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Summary

1. Allometric scaling of net primary production (NPP) with plant biomass (B) is important to eco-
logical carbon dynamics and energetics. Metabolic theory predicts a nonlinear power law for NPP
scaling, based on fractal vascular systems, resulting in a linear model when using log NPP/log B
axes that are standard in allometry. Alternatively, two other hypotheses predict nonlinear models for
log-transformed data, with potential tipping points. Size-based competition may cause a quadratic
curve as larger plants limit NPP by smaller plants. More inclusively, the plant adaptive strategies
hypothesis predicts a sigmoidal curve to represent those same competitive effects, plus stress and
ruderal adaptations that maintain relatively low NPP in habitats that are abiotically limiting or dis-
turbed.

2. We evaluated all three hypotheses for terrestrial vascular plants, using information theoretic
model selection based on the Akaike Information Criterion (AICc). Published data (N = 709) were
organised in subsets according to reported organisational level and plant growth form. Alternative
curves were compared for a general model (using all data) and per subset. Potential tipping points
were estimated using segmented regression.

3. The plant adaptive strategies hypothesis was supported in general (AICc weight = 1-00) and via
internal consistency for five of six subsets (86% of data). Competition was supported as affecting
NPP at greater B, where quadratic and sigmoidal models often coincided. Only non-woody assem-
blages most plausibly fit a power law model, perhaps related to sparse data at lowest B.

4. Synthesis. Adaptive strategies and corresponding environmental conditions appear to constrain
terrestrial net primary production scaling relative to metabolic theory’s ideal. Moreover, tipping
points in general nonlinear net primary production scaling (at c. 38 and 360 g m 2 B) indicate
thresholds for rapid changes in net primary production given changing B that occurs via changing
climate, human appropriation and land use.

Key-words: biomass, competition, CSR theory, metabolic theory, nonlinear allometry, NPP,
ruderal, stress-tolerant

Introduction

Net primary production (NPP; g dry mass m > year ') is a
summary measure of plant growth, which drives energetics
and carbon cycling for most of the world’s ecosystems, and is
the source of many renewable resources and a vital pathway
to reduce global atmospheric CO, levels. Though sometimes
considered an ecosystem property, NPP is also measured for
other hierarchical levels of organisation (i.e., populations,
communities and biomes). One way to estimate NPP is to use
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an allometric scaling relationship (hereafter called NPP scal-
ing) where NPP is a function of biomass (B; g dry
mass m~2). Allometry is the study of relationships among dif-
ferent measures of organisms, typically using body size as a
predictor. Logarithmic transformations are used for multiple
reasons, including a theoretical expectation for multiplicative
growth and practical compliance with regression assumptions
(Kerkhoff & Enquist 2009; Jenkins 2015). A power law has
been the sole method to describe NPP scaling and generates a
linear model in log-log space (e.g., Kerkhoff & Enquist 2006;
Coomes, Lines & Allen 2011; Lin et al. 2013; Michaletz
et al. 2014; Hatton et al. 2015; Jenkins 2015).
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Two problems exist for NPP scaling and are addressed here.
First, multiple working hypotheses to explain the general NPP
scaling shape have not been empirically evaluated. Rather, all
NPP scaling research has used a single function, the power law
model based on the Metabolic Theory of Ecology (Brown et al.
2004a,b), even if coefficients have been predicted to shift due
to other factors (e.g., Kerkhoff & Enquist 2006; Coomes, Lines
& Allen 2011; Lin et al. 2013; Michaletz et al. 2014; Hatton
et al. 2015; Jenkins 2015). As fruitful as this research has been,
it is not yet based on strong inference because alternative mod-
els — based on alternative hypotheses — have not been compared
(Platt 1964; Burnham & Anderson 2002; McGill, Maurer &
Weiser 2006). Second, a general NPP scaling model (i.e.,
across all systems and the full range of NPP and B) does not
yet exist. Instead, separate NPP scaling models exist for sepa-
rate systems (e.g., forest stands, grasslands), all using power
laws but reporting model coefficients unique to each data set
(Kerkhoff & Enquist 2006; Coomes, Lines & Allen 2011; Lin
et al. 2013; Michaletz et al. 2014; Hatton et al. 2015; Jenkins
2015). A general NPP scaling model would be fundamentally
valuable for ecology, for which even the existence of a unifying
theory and general, predictive models has long been debated
(e.g., Hairston 1989; Peters 1991; Lawton 1999; Brown et al.
2004b; Dodds 2009).

Three hypotheses help to predict the shape of allometric
scaling for NPP and are summarised below in order of
increasing complexity. Because two of the hypotheses predict
nonlinear NPP scaling, tipping points are also briefly intro-
duced (Scheffer er al. 2009; Hughes et al. 2013; Reyer et al.
2015; van Nes et al. 2016).

METABOLIC THEORY OF ECOLOGY

The Metabolic Theory of Ecology (MTE) has been an impor-
tant basis for allometric NPP scaling, and is based on an
ideal, fractally structured system (Enquist, Brown & West
1998; West, Brown & Enquist 1999; Niklas & Enquist 2001;
Brown er al. 2004a; Enquist, West & Brown 2009; West,
Enquist & Brown 2009). According to MTE, a power law
(NPP = aB") is expected for NPP scaling, where a linear
model (i.e., log NPP = a + b(log B)) describes the relation-
ship in log-log space (Fig. 1; West, Enquist & Brown 2009;
Enquist, West & Brown 2009).

In part because MTE represents ideal systems and has been
controversial (Isaac & Carbone 2010; Glazier 2014, 2015),
MTE-based allometric scaling research has rapidly evolved to
recognise that multiple predictor variables also apply. How-
ever, MTE-based analyses continue to use only the power law
model described above (e.g., Kerkhoff & Enquist 2006; Agut-
ter & Tuszynski 2011; Coomes, Lines & Allen 2011; Glazier
et al. 2011; Lin et al. 2013; Michaletz et al. 2014; Glazier
2015; Hatton et al. 2015; Jenkins 2015). This history is anal-
ogous to that for biogeographical species-area relationships.
Both subjects initially focused on bivariate power laws, fol-
lowed by debate on an ideal (or canonical) power law expo-
nent b, and then recognition that coefficient a and other
predictors are important to their respective response variables

log NPP

log B

Fig. 1. Three hypothesised net primary production (NPP) scaling
models. The metabolic theory of ecology predicts that an ideal system
will have a linear model in log-log space (grey line; West, Enquist &
Brown 2009; Enquist, West & Brown 2009). The asymmetric size-
based competition hypothesis (Kerkhoff & Enquist 2006) is inter-
preted here as predicting a quadratic function (dashed line), where
NPP is constrained at greater B. Universal Adaptive Strategy Theory
(Grime & Pierce 2012) is interpreted here as predicting a sigmoidal
function (solid black line), where competitive strategies (C) match the
upper competition prediction and stress-tolerant (S) or ruderal (R)
strategies predict a lower asymptote. In between, a mixture of strate-
gies and their intermediates (e.g., CR) predict steep NPP scaling.
Hypothetical tipping points are indicated by triangles.

(Rosenzweig 1995; Lomolino 2000). Moving forward, allo-
metric analyses of animals have recently included other
explanatory factors beyond MTE-based theoretical ideals,
including size-inefficiency trade-offs and predation risk
(Kolokotrones, Van Savage & Fontana 2010; Glazier et al.
2011; Glazier 2015). For vegetation-related analyses, factors
such as competition, site conditions, and disturbance are
recognised to modify MTE-based expectations but that
knowledge has not yet translated to general NPP scaling
hypotheses that transcend the simple linear model above
(Coomes & Allen 2007; Coomes, Lines & Allen 2011;
Coomes et al. 2012; Lin et al. 2013).

COMPETITION

In general, negative biotic interactions (e.g., predation, compe-
tition) may constrain realised allometric scaling of metabolism
and growth relative to an unfettered MTE ideal (Kerkhoff &
Enquist 2006; Coomes, Lines & Allen 2011; Glazier et al.
2011; Lin et al. 2013). Specifically with regard to NPP, larger
plants are predicted to competitively reduce NPP of smaller
plants and thus constrain MTE-based NPP scaling (Kerkhoff
& Enquist 2006; Coomes & Allen 2007; Coomes, Lines &
Allen 2011; Lin er al. 2013). If analyses are restricted to a
bivariate power law, the effect translates to a greater a coeffi-
cient and a reduced b coefficient (Kerkhoff & Enquist 2006;
Lin et al. 2013). However, a quadratic equation in log-log
space (i.e., log NPP = a + b log (B) — ¢ (log B)?) may better
describe competitive effects because it represents the positive
effect of B on NPP expected by MTE (the ‘+ b log (B)’
component) and the competitive effects by larger plants (the

3

— ¢ (log B)* component). A negative ¢ coefficient would be
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consistent with a downward deflection due to competition,
whereas a positive ¢ coefficient would represent a concave
upward (i.e., U-shaped) curve relative to a power law (e.g.,
Kolokotrones, Van Savage & Fontana 2010). Importantly, the
quadratic model is the next most parsimonious model beyond
the linear (in log-log space) power law model of MTE (Kolo-
kotrones, Van Savage & Fontana 2010; Mori et al. 2010).
Finally, this hypothesis is consistent with evidence that growth
rate increases with tree size, but that competition affects sys-
tems that vary in productivity (Stephenson et al. 2014; Grace
et al. 2016). As an aside, the competition hypothesis is related
to hypotheses for changes in forest structure through time
(Tang et al. 2014), but the focus here extends beyond forest
communities and does not address a temporal sequence for
one place. Also, an alternative hypothesis related to hydraulic
limitation in larger plants has already been rejected for NPP
scaling (Ryan, Phillips & Bond 2006).

Though not recognised in MTE-based work, a quadratic
function for NPP scaling has long been theorised for vascular
plant growth as part of predator—prey theory applied to grazing
systems (Noy-Meir 1975). In that original model, the quadratic
arch for green biomass descends to the right as proportionally
more B is dedicated to non-grazeable biomass. In the present
study, such a decrease is not relevant because accumulated
total above-ground B is used (rather than green tissue only),
so only the left half of Noy-Meir’s (1975) growth curve is
applied here. For all of the three reasons mentioned above
(two components, parsimony, history), a quadratic curve up to
an asymptote was expected here (Fig. 1).

UNIVERSAL ADAPTIVE STRATEGY THEORY

It has been argued that a single selective force (e.g., competi-
tion, above) cannot explain the multiple spectra of plant trait
variability evident worldwide (Diaz et al. 2016). Competition
is but one major selection pressure used to explain plant life
histories, and both B and NPP arise from those multicausal
life histories. Indeed, from the outset, biomass, primary pro-
duction and limitations to plant growth have been key compo-
nents of the CSR theory of plant life-history strategies, so
named because it is based on the occurrence of suites of plant
traits that allow survival under competition for resources
(C-selected or ‘competitor’ strategy), abiotic limitation of
metabolism (S-selected or stress-tolerant) or repeated distur-
bances that are lethal to exposed tissues and select for high
reproductive output rather than persistence (R-selected
‘ruderals’; Grime 1977; Hodgson et al. 1999; Grime 2001;
Pierce et al. 2016). For example, Grime (1977) begins:

The external factors limiting plant biomass in any habi-
tat may be classified into two categories. The first,
which henceforth will be described as stress, consists
of conditions that restrict production, e.g., shortages of
light, water, or mineral nutrients and suboptimal tem-
peratures. The second, referred to here as disturbance,
is associated with the partial or total destruction of the
plant biomass. . . .[emphases added here]

NPP scaling and adaptive strategies 3

With similar patterns evident throughout a wide range of
organisms, CSR theory was recently generalised throughout
the tree of life as a universal adaptive strategy theory (UAST;
Grime & Pierce 2012), with ‘CSR theory’ recognised as a
subset of the theory for plants. This reflects, in part, the wide-
spread and historic recognition of three main endpoints of
adaptive specialisation in animals (e.g. Greenslade 1972;
Southwood 1977; see Grime & Pierce (2012) for review), but
UAST extends this beyond the few major eukaryotic groups
previously considered. Expectations for NPP and B continue
in updated CSR plant strategy theory and UAST (Grime
2001; Grime & Pierce 2012), though most attention in CSR/
UAST research has addressed morphological traits related to
biomass allocation (e.g., Grime et al. 1997; Hodgson et al.
1999; Cerabolini et al. 2010a). Here, we focus on general
NPP- and biomass-related predictions from CSR theory/
UAST.

According to CSR theory (Grime 1977, 2001; Hodgson
et al. 1999), competitive strategists attain larger B in order to
pre-empt and acquire more resources than other plants. Thus,
the competition hypothesis (explained above) is nested within
the more complex hypothesis arising from CSR theory. The
two hypotheses may not be discernible for a subset that repre-
sents a portion of the entire data range (e.g., forest trees, pre-
dicted to be affected by competition at large B), but should
be discernible in a more general data set.

Stress-tolerant strategists grow conservatively, resulting in
relatively low annual NPP, and maintain relatively low
above-ground B and NPP as a result of adaptations to habitats
in which resource availability or environmental extremes limit
metabolic performance (Grime 1977; Pierce, Vianelli &
Cerabolini 2005; Mokany, Raison & Prokushkin 2006). Some
stress-tolerant plant species can gradually accrue large B over
a long life span. Thus, stress-tolerant adaptations should
contribute to relatively low NPP values across a range of B
values, with a relatively low slope.

Ruderal strategists are adapted for habitats with abundant
resources but frequent disturbance events (e.g., fire, grazing)
that create brief temporal opportunities for growth. In those
conditions, fitness favours rapid reproduction and dispersal
over accrual of large above-ground biomass, though relatively
high densities may also generate substantial NPP per unit
area. Ruderal strategists may thus contribute to both the lower
asymptote and the central region of an NPP scaling curve, a
phenomenon already observed for herbaceous communities in
Europe (Cerabolini ez al. 2016).

Consistent with the above expectations derived from CSR
theory and UAST (Grime 1977; Grime & Pierce 2012), we
hypothesised that NPP scaling should follow a sigmoidal
curve (Fig. 1). Here, we use a simple logistic function (log
NPP =a/(1 + exp((b — log B)lc)) that has minimal
NPP = 0, a maximal NPP (@), an inflection point (b) and a
shape coefficient (c; Pinheiro & Bates 2006). Specifically,
stress-tolerant adaptations should maintain relatively low NPP
across lower values of B to form the lower asymptote (i.e.,
low-sloped ‘tail’) of a sigmoidal curve. Low-NPP ecosystems
may also be dominated by ruderal strategies because
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adaptation to disturbance involves investment in seed produc-
tion rather than vegetative growth. For example, low-biomass
desert or xeric grassland communities are dominated by
stress-tolerant (S) or ruderal (R) species depending on the
local prevalence of either abiotic limitations to growth or dis-
turbance, respectively (Kelemen et al. 2013). At moderate B,
equivalent to the steeply increasing phase of the sigmoidal
NPP curve (Fig. 1), evidence from other grassland ecosystems
indicates a mixture of CSR strategies, including numerous
ruderal strategists (Cerabolini et al. 2016). Finally, competi-
tive strategists should generate maximal NPP at greater B to
form the upper asymptote of the sigmoidal curve (Grime
1977). The competitive hypothesis clearly applies to forests
(Kerkhoff & Enquist 2006), but grassland communities can
also be dominated by C-selected species, which prevent the
establishment of subordinate species adapted for other strate-
gies (Kelemen er al. 2013; Cerabolini ez al. 2016).

Based on the above, CSR strategies should modify the
power law expected by MTE to cause sigmoidal NPP scaling,
but the three ‘phases’ of a sigmoidal function should not be
expected to match the three strategies. Instead, the three
strategies may intermingle in the function, but with relatively
more S and R towards low B and relatively more C at high
B. The current work did not explore the placement of CSR
categories in the NPP scaling data, principally because avail-
able NPP and B data refer to ecosystem-level measurements
for which the precise mix of local plant strategies has not
been determined. Plant species have been characterised for
CSR traits (e.g., Hodgson ef al. 1999; Cerabolini et al.
2010a; Pierce et al. 2013), and in a small number of local
cases CSR strategies have been explicitly linked to ecosystem
properties such as biomass (Cerabolini er al. 2010b, 2016),
but the combination of CSR, NPP and B data has not yet
accrued. Indeed, life-history strategies apply best to species,
which comprised only 25% of all data analysed here. Here,
we first test the hypothesis that general NPP scaling across
broad scales of NPP and B should be sigmoidal as a net
result of myriad CSR strategies summarised above. Given
support for that hypothesis, studies to amass detailed CSR
strategies and associated NPP and B are then justified.

TIPPING POINTS

Unlike the NPP scaling hypothesis based on metabolic theory,
the hypotheses based on UAST and competition (summarised
above) predict nonlinear scaling curves (Fig. 1), which make
tipping points possible (Scheffer 2009; Scheffer et al. 2009;
Brook et al. 2013; Hughes et al. 2013; Reyer et al. 2015;
van Nes er al. 2016). If present, a tipping point is important
because it is ‘a threshold in conditions at which a small
change in conditions leads to a strong change in the state of a
system’ (Reyer et al. 2015, p. 6). The hypothesised, nonlinear
NPP scaling curves (Fig. 1) are consistent with a general defi-
nition of tipping points (Reyer er al. 2015; van Nes et al.
2016) and are not to be confused with more extreme,
Z-shaped curves that would indicate abrupt and irreversible
changes between alternative stable states (Beisner, Haydon &

Cuddington 2003). Instead, tipping points on quadratic or sig-

moidal curves indicate reversible changes (or ‘non-
catastrophic thresholds’; Scheffer er al. 2009). For example, a
shift from right to left on the sigmoidal NPP scaling curve
(Fig. 1) through a tipping point represents a regime shift from
a relatively high B and NPP system towards a lower B and
NPP system (e.g., deforestation; Asner et al. 2004). Con-
versely, reforestation (e.g., Cunningham et al. 2015) is a posi-
tive B shift through that tipping point. Thus, tipping points in
a general NPP scaling model may inform global afforestation
goals and harvest limits that are important to carbon cycling
and human appropriation of NPP (Imhoff er al. 2004; Haberl,

Erb & Krausmann 2014).

GENERAL APPROACH AND LIMITS

Here, we tested for a general NPP scaling relationship based
on hypotheses described above and that derive from funda-
mental principles (i.e., photosynthesis in vascularised tissues,
size-based competition, adaptive life history strategies). The
three alternative hypotheses described above prescribed alter-
native allometric curve shapes, and a regression model for
each curve shape was selected for parsimony (i.e., fewest
coefficients, simplicity) and historical precedent. It is possible
that some other regression models could fit data better, but
such models would need to be well justified by hypotheses,
and we know of only the three evaluated here. Information
theoretic model selection (Burnham & Anderson 2002) was
ideal for this hypothesis-testing framework and was used
here.

Analyses included hierarchical levels of organisation (i.e.,
species’ populations, assemblages (i.e., taxonomically based
subsets of communities; Fauth er al. 1996), ecosystems and
biomes) for a number of reasons: NPP scaling data are
reported for these levels; an objective was to evaluate inter-
nal consistency for a general model (i.e., is each subset
consistent with the general model?); and effects of this
variety needed to be addressed in analyses. We expected
differences among hierarchical levels because life-history
strategies apply more clearly to species and assemblages
(Grime 1977) than to integrative ecosystems, which then
may not adhere well to a particular curve. In addition, pop-
ulations and assemblages were subdivided as woody and
non-woody, because those growth forms differ markedly in
structure and function (e.g., metabolically inactive xylem in
woody tissues; Diaz er al. 2016). We expected that some
subsets may be truncated (e.g., include only relatively large
B), which could affect hypothesised model fits. Because the
competition hypothesis can be considered a part of CSR
theory and should be especially important at large B, sig-
moidal and quadratic curves at larger B values may resem-
ble each other and both be interpreted as being caused by
competition (Fig. 1). However, we expected a general
model (i.e., using the entire range of B data) to be sig-
moidal because competition is not the only important pro-
cess, especially in habitats where plant species occupy the
same habitat but are not in direct contact (for examples see
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Grime & Pierce 2012). In stressful or disturbed habitats,
CSR theory predicts that plant growth differs from other
habitats where competition is more important.

Materials and methods

DATA ACQUISITION AND HANDLING

Paired and independently estimated above-ground NPP and B data for
vascular plants and systems dominated by them were extracted from
data provided in Jenkins (2015; data available from http://www.e
sapubs.org/archive/ecos/C006/012/suppl-1.php). Those data were com-
piled from peer-reviewed journal publications and books. In all data
sets used here, NPP and B were verified to be independently esti-
mated. Multiple data sets or values within compilations were excluded
if NPP was calculated with an assumed or estimated P/B or ‘estima-
tive ratio’ (Whittaker & Marks 1975).

All data were expressed in units of dry mass as g m 2 year ' for
NPP and g m ™2 for B. Obtained data were originally reported for dif-
ferent hierarchical levels of organisation, which were retained here
and included in analyses because we expected those levels to affect
patterns. Specifically, a population represents a single species in a
location; an assemblage represents a taxonomically based set of spe-
cies in a location (e.g., grasses); an ecosystem represents all primary
producers in a location (e.g., forest); and a biome represents a regio-
nal set of ecosystems in a particular climate. Species and assemblages
were also divided into woody or non-woody sets according to their
growth form, so that six subsets were generated for analyses. Data
values for one subset were not used in another subset.

Two important data sources for grasslands (Scurlock, Johnson &
Olson 2002) and forests (Keeling & Phillips 2007) required decisions
during data handling. Scurlock, Johnson & Olson (2002) provided
grassland data based on four methods to estimate B and NPP; we
used B data based on their ‘method 2’ (peak above-ground live +
standing dead matter) to best match the recommended method 5 to
estimate NPP (Scurlock, Johnson & Olson 2002), which uses related
live and standing dead matter, and where timing of annual cycles was
based on trough—peak cycles of biomass (Singh, Lauenroth & Stein-
horst 1975). This choice of method is also supported by the fact that
inclusion of dead matter greatly improved the utility of biomass as a
predictor of species richness in a global study, at least for herbaceous
ecosystems (Fraser et al. 2015), probably because dead matter pro-
duced extensively by dominant species plays a key role in limiting
the ability of subordinates to establish and thus contribute to ecosys-
tem properties (Stevens et al. 2004). The inverse of relationships
evaluated here (i.e., the B/NPP relationship) was reported for many
forest data sets (Keeling & Phillips 2007). Forest NPP studies are
often based on increment data alone (i.e., changes in above-ground
standing biomass), and lack substantial NPP due to litterfall, tropical
litterfall decomposition, volatile organic compounds, and herbivory.
These additional contributors to NPP are especially important in tropi-
cal forests (Keeling & Phillips 2007); following their recommenda-
tion, we used their standardised data.

STATISTICAL ANALYSES

Linear and quadratic models (described above) were computed using
generalised least squares regressions (gls in the nlme package of R
v. 3.2.2; R Core Team 2015). Generalised least squares models pro-
vided leniency on assumptions of normality and homoscedasticity.

NPP scaling and adaptive strategies 5

The sigmoidal model was computed using nls in the basic stats pack-
age of R and the SSlogis function, which is self-starting and itera-
tively solves for the three coefficients (log NPP = a/(1 + exp
((b — log B)/c))). This logistic function has the same number of coef-
ficients as the competition model (three) and is more parsimonious
than other logistic functions, including a cubic function, which might
be thought as a next parsimonious step but has four terms (intercept
and three coefficients). In all models, log;, (NPP) was the response
variable, and log;y (B) was the predictor variable. Analyses compared
the three models using information theoretic model selection, based
on corrected Akaike information criterion (AICc) and weights (w;;
Burnham & Anderson 2002). In model comparisons, we emphasised
w;, which indicates the probability that a model is the most plausible
among those listed. Model coefficients and their significance (i.e.,
P-values) were recorded but significance was not used in model selec-
tion. Residual standard errors (also known as standard deviations of
residuals) were used as accessory information to compare models;
smaller values indicate a stronger fit. Model selection was conducted
with the bbmle package in R.

The three alternative models were compared for each of the six
subsets to evaluate internal consistency for an overall model, where
generality would be most simply indicated with a consistent answer
among levels (i.e., similar model selection and coefficients). We
expected subsets to differ in their most plausible models because data
differed widely. Also, a sigmoidal and quadratic model might both be
plausible for a subset and support the competitive portion of the adap-
tive strategies hypothesis.

The three alternative models were also evaluated for a general
model using all data, model selection (as above), and using mixed-
effect models to represent subsets as random effects. This approach
focused on general NPP scaling pattern as the fixed effect of interest
while accounting for variance among hierarchical levels (identified in
prior analyses). The mixed-effect models were computed using Ime
(in the nlme package of R) for linear and quadratic models, and nlme
with the SSlogis function for the sigmoidal model, where subsets
were random grouping factors.

Tipping points were evaluated for each subset and overall with
segmented regression, using the segmented package in R. Tipping
points are indicated well by segmented regression, even where
strongly curved sigmoidal curves were not evaluated (Toms & Les-
perance 2003; Vanacker et al. 2015). Segmented regression fits
separate linear models into data with a designated maximum num-
ber of possible break points that join the linear segments. If a sig-
moidal model was clearly most plausible, up to two possible break
points were evaluated. If a quadratic model was plausible, one pos-
sible break point was evaluated. If a linear model was plausible,
no tipping point analysis was warranted. Starting values were
selected based on the range of B values. Tipping points were esti-
mated with 5000 maximum iterations and reported with 95% confi-
dence intervals (CIs). Preliminary runs showed that tipping point
estimates were sensitive to number of iterations, where results
based on default iterations (50) were quite variable, but <5000
iterations repeatedly attained values very similar to 10 000
iterations.

Results

A total of 709 pairs of above-ground NPP and B data values
were compiled from the literature. Data ranged almost 6
orders of magnitude for NPP and B. Woody plants dominated
the collected data: 71% of population and assemblage data
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values included woody plants. Also, most of the ecosystem
and biome data included woody shrubs and forests. Not sur-
prisingly, non-woody taxa tended to have lower B while trees
and forests tended to have greater B, though ranges over-
lapped.

The UAST (sigmoidal) and competition (quadratic) models
were supported in five of six subsets (Table 1, Fig. 2). The
sigmoidal model of NPP scaling was most plausible for
woody populations (N = 114; w; = 0-94; Fig. 2a). Non-
woody populations (N = 59) were plausibly represented by
both the sigmoidal and quadratic models (w; = 0-51 and 0-44,
respectively), which were similar in fit, related to the rela-
tively narrow range of B values (Fig. 2b).

Woody assemblages were plausibly represented by only the
sigmoidal model (N =282, w; =1-0; Fig. 2c). Non-woody
assemblages were the exception here, and were best repre-
sented by the linear model (N = 100, w; = 0-74, Fig. 2d). We
considered this result to be affected by one extremely low
value and sparse data at low B (Fig. 2d). Ecosystem NPP
scaling was better represented by the sigmoidal model
(N =106, w; =0-63) than by the quadratic (w; = 0-37),
though the truncated data set did not include an apparent
lower asymptote (Fig. 2e). Finally, NPP scaling of biomes
was similarly represented by the quadratic and sigmoidal

curves (N = 48; w; = 0-52 and 0-33, respectively), with very
similar fits (Fig. 2f).

Tipping points calculated for each subset ranged from 1-5
to 4-4 (Table 2). Two tipping points were obtained for woody
species and assemblages, consistent with their plausible sig-
moidal curves (Table 2; Fig. 2). Non-woody species, ecosys-
tems and biomes were represented plausibly by both
sigmoidal and quadratic models, so only one tipping point
was calculated for each (Table 2).

General NPP scaling was plausibly represented by only the
UAST-based sigmoidal model (w; = 1-0). The quadratic and
linear models were implausible (both w; < 0-001; Table 1). In
other words, the sigmoidal model was >1000 times more
likely to be the most plausible, general model. Two tipping
points (1-58, 2-56; Table 2) were detected for the general pat-
tern (Fig. 3). The two general tipping points back-transform
to 38 and 360 g m ? as approximate transitions between the
lower asymptote, steeply increasing segment and the upper
asymptote of NPP scaling (Fig. 3).

In summary, the UAST-based sigmoidal model for general
supported and mostly supported
internally, given quadratic and/or sigmoidal models were

NPP scaling was well

most plausible for five of six subsets that represented 86% of
data values.

Table 1. Model selection parameters and coefficients for compared model sets. Sigmoidal model: log NPP = a/(1 + exp((b — log B)/c)). Quadra-
tic model: log NPP = a + b log B — ¢ (log B)*. Linear model: log NPP = a + b log B. Models per set are sorted in ascending order of AAICc,
and coefficients are listed only for plausible models. Lower values of residual standard errors (RSEs) indicate a better fit

Models AAICc w; b c RSE
General model (N = 709)
Sigmoidal 0 1.00 3.34%% 2.18%#* 0-70%%%* 0-29
Quadratic 42-8 <0-001
Linear 112-8 <0-001
Subsets
Woody species (N = 115)
Sigmoidal 0 0-94 3.38%#* 2.53 %% 0-70%%* 0-34
Quadratic 6-1 0-04
Linear 8-8 0-01
Non-woody species (N = 60)
Sigmoidal 0 0-51 3.20% %% 1-66%** 0-47%%% 0-46
Quadratic 03 0-44 —2-06 3.01 %% 0-44* 0-45
Linear 4-6 0-05
Woody assemblages (N = 283)
Sigmoidal 0 1 3.4 %% 2.27HH% 0-897##* 0-22
Quadratic 214 <0-001
Linear 657 <0-001
Non-woody assemblages (N = 101)
Linear 0 0-74 0-02 0-927#s#* 0-21
Quadratic 2-1 0-26
Sigmoidal 13.7 <0-001
Ecosystems (N = 107)
Sigmoidal 0 0-63 3.36%** 2-30%#* 0-64%+%%* 0-31
Quadratic 1-1 0-37 —2.84k** 2-64 %% 0-28%##* 0-30
Linear 31-6 <0-001
Biomes (N = 48)
Quadratic 0 0-52 —1.22% 1.53%%% 0-12%* 0-33
Sigmoidal 0-9 0-33 3.40% % 2-49%#k 0-80%##%* 0-34
Linear 24 0-15

*P < 0-05, #*P < 0-01, ***P < 0-001.

© 2017 The Authors. Journal of Ecology © 2017 British Ecological Society, Journal of Ecology
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points (£95% confidence intervals) identified
by segmented regression (see Table 2).

Table 2. Tipping points per analysis, where values are log;o (B;
¢ m ). Values were obtained using segmented regression, where <2
tipping points were possible if only a sigmoidal model was plausible
and <1 point was possible if a quadratic model was plausible

Data set Tipping points (95% CI)

Woody populations 1-465 (£1-373); 3-877 (£0-267)
Non-woody populations 2-597 (£0-330)

Woody assemblages 3.042 (£0-753); 4-459 (£0-114)
Non-woody assemblages -

Ecosystems 3.255 (£0-214)

Biomes 3.007 (£0-950)

General model 1-580 (4:0-289); 2-557 (+0-091)

Discussion

GENERAL NPP SCALING IS SIGMOIDAL, CONSISTENT
WITH UAST

Results support the hypothesis that general terrestrial NPP
scaling is constrained by adaptive life-history strategies to a
sigmoidal curve. Unlike prior NPP scaling work, this conclu-
sion was obtained by model selection, where an MTE-based
power model for an ideal system was compared to two

log,, B (g m~)

5 -
o data
woody species
nonwoody species o

44 woody assemblages §)
- nonwoody assemblages ©
< ecosystems K
5 1 biomes
o 31 general model
>
9
€
2 2]
o
z

o 14
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Le)

0 4

R Wi \
-1 T T T )

logso B (g m2)

Fig. 3. General model for net primary production (NPP) scaling. The
sigmoidal mixed-effect model included hierarchical levels as random
effects. Triangles indicate tipping points (+95% confidence intervals)
identified by segmented regression (Table 2).

alternative models based on alternative hypotheses. The gen-
eral NPP scaling curve and curves for most subsets include
tipping points, which have important implications for carbon

© 2017 The Authors. Journal of Ecology © 2017 British Ecological Society, Journal of Ecology
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cycling and sustainable human appropriation of NPP (Haberl,
Erb & Krausmann 2014). In contrast to most NPP scaling
research (e.g., Kerkhoff & Enquist 2006; Lin et al. 2013;
Michaletz et al. 2014; Hatton et al. 2015; Jenkins 2015), a
strong inference approach based on information-theoretic
model selection was used here to evaluate three alternative
hypotheses (Platt 1964; Burnham & Anderson 2002; McGill,
Maurer & Weiser 2006). This approach was consistent with a
shift in focus from the value of the power law exponent (e.g.,
Enquist, Brown & West 1998; West, Brown & Enquist 1999;
Niklas & Enquist 2001; Brown et al. 2004a; West, Enquist &
Brown 2009) towards factors in empirical systems that
impinge on ideal conditions hypothesised by MTE (e.g.,
Coomes & Allen 2007; Coomes, Lines & Allen 2011;
Coomes et al. 2012, 2014). The MTE-based power law model
(linear in log-log space) can represent NPP scaling well for
specific systems and remains useful to predict NPP from B for
a data set or to test the MTE (e.g., Kerkhoff & Enquist 2006;
Michaletz et al. 2014; Hatton et al. 2015; Jenkins 2015). But
the main goal here was to evaluate general NPP scaling,
where analyses ranged from species to biomes and traversed
c. 6 orders of magnitude for B and NPP. This range was
exceeded by several orders of magnitude analyses of separate
systems (e.g., forests), typical of most other analyses (e.g.,
Kerkhoff & Enquist 2006; Michaletz et al. 2014; Hatton
et al. 2015; Jenkins 2015).

General NPP scaling was plausibly predicted only by a
UAST-based which predicted NPP
responses to B within about one order of magnitude. Nonlin-
ear NPP scaling functions were also most plausible in five of
six hierarchical levels. As a result, we infer that vascular plant

sigmoidal model,

adaptations and their environments cascade up to regulate ter-
restrial NPP (Grime 1977; Lin et al. 2013). Patterns described
here should be general to terrestrial systems dominated by
vascular plants for two reasons. Over 700 data values used
here represent global systems, ranging from species to
biomes. Also, mechanisms underlying UAST (i.e., adaptations
to competition, stress and disturbance) for NPP scaling are
fundamental and should apply generally (Grime & Pierce
2012).

Results here support the hypothesis that asymmetric size-
based competition by larger plants deflects the MTE-based
power law at greater values of B (Grime 1977; Kerkhoff &
Enquist 2006; Coomes, Lines & Allen 2011). This hypothesis
is consistent with CSR theory and UAST, though to our
knowledge this work is the first to relate the shape of NPP
scaling to CSR plant adaptive strategies (Grime 1977; Grime
& Pierce 2012). Inter- and intra-specific competition are
important in forests and other systems (Lonsdale 1990; Grime
2001; Coomes & Allen 2007; Enquist, West & Brown 2009;
Grace et al. 2016; Kunstler e al. 2016). Given infrequent dis-
turbance and suitable conditions, large trees dominate B and
NPP in forests with dense canopies, leaving relatively little
contribution of subcanopy and ground-layer vegetation (Fahey
et al. 2010). Conversely, frequent disturbance and/or unsuit-
able conditions greatly affect forest NPP and carbon flux
(Coomes et al. 2012).

At the other end of the biomass spectrum, stress-tolerant
strategies in particular (and the extreme environmental condi-
tions that select for them) are supported as regulators of NPP
scaling. The lower asymptote in the sigmoidal curve is consis-
tent with stress-tolerant adaptations that maintain existing B
and dedicate limited resources to growth, and thus have rela-
tively low NPP (Grime & Pierce 2012). Ruderal strategies
may also be consistent with this range of the NPP scaling
model because resources are often allocated to abundant but
small seeds rather than growth and thus standing biomass
(Grime & Pierce 2012; Diaz et al. 2016). Indeed, Cerabolini
et al. (2016) found that many herbaceous communities in
northern Italy characterised by extremely low B were domi-
nated by R-selected species. However, relatively few data
were available for low-B compared to high-B systems for the
present study. Model coefficients and the lower tipping point
location may shift with additional low-B data, but a sigmoidal
model should remain most plausible given that >700 data val-
ues were used here. It may be expected that facilitation affects
NPP scaling at low B, but facilitation is actually more evident
at moderate B levels and should not alter the lower asymptote
appreciably (Michalet ef al. 2006). Also, we do not expect a
sigmoidal model with inclusion of below-ground data because
above-ground B equals or exceeds below-ground B in habitats
that select for stress tolerance (Hadley & Szarek 1981; Yang
et al. 2010). However, data here represent only above-ground
NPP and B, and so it would be valuable to test observed rela-
tionships with whole-plant data, should enough accrue.

In between the lower and upper asymptotes, strategy mix-
tures and intermediates were supported as contributing to
steep NPP scaling at moderate B. All hierarchical subsets
contributed to this range, but non-woody species and assem-
blages had especially steep slopes (compare curves in Fig. 3),
consistent with high productivity per unit area and unit bio-
mass of wetland and grassland systems. These non-woody
systems fit expectations for broadly R-selected strategies
(encompassing intermediates such as CR, SR) that include
modest dimensions, rapid growth of individual plants when
conditions permit and spatially dense populations (Grime
1977; Hodgson et al. 1999; Grime & Pierce 2012; Diaz et al.
2016). But we note that woody systems were mixed through-
out the data (Fig. 2); C, S or R regions of the sigmoidal curve
were not simply predicted by a woody/non-woody dichotomy.
Clearly, a next step would be to obtain NPP and B data for
CSR categorisations of many plant species (across a wide
range of plant sizes and life-history strategies) to indepen-
dently test the patterns reported here. Tests here were more
general and only 25% of NPP scaling data were for species,
but a detailed CSR-based inquiry into NPP scaling is now
well justified. As global CSR data become available, empiri-
cal investigation of these NPP scaling relationships will
reconnect to initial CSR theory (Grime 1977).

NON-CATASTROPHIC TIPPING POINTS

General NPP scaling has non-catastrophic tipping points
(Brook et al. 2013; Hughes e al. 2013). This departs from

© 2017 The Authors. Journal of Ecology © 2017 British Ecological Society, Journal of Ecology



MTE-based linear expectations (on a log-log scale) of NPP
scaling, with important implications. We emphasise that prior
work on MTE-based NPP scaling often used data covering a
more restricted range and did not statistically compare power
law models against hypothesised alternatives. Questions of
tipping points or thresholds are not relevant if only linear
models are used, but are now relevant given the sigmoidal
model of general NPP scaling.

Tipping points in NPP scaling mark transitions in the
response of NPP given changes in B that occur by human
land wuse, disturbance, succession, climate change, etc.
Changes in NPP are critical to ecosystem energetics, carbon
cycling and indirectly important to other ecological conditions
(e.g., soil erosion, biodiversity, sustainable resource availabil-
ity). Systems just above a tipping point should exhibit strong
reductions in NPP responses if they are reduced in B below
the tipping point. Eighty-three per cent of data points
exceeded the upper tipping point of 360 g dry mass m > and
represented various grasslands, wetlands and forested systems.
Thus, a considerable research base exists to understand NPP
responses to changes in B in these most productive systems.
For purposes of maximising carbon sequestration, c. 360 g
dry mass m 2 is a threshold to avoid in land use (e.g., urban-
isation, agriculture, deforestation) and a goal to attain in
restoration, wherever possible. We also note a boundary for a
safe operating zone (i.e., a zone above a threshold) would
exceed this 360 g dry mass m™> threshold (Hughes er al.
2013). Below the 360 g dry mass m * threshold, NPP falls
with an increasingly steep slope as B is reduced (e.g., due to
deforestation or increasing aridity).

Conversely, the lower tipping point of the general model
(38 g dry mass m™~?) denotes a shift to a marked increase in
NPP with modest increases in B. Increased B may occur with
succession or climate change (e.g., warming, greater precipita-
tion), and is likely to include compositional change. Given
climate change, systems near 0-04 g m > and that are
released from limiting conditions (e.g., increased precipitation
or less frequent disturbance) are most likely to rapidly
increase productivity. For purposes of carbon sequestration,
some of those systems are non-woody and may not store car-
bon as living biomass, but rather store it in soils or as detrital
flux (e.g., coastal wetlands). And of course NPP tipping
points cannot detail specific changes in community structure,
which are also vitally important to ecology and conservation.

FUTURE DIRECTIONS

The general sigmoidal model (log;y (NPP) = 3-54/(1 + exp
((2-18 — log;p B)/0-70)) helps to link energetics and carbon
cycling to adaptive life-history strategies. Though CSR the-
ory was originally phrased in terms of production and bio-
mass (see Dr. Grime’s quote above), CSR and the more
general UAST (Grime & Pierce 2012) is indicated here as a
basis to predict global biomass production and carbon
cycling. This reconnection of recently separated disciplines
should be fruitful for ecology. Model refinements might
include other factors, such as palatability, decomposition
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rates and flammability of plant biomass among CSR strate-
gies. The predicted placement of species’ or community CSR
categories in the general model could also be tested. Future
work should also explore NPP scaling and CSR strategies in
aquatic and marine ecosystems (beyond wetlands included
here). Research results in lakes and coastal lagoons are con-
sistent with life-history traits that denote C-, S- and R-strate-
gists (e.g., Reynolds 1984, 1991; Weithoff, Walz & Gaedke
2001; Bonilla er al. 2005), but CSR strategies are not yet
widely applied to phytoplankton. Potential studies on the
relationship between NPP and life-history strategies in plank-
ton are complicated by extensive temporal and spatial vari-
ability (Weithoff, Walz & Gaedke 2001) compared to
relatively static terrestrial vegetation. However, such studies
are required to test the hypothesis that NPP scaling reported
here reflects a truly universal principal operating for all pri-
mary producers.

The general model should also help predict terrestrial NPP-
driven carbon sequestration rates as a function of changing
biomass, important to climate change and human resource
demands (Cao & Woodward 1998). As such, results here may
also inform projections of sustainable human population size.
Human population growth is modelled demographically,
based on numerous assumptions and thus uncertainty (e.g.,
Cohen 1995; Pimm 2001). An alternative approach is based
on classic predator—prey theory that informed threshold theory
(Noy-Meir 1975; May 1977; Scheffer 2009), and relates NPP
scaling to human appropriation of NPP, which is already
quantified in detail and is fundamental to human population
growth (Haberl, Erb & Krausmann 2014). The general NPP
scaling model thus represents one-half of that potential
approach to represent a fundamental limit to future appropria-
tion of NPP and conservation of remaining biodiversity
(Wilson 2016) as we approach 11 billion people by century’s
end.
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