with 1, 
2, ..., 8 variables, respectively). This output is very 
misleading to the investigator as model selection 

uncertainty may appear minor. In fact, all models 
were under consideration, subject to fitting. 
While stepwise procedures can be viewed as com- 

putationally efficient, they also are poor in select- 

ing a model with good statistical properties and 

misleading in terms of model selection uncer- 

tainty (McQuarrie and Tsai 1998:427-429). 

Information Criteria Are Not Comparable 
Across Different Data Sets or Different 
Response Variables 

Two mistakes are more subtle to recognize. 
First, one cannot validly compare an information 
criterion across different data sets. The data must 
be considered fixed, and then models in the set 
can be compared and ranked. Some multiple 
regression software packages treat missing data in 

ways that invalidate the proper comparison of 
AIC values. Second, within the model set, it is not 

proper to let the response variable change. For 

example, 3 models of the response variable y can- 
not be compared with 4 models of the response 
variable log (y). Instead, all the models in the set 
must use the same response variable. 

Failure of Numerical Methods to Converge 
Typically, parameter estimates derived by the 

method of maximum likelihood are calculated 

numerically using a computer. Such computer rou- 
tines usually are highly sophisticated but can fail to 

converge on the global maximum of the log-like- 
lihood function. There are a host of technical 
reasons why the iterative routine might fail to 

converge, but generally, notice of such failure is 

provided in the output results. If the numerical 
method did not converge, then the maximum of 
the log-likelihood is not found and the various 
information criteria will be incorrect. In these 
cases, it often may be best to consult with an expert 
to determine the cause of the convergence failure. 

SUMMARY 
Information-theoretic methods can be mis- 

used-we hope to see their misuse minimized. 
We encourage reading and study to understand 
these approaches and their proper application. 
For example, if prediction is the central issue, 
formal inference should be based on model aver- 

aging, and this simple method has many impor- 
tant advantages. If the science question is simple, 
sample size is large, and effects are large, many 

data analysis methods will allow decent infer- 
ences. In other cases, the newer methods stand 

apart in terms of good statistical properties of the 
selected model (e.g., bias, precision, achieved 
confidence interval coverage, prediction error). 

One of the many criticisms of the null hypothe- 
sis testing approach and the associated a-levels 
and P-values was the incredible misuse of these 

procedures (Anderson et al. 2000). Such misuse 
is hardly the fault of the method; still, the misuse 
was nearly universal and this further hurt the 

credibility of the approach. Information-theoret- 
ic approaches are much more relevant in provid- 
ing strong inference than traditional approaches 
so often taught in beginning classes. These new 

approaches arise strongly from the science of the 
issue and provide several pieces of quantitative 
evidence (e.g., ranking of all models, evidence 
ratios), rather than an arbitrary dichotomy 
(reject or not). We hope that the suggestions we 
offer both limit misuse of the new information-the- 
oretic approaches as well as encourage investiga- 
tors to use the full power of these approaches 
(e.g., formal statistical inference based on multi- 

ple models). 
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