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Anthropogenic ecosystem disturbance and the
recovery debt
David Moreno-Mateos1,2,3, Edward B. Barbier4, Peter C. Jones5, Holly P. Jones5,6, James Aronson7,8,

José A. López-López9, Michelle L. McCrackin10, Paula Meli3,11, Daniel Montoya12,13 & José M. Rey Benayas3,14

Ecosystem recovery from anthropogenic disturbances, either without human intervention or

assisted by ecological restoration, is increasingly occurring worldwide. As ecosystems

progress through recovery, it is important to estimate any resulting deficit in biodiversity and

functions. Here we use data from 3,035 sampling plots worldwide, to quantify the interim

reduction of biodiversity and functions occurring during the recovery process (that is, the

‘recovery debt’). Compared with reference levels, recovering ecosystems run annual deficits

of 46–51% for organism abundance, 27–33% for species diversity, 32–42% for carbon cycling

and 31–41% for nitrogen cycling. Our results are consistent across biomes but not across

degrading factors. Our results suggest that recovering and restored ecosystems have less

abundance, diversity and cycling of carbon and nitrogen than ‘undisturbed’ ecosystems, and

that even if complete recovery is reached, an interim recovery debt will accumulate. Under

such circumstances, increasing the quantity of less-functional ecosystems through ecological

restoration and offsetting are inadequate alternatives to ecosystem protection.
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F
ew ecosystems on Earth are undisturbed by people1 and
many degraded ecosystems are in the process of recovering
worldwide2–4. Although in most cases the recovery process

is without human intervention, societies spend billions of
dollars annually to restore ecosystems5–7. Supporting recovery
without intervention and repairing disturbed ecosystems are
crucial to regain lost biodiversity, ecosystem functions and
services provided to society8–10. Assessments of anthropogenic
disturbances have shown global losses11 in biodiversity,
whereas the disturbance is still active and time lags exist in its
response12,13 (Fig. 1). However, as ecosystems recover after the
disturbance ceases, it is less clear to what extent they continue to
endure deficits in biodiversity and functionality.

Here we quantify the interim reduction of biodiversity and
biogeochemical functions occurring during ecosystem recovery,
which we call the ‘recovery debt’. This metric measures the per
annum amount that an ecosystem function or biodiversity is
reduced during the recovery process after disturbance ceases
(Fig. 1). The recovery debt is a useful indicator of the magnitude
of ecosystem degradation, because even if ecosystems eventually
recover their biodiversity and functions, there may be a long
period of time until complete recovery is achieved. During the
recovery debt period, shortfalls in biodiversity and ecosystem
functionality will affect the quantity and quality of ecosystem
services provided by the recovering systems.

Results
Meta-analysis descriptors. We found data from 3,035 sampling
plots from 348 published primary studies covering a total study
area 4550,000 km2 (Supplementary Figs 1 and 2, Supplementary
References and Supplementary Table 1). Data collection was
restricted to six major ecosystem categories (forests, grasslands,
wetlands, rivers, lakes and marine ecosystems), eight anthro-
pogenic disturbance categories (agricultural transformation,
logging, mining, invasive species, eutrophication, hydrological
disruption, overfishing and oil spills or combinations of them)
and four recovery metrics (organism abundance, species richness,
carbon cycling and nitrogen cycling). We also included hurri-
canes as an example of a natural disturbance for reference.

The outcome measures in the database related to the recovery
metric ‘organism abundance’ included measurements of density,

biomass, cover and basal area of trees, shrubs, grasses and algae,
and measurements of density of birds, fish and invertebrates. The
outcome measures related to the recovery metric ‘diversity’
included mainly measurements of species richness and diversity
indexes, such as Shannon, Simpson and evenness indexes.
Biogeochemical outcome measures related to the cycling of
carbon and nitrogen contain both pools and fluxes of these
elements in soil, litter and the water column. We amassed 3,816
outcome measures for which two measures of recovery were
collected over time and compared with a reference value. The
reference value was taken from either the same ecosystem before
degradation occurred or a nearby comparable ecosystem that was
undisturbed.

Recovery debt estimations. A per annum recovery debt was
found in all the categories in which data were available (Fig. 2).
We found that ecosystems undergoing recovery had about half of
abundance (46–51%, 95% confidence intervals of the mean effect
size) and one-third of species diversity (27–33%) compared with
reference values (Fig. 2a), over 22 and 16 years (average time
since recovery started), respectively, following a disturbance. This
pattern was markedly consistent across ecosystem categories,
which did not show strong moderating effects on our models
except for the abundance debt (Supplementary Table 2). How-
ever, we did find strong moderating effects in the disturbance
categories studied (Fig. 2b). These results were not affected by the
organism type (Supplementary Figs 3 and 4).

Carbon and nitrogen debts (32–42% and 31–41%, respectively)
did not differ after 24 and 14 years of recovery, respectively.
Ecosystems affected by eutrophication showed the highest
organism abundance debts (52–63%; Fig. 2b) and nitrogen debts
(35–51%) after 29 and 6 years, respectively. Formerly mined sites
showed the highest diversity (32–45%) and carbon (39–62%)
debts after 11 years (Fig. 2d). In ecosystems recovering from
hurricanes, we found the lowest diversity, carbon and nitrogen
debts after only two to seven years of recovery.

Discussion
The consistent decrease in diversity and abundance found in
recovering ecosystems may, at first glance, contrast with other
studies showing that a-diversity does not change through
time14,15. However, our recovery metric ‘diversity’ includes
other diversity measurements that account for differences in
abundance, which could be responsible for this contrast.
Nonetheless, our results agree with the worst scenarios
estimated for the effects of land-use change on local species
richness of plants and animals11, and with the reanalysis of
references14,15, showing that spatial and temporal biases in these
meta-analysis do not support a no net change of a-diversity16.
This highlights that species assemblages could be more resilient to
anthropogenic disturbance than populations, even when most
individuals are lost.

Although nitrogen recovery debts could be expected to be
lower than carbon debts because of faster turnover rates of
nitrogen10,17, our results suggest similar impacts of
anthropogenic disturbances in the cycling of both elements.
This adds evidence to other large-scale recovery estimations that
found similar recovery patterns for the cycling of carbon and
nitrogen18,19. Our results also suggests that mining and water
pollution, caused by agriculture and urban uses, could be not only
major drivers of biodiversity, and ecosystem function and service
loss20,21, but also major drivers preventing their recovery. The
fact that hurricanes were responsible for the lowest recovery debts
suggests that the negative effects of anthropogenic disturbances
could cause more pervasive damage than some natural
disturbances.
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Figure 1 | Measurement of the recovery debt. The light shading represents

the total amount that an indicator of ecosystem integrity (outcome

measure, for example, biodiversity or an ecosystem function) is reduced

during recovery after a disturbance ceases, that is, the recovery debt. The

dark shading represents our estimation of the recovery debt between the

time when the measurement of the outcome measure started (Ys, ts) and

when the measurement ended (Ye, te). The dashed line (Yr) represents the

reference goal value existing in the pre-disturbance state or in another

ecosystem with similar conditions that remained ‘undisturbed’.
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Caution must be exercised on the interpretation of these results
for three reasons: first, our results are based on a limited number
of outcome measures of biodiversity and biogeochemical
functions (Supplementary Table 1) selected to reduce the
heterogeneity of data commonly associated with large meta-
analyses. Consequently, our selected metrics of recovery are likely
to be underrepresenting the complexity of ecosystems and thus

are conservative estimates of the complete magnitude of the
recovery debt. Second, we detected substantial between-study
heterogeneity in the meta-analysis, which could involve higher
variance than the one we included in our models. Third, we have
combined heterogeneous outcome measures including indicators
of diversity of different life forms or different measures of carbon
cycling and storage. Although these combined indicators may be
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sometimes difficult to interpret, constructing such recovery
metrics allows us to provide a consistent indication of the
magnitude of ecosystem degradation from disturbance followed
by recovery across a wide range of global ecosystems and
anthropogenic disturbances.

Even under the assumption that ecosystems will eventually
recover to their ‘reference’ values at longer time scales than are
included in this study, our results reveal a consistent pattern: the
interim per annum debt of abundance, diversity, and carbon and
nitrogen cycling of degraded ecosystems across the globe is
pervasive and continues for decades or more. Our findings
support studies showing that complete recovery may not be
achievable during decades or more10,22,23 and similar outcomes
might occur globally across multiple disturbances. Beyond
previous estimates of the effects of disturbance on biodiversity
loss and its time lags11,13, these findings show that during
recovery ecosystems worldwide have less plants and animals, and
lower biodiversity and functions compared with undisturbed
systems. In particular, recovering ecosystems may not only have
lower diverse than undisturbed ones, but also may be much less
populated.

These results suggests caution in pursuing ecosystem manage-
ment strategies that exclusively rely on restoration or recovery to
reverse biodiversity and functional loss24–27. This is particularly
relevant in biodiversity offsetting strategies that allow ecosystem
degradation if compensated through eventual restoration28–30.
Given the lack of complete recovery, any further degradation,
even if compensated by restoration, would increase the overall
recovery debt of ecosystems. This would also suggest
reconsidering restoration policies that attempt to fulfill ‘no net
loss’ principles by simply increasing the mitigating or offset ratio
so that more area of less-functional ecosystems are created30. If
the restoration debt is large and sustained over several decades,
then increasing the quantity of less-functional ecosystems is poor
compensation for the overall intervening loss in ecosystem
biodiversity and functions. Under such circumstances, ecological
restoration and offsetting are inadequate alternatives to ecosystem
protection.

Methods
Database construction. The database is the result of merging two previously
published meta-analytical databases8,31 with a new and extended database. To
create the new database, on May 2013, we did a simultaneous search in Web of
Science and Google Scholar using the search chain ‘(agriculture OR damming
OR eutrophication OR hurricane OR invasive species OR logging OR mining
OR multiple OR ‘oil spill’ OR overfishing) AND (recovery OR resilience)’ restricted
to the research areas ‘Agriculture, Biochemistry molecular biology, Environmental
sciences ecology, Physiology, Toxicology, Biodiversity conservation, Developmental
biology, Reproductive biology, Plant sciences, Geology, Fisheries, Forestry,
Water resources, Marine freshwater biology, Microbiology, Parasitology,
Entomology, Behavioral sciences, Geography, Zoology, Cell biology, Mycology,
Paleontology, Archaeology, Demography, Physical geography, Evolutionary
biology, Oceanography, Parasitology, and Remote sensing’. The search yielded
approximately 74,000 results. After a first title and abstract screening, we selected
972 relevant articles (see Supplementary Fig. 2 for PRISMA flowchart32). From
these studies, we selected those that (i) were actually related to ecosystem recovery,
(ii) had at least three measurements of recovery in time, (iii) had a clear reference
system (either in the pre-disturbance state or an ‘undisturbed’ ecosystem with
similar environmental conditions), (iv) were related to any of the nine disturbance
categories, (v) reported time since recovery started and (vi) included measures of
organism abundance, species diversity and cycling of carbon and nitrogen. We only
considered these five recovery metrics to reduce the inherent heterogeneity of the
database and provide robust results, particularly in the case of biogeochemical
functions.

Our selection yielded 278 primary studies. From these studies, we extracted
3,468 comparisons of measurements of recovery between reference and recovering
ecosystems from tables, figures and text of the paper. Outcome measures extracted
from the selected studies were already averaged across several sampling plots in
most cases. We used the free software DataThief III33 to extract data from the
figures. Following the same selection criteria, we added 253 outcome measures
from the database of Rey Benayas et al.8 and 95 from the database of Meli et al.31

totaling 3,816 outcome measures. We included each outcome measure separately,
instead of averaging them per study, because we assumed independent responses of
each parameter to the recovery process.

To ensure the quality of the data in the new data set, a protocol for data
extraction was created and each person who entered data was trained with three
manuscripts, to ensure accurate numbers were entered and accurate categorizations
were made using the same form. H.P.J. met with data enterers bi-weekly
throughout the data collection process to answer questions about conflictive data,
data entry selection and spot-checked data entered throughout the process to
ensure accuracy. At these meetings, data enterers had the opportunity to raise
ambiguities or other issues found during the extraction process and any
disagreements were resolved by consensus. Lastly, H.C.J., P.C.J. and D.M.M.
checked each category assigned per study before the data were analysed, including
the data sets from Rey Benayas et al.8 and Meli et al.31.

Studies used field-based measurements to assess ecosystem recovery of various
outcome measures after disturbances. The outcome measures related to organism
abundance included measurements of density, biomass, cover and basal area of
trees, shrubs, grasses and algae, and measurements of density of birds, fish and
invertebrates. The outcome measures related to diversity included mainly
measurements of species richness and diversity indexes such as Shannon, Simpson
and evenness indexes. Biogeochemical outcome measures related to the cycling of
carbon and nitrogen contain both pools and fluxes of these elements in soil, litter
and the water column. To test for potential differences between different kinds of
measures within our metrics, we have estimated average effects sizes for
subcategories within the metrics ‘diversity’, ‘carbon cycling’ and ‘nitrogen cycling’.
In the metric diversity, we defined subcategories ‘species richness’ and ‘diversity
indexes’, this last one including Simpson, Shannon and evenness indexes. In the
metrics carbon cycling and nitrogen cycling, we compared subcategories ‘pools’
and ‘fluxes’. The subcategory pools (n¼ 414 for carbon and n¼ 212 for nitrogen)
mostly included concentration of carbon or organic matter in soils or litter
measured in weight units per volume units or weight units per area units. Fluxes
(n¼ 53 for carbon and n¼ 38 for nitrogen) measured respiration, mineralization,
accumulation, immobilization or decomposition rates in weight units of carbon or
nitrogen per weight unit of soil or litter and time.

Species richness and diversity indexes had a marginal difference in their
confidence intervals, richness 22.6–28.6% and diversity 28.8–34.6%. Even smaller
differences were found between the pool and stock subcategories of carbon,
stock 32.2–42.1% and pulse 37.4–47.4%, and nitrogen, stock 32.1–41.6% and pulse
38.9–48.8%. The largely skewed sample sizes between all subcategories did not
allow to perform reliable Wald’s tests. Although Mann–Whitney tests are not
best adapted to test for significant differences in meta-analytic data, we found
nonsignificant (P40.1) differences in any the subcategory tests performed.
These marginal differences in the average effect sizes of the selected subcategories
suggested that no major differences should be expected in the behaviour of
each subcategory within each metric. Splitting these metrics into subcategories
involved having substantially less robustness in the main analysis that prevented
having reliable comparisons in most of the categories within the moderators
ecosystem type and degrading factor. Thus, metrics were maintained undivided.

For each outcome measure, we also collected data on the climatic region
according to the Köppen–Geiger climate classification system34, number of sites
undergoing recovery, number of reference sites, area of the study site, ecosystem
category (forest, grassland, wetlands, river, lake or marine), disturbance category
(one of the nine factors used in the search or multiple when more than one
category was reported), disturbance duration and time since recovery started.
Except in studies monitoring land cover change (n¼ 3), the size of these plots
ranged from o1 m2 to a few hectares. Even though the area of the study site was
only reported in a limited number of studies (Supplementary Table 1), we collected
these data to approximate the spatial representation of our results.

Regarding ecosystem category, forests included all ecosystems where trees were
dominant, wetlands included both freshwater and coastal aquatic ecosystems
according to the Ramsar Convention definition35, grasslands included ecosystems
where grasses and forbs were dominant and marine ecosystems included benthic
and pelagic ecosystems from the shoreline to 4100 m deep. The number of sites
undergoing recovery included the number of plots being measured but not
replicates within plots. In the case of chronosequences, we only recorded data for
the start and end time points. The total area resulted from adding the areas of all
the study sites that were reported and thus our estimated total accumulated study
area is a conservative estimate. As previous studies have reported that restoration
approach (that is, passive versus active restoration) does not generate significantly
different responses in wetlands over the long term36, nor in other ecosystem
types22, we have excluded this factor. The disturbance duration was reported in 217
studies and ranged from o1 day to 379 years (mean±s.e., 29±3.1 years;
median¼ 6). The time since restoration started ranged from o1 day to 380 years
(mean±s.e., 13±1.9 years; median¼ 9).

Weighting. As is commonplace with ecological meta-analyses8,10,37,38, the data
necessary to determine variance with any confidence were not available in the
majority (79% in our case) of outcome measures. In addition, meta-analysis theory
suggests that when among-study variation is much higher than within-study
variation, parameter estimates from random-effects models are nearly the same as
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those obtained with unweighted models37–40. Nevertheless, unweighted models
may yield confidence intervals that are too narrow, as they do not account for the
within- and among-study variation components that are accounted for in random-
effects models. In our meta-analysis, we used the subset of studies reporting
variances (or enough information to calculate them) and computed the I2

index41 separately for each outcome variable. The values of I2 were over 90%
(range 93.74–99.64%), suggesting that among-study heterogeneity accounted for
most variation and that random-effects weights across effect sizes would be
expected to be very similar. Then, we used this subset of the database to estimate
the average within-study variances as an arithmetic mean of the available
within-study variances for each outcome variable and used the obtained values as
approximate within-study variances for the remaining effect sizes, which had that
information missing. This strategy allowed us to fit random-effects meta-analytic
models for each outcome category.

Quantification of the recovery debt. Analytically, the recovery debt for a
recovery process that takes place over a period of time T (usually denoted in years)
can be calculated using Xs (the value of the relevant ecosystem metric at the start of
the recovery phase, at time t¼ 0), Xe (the value of the same metric at the end of the
recovery period after a finite period of time, t¼T) and Xr (the reference value of
the same metric in a reference system, either in the pre-disturbance state or in an
‘undisturbed’ equivalent system; Supplementary Fig. 5). The transition between Xs

and Xe is unknown but likely to be nonlinear42, which was approximated using an
exponential function, f(x)¼ ert, where r is constant and t is the time between Xs

and any point between Xs and Xe. We estimated the recovery debt for each of the
selected outcome measures using both an exponential and a linear approximation
and found small differences between the resulting recovery debt estimations
(Supplementary Fig. 6), which led to similar conclusions.

There are five scenarios in which the recovery debt can be calculated
(Supplementary Fig. 3). The value of the recovery debt is the area existing between
the Xr (reference value of the outcome measure) line and the line connecting Xs

(starting value) and Xe (end value). According to Supplementary Fig. 5, in scenarios
a (n¼ 1,993) and c (n¼ 446), the recovery debt area during the time period (0, T)
is XrT–AUC (area under the curve, green shading). There were many cases where
Xs and Xe were higher than Xr or where Xs 4 Xr 4 Xe, represented in scenarios b
(n¼ 424) and d (n¼ 953). Starting values exceeding reference values is commonly
found for abundance measurements in early recovery stages and also for nitrogen
concentration in aquatic ecosystems undergoing eutrophication. In these cases, we
assumed that response values above the reference value represent negative effects,
and thus Xs and Xe were inverse-transformed using the formula Zs;e ¼ Xr

Xr
Xs;e

. In the
particular case where Xr¼ 0, scenario e (n¼ 236), we used the approximation
Zs;e ¼ X2

r
Xs;e

. This allowed us to compare those cases with the rest of the database and
to set a realistic recovery threshold of 100%.

The AUC was calculated as Xs erT¼Xe, it follows that lnerT ¼ rT ¼ ln Xe
Xs

and
therefore r ¼ 1

T lnðXe
Xs
Þ. The AUC is then AUC ¼

R T
0 ert dt, where r is defined above.

After integration, AUC ¼ 1
r XserT � 1

r Xs ¼ 1
r Xe �Xs½ �.

It follows that recovery debt (RD) that occurs over the time period (0, T) is:

RD ¼ XrT �AUC ¼ XrT � 1
r

Xe �Xs½ �

It is noteworthy that as T varies for each outcome measure, it is preferable to
express recovery debt in per annum terms. That is, recovery debt per annum is:

RDt ¼ RD
T
¼ Xr �

1
rT

Xe �Xs½ �

In scenarios c and d, a negative exponential function f xð Þ ¼ e� rt is assumed and
used to estimate the recovery debt. In scenario e, RDt ¼ AUC

T .
Given the heterogeneity of the outcome measure measured, we homogenized

the values of RDt to compare them. We did so by estimating the recovery debt ratio
as a percentage RDr %ð Þ ¼ 100� RDt

AbsðXrÞ, where Abs(Xr) is the absolute value of Xr.
In a some cases (n¼ 250), the value of RDt4Xr and, following the same principle
used to estimate Zs,e, the recovery debt value was estimated as
RDr %ð Þ ¼ 100� AbsðXrÞ

RDt :
The same approach was used to estimate the recovery debt value with the linear

approximation. To estimate the area representing the recovery debt value, we used
a linear function that merges any two points with positive slope. After calculation,
the resulting formula is RDt ¼ Xr� 0:5� Xe þXsð Þ. We also used a linear function
that merges any two points with negative slope and after calculation the resulting
formula is RDt ¼ Xr � 1:5�Xe þ 0:5�Xs . Finally, when Xr¼ 0, we approximated the
recovery debt ratio as RDr %ð Þ ¼ 100� 1�RDtð Þ.

The presence of zero values in the outcome measures could produce abnormally
high or low values of our recovery debt estimations43. This issue occurred in two
situations: (i) when Xr¼ 0 (scenario e) and (ii) when Xs or Xe¼ 0 (n¼ 628). To
select the best approach to tackle this issue, we tested nine different strategies
(Supplementary Table 3) to calculate the r parameter required to estimate the
recovery debt. From them, six included the use of a constant value added to the
numerator and denominator (that is, 0.01, 0.05, 0.1, 0.5 and 1) of the formula used
to calculate r and four included the use of an amount specific for each outcome
measure. These specific amounts were (i) an amount of the same order of
magnitude than Xs and Xe located at the beginning of the order of magnitude (for
example, 0.1, 1 and 10), (ii) the same than (i) but with the median magnitude (for

example, 0.5, 5 and 50), (iii) an amount one order of magnitude larger than Xs and
Xe located at the beginning of the order of magnitude and (iv) the same as (iii) but
with the median magnitude. For example, if Xs¼ 0.81, the four amounts were 0.1,
0.5, 1 and 5, respectively. We compared the data distribution (median and 95%
confidence interval) of each strategy with the rest of the database without the zero
values using Mann–Whitney rank sum tests. Only the approach using an amount
of the same order of magnitude than Xs and Xe at the median magnitude had a
nonsignificant data distribution (P4 0.05) different from the rest of the database
and thus this was the strategy we used in the two situations where we needed to
address zero values. This strategy was not used in the rest of the database not
affected by zero values. To further ensure that there were no differences between
this approach and an approach that simply excludes all zero values, we compared
the recovery debt excluding and including outcome measures with zero values and
we did not find qualitative differences that could lead to different conclusions
(Supplementary Fig. 7).

Statistical approach. We ran sensitivity analyses using generalized linear models
with a variety of probability distributions (that is, normal, log-normal and
Gamma), link functions (that is, identity and log) and rescaling the data to
determine the best modelling approach for this analysis. Through all of the models,
the general mixed model with normal distribution and unscaled data was the most
parsimonious and the best fit to the data in terms of Akaike information criteria
(AIC) and likelihood ratio tests, and thus we continued to use a meta-analytic
mixed model approach based on the normal distribution. We used the multivariate,
mixed model function rma.mv() from the metafor package44 to construct three-
level meta-analytic models in R 3.0.1 (ref. 45). We used three-level models, because
our units of analysis (recovery debt) were clustered within effect sizes and those
effect sizes were clustered within studies.

Following Mergensen et al.37, ‘homogeneity tests are usually not undertaken
and are not meaningful, in cases where a random-effects model has been used for
conceptual reasons and/or because the meta-analyst recognizes in advance that
there is substantial between-study variation’. Therefore, we did not carry out a
heterogeneity test, although we estimated the I2 index for each outcome category
and the resulting values show evidence of substantial heterogeneity between study
results, which is accounted in our models as explained in the ‘Weighting’ section.
We divided the data into four subsets based on the type of metric that was
measured: abundance, diversity, carbon cycling and nitrogen cycling. We
investigated the effect of moderators on our models with a three-step approach44.
We first fit a three-level meta-analytic model without moderators. Then, we tested
the significance of the moderators using the omnibus test of moderators (QM test).
Third, we fit a model without intercept to get the effect size estimates and
confidence intervals for each category of the moderator variable. We estimated the
overall effect sizes and confidence intervals of recovery debt in each subset without
any moderating effects from the null models.

Data availability. Data including the database used and the codes generated in R
are provided in the Dryad Digital Repository, doi:10.5061/dryad.t5c97.
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