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Trends in the production and dissemination of scien-
tific knowledge are increasingly becoming the subject

of rigorous scientific inquiry (Evans and Foster 2011). The
growth of electronic publication and the digital archiving
of past research articles have aided this rise in scientific
introspection. Quantitative analysis of historical research
output has provided several insights into the trajectory of
scientific disciplines, including a better understanding of
shifts in topic selection (Griffiths and Steyvers 2004; Perc
2013), shifts in patterns of scientific collaboration
(Wuchty et al. 2007), and the consequences of selective
publication processes (Fanelli 2010; Calcagno et al. 2012).
Quantitative metaknowledge (see WebPanel 1 for a glos-
sary of selected specialist terms) may have the potential to
reshape the practice of science (Evans and Foster 2011).

One of the most important potential contributions of
quantitative metaknowledge is the objective measurement
of scientific progress. Scientific disciplines could benefit
from such introspection, given that it would provide a
means by which to distinguish successful approaches for

the production and dissemination of knowledge from fail-
ing approaches that require reevaluation. We suggest that
aspects of the progress of science can be quantitatively
evaluated from the published record of a scientific disci-
pline. In particular, three main trends should be expected
in the literature as a discipline progresses:
(1) Inference: as a science progresses, we would expect an

increase in the quantitative application of theory to
measurements obtained from observation or experi-
mentation. This implies a growing use and reporting of
statistics. The types of statistics used may also indicate
how theory is being confronted with data (ie using mea-
surements to test the predictions made on the basis of a
theory) and what type of inferences are being made.

(2) Complexity: the complexity of phenomena under
investigation within a discipline tends to increase
over time. As explanations for a simpler subset of nat-
ural phenomena are accepted, the scientific frontier
expands toward more complex systems that integrate
more variables. This does not, however, preclude the
use of simple models with few assumptions to explain
the expanded complexity under investigation. 

(3) Explanatory power: within the reported findings of a
scientific discipline, we would expect an increase in
the ability to explain variation and to predict
processes under investigation. 

Observing all three patterns in a discipline would be a
testament to its progress, whereas detecting deviations
from these trajectories may indicate a need for prescrip-
tive corrections to the methods of production and dis-
semination of knowledge in the field under study.

n Measuring progress in ecology 

As ecologists, we were motivated to provide the first analysis
of these quantitative measures of progress for our own area of
research. Though some authors have made broad claims
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In a nutshell:
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increasing number of hypotheses being tested per paper
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exhaustion of “easy” questions, increased effort in experiments,
or a change in publication bias

• This apparent decrease in marginal predictive power has impli-
cations for how policy makers perceive ecological research and
the importance of the communication of uncertainty for
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about the success or failure of ecology as a scien-
tific discipline (Connor 2000), these assessments
were not quantitative in nature. Tracking progress
in ecology by quantifying historical trends may
contribute to its continued advancement
(Graham and Dayton 2002). To provide such
a historical perspective, we used automated
methods to analyze 18 076 articles from three
journals with broad ecological scope and deep
publication histories. Our dataset contains the
text from 2998 articles from the Journal of Ecology
(established in 1913, published by the British
Ecological Society [BES]), 3507 articles from the
Journal of Animal Ecology (established in 1932,
also published by BES), and 11 571 articles from
Ecology (established in 1920, published by the
Ecological Society of America [ESA]). From these
texts, we extracted P and R2 values with which to
investigate trends relevant to scientific progress
(WebPanel 2).

n Observed temporal trends 

(1) Inference: to investigate how frequently theory
is confronted with data and the type of infer-
ences that are made, we enumerated the type
of statistics presented in each article. We used
the presence of reported P values as a proxy for Null
Hypothesis Significance Testing (NHST).

(2) Complexity: to measure complexity, we counted the
number of P values reported per study, which indi-
cates the number of hypotheses tested in the paper.
This metric may indicate the number of experiments
conducted per study or the number of predictor 
variables included in models, both indications
of at least one aspect of the relative complexity
of a study. Testing a large number of hypotheses
separately with simple models is considered more
complex than testing a smaller number of hypotheses
with a single, more complex model.

(3) Explanatory power: to quantify explanatory power, we
used the values of the coefficients of determination
(R2 values). R2 values are often interpreted as a mea-
sure of the total variance in data that a model
“explains” or how much of the total variance in novel
data is predicted by the model. Here, we do not dis-
tinguish between explanatory and predictive power,
because we did not have a way of distinguishing
instances of within-sample from out-of-sample report-
ing. While R2 values have been previously used as a
measure of progress related to the explanatory ability
of a discipline (Weisburd and Piquero 2008), we are
aware that R2 is an imperfect measure and has been
criticized as having potential interpretations that are
inconsistent with its use in the measurement of
explained or predicted variance (Rosenthal and
Rubin 1979; Abelson 1985; King 1986).

Inference

Our analysis of inference in ecology suggests that the
reporting of formal statistics (obtained from fitting a
model to data) has become increasingly prevalent over
the past century. The reporting of formal statistics in eco-
logical research articles was rare prior to the 1960s, as
expected from the maturation of the discipline of statis-
tics (for example, methods for analysis of variance –
ANOVA – were first widely published in Fisher [1925]).
However, the reporting of at least one statistic appears in
more than three-quarters of contemporary ecological
publications since the mid-1980s (Figure 1). The propor-
tion of articles reporting NHST (as measured by reported
P values) has been growing steadily. Between 1999 and
2009, 47% of the articles reporting a focal statistic (R2

and P value) reported only P values. This result is consis-
tent with previous findings, suggesting that NHST is cur-
rently the dominant form of statistical inference in ecol-
ogy (Stephens et al. 2007). The historical growth in
NHST in ecology is comparable to that found in psychol-
ogy and medicine (Fidler et al. 2004). 

Overemphasis of NHST is a long-standing concern of
statisticians (Deming 1975). Results of NHST should be
accompanied by other statistics, such as measures of
explained variance. Even high-ranking journals contain a
large proportion of articles presenting only NHST, with-
out any indication of effect size or model power (Sella et
al. 2013). While our methods did not allow us to extract
how often NHST is reported along with other statistics

Figure 1. Trends in reported statistics in ecology in the three journals
surveyed: (a) frequency of statistics reported in papers by year and (b)
number of papers published each year. A statistic was detected in almost
all recent articles. The current dominance and overemphasis of Null
Hypothesis Significance Testing (NHST) is demonstrated by the
proportion of papers having only P values.
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measuring effect size, this problem has been noted across
scientific disciplines but particularly in ecology where sta-
tistical significance is often emphasized at the expense of
biological importance (Yoccoz 1991; McGill 2013).
Although the use of alternative statistical approaches to
NHST is infrequent in the history of the discipline, the
application of Bayesian analyses, information theoretic
approaches (eg Akaike’s information criterion), and other
alternative methods to NHST are on the rise in ecological
research (Hobbs and Hilborn 2006), which may partly
explain the decline in the number of P values reported per
paper since 2002 (Figure 2). Because many recently devel-
oped statistical procedures and their software implementa-
tions do not compute or present R2 values by default, studies
that used these methods are likely underrepresented in our
counts of articles reporting R2 values.

Complexity

Increased use of NHST in ecology is coincident with a
rise in the total number of statistical hypotheses being
reported, demonstrated by the increasing amount of P
values per article (Figure 2). This is a conservative esti-
mate of the actual quantity of P values per paper, given
that our extraction method identified P values reported

in the main text but did not count most P
values reported in tables (WebPanel 2).
The growth in yearly mean number of P
values per article fits a logistic growth
curve (R2 of predicted over observed =
0.983; logistic growth curve was fit using
nonlinear least squares). The inflection
point was reached in 1980 and the num-
ber of P values reaches a plateau at 10.7 P
values per article. We also classified arti-
cles according to their broadly defined
subdomain using topic modeling (Web-
Panel 3) and found a similar pattern of
logistic growth in the number of P values
for each topic, although there are clear
differences in the amount of P values
between subdisciplines in ecology (Web-
Figure 1). 

The marked rise in the number of P val-
ues reported parallels the increase in the
page count of journals and the proliferation
of references in articles, which have both
been correlated with an expansion in the
size of the literature (more articles are
being published), specialization (decrease
in the breadth of research), and the dimin-
ishing attention provided to historical arti-
cles (Graham and Dayton 2002; Evans
2008). More detailed reporting of P values
– including values above significance cut-
offs – may have contributed to but cannot
fully explain the increase in P value counts

in each article. A potential explanation for the growing
number of hypotheses being tested is the greater reliance
on large teams for the production of research and articles
(Wuchty et al. 2007; Jones et al. 2008). Larger teams may
provide more labor available to test more hypotheses (via
multiple independent experiments) or the intellectual cap-
ital needed to formulate more theories to be tested.
However, after controlling for the number of authors, we
found a similar pattern of logistic growth (Figure 2), reach-
ing an asymptote at 5.2 P values per article per author.

The greater use of statistics, including NHST, and the
growing number of hypotheses being tested may also have
been facilitated by developments in personal computing
and the improved ease of use of statistical software.
However, the increase in hypotheses being tested statisti-
cally must be matched by an increase in the number of
parameters being included in experiments or observations.
The progress toward greater simplicity in conducting com-
plex analyses might therefore have facilitated the develop-
ment of more complex experiments and observations. The
number of hypotheses presented in each paper may have
important implications for the validity of the claims being
made (Ioannidis 2005). Furthermore, although our
methods did not allow us to distinguish between complex-
ity arising from a larger number of separate tests and that

Figure 2. Increase in mean number of P values reported in each paper per year.
The black data points are yearly means for the total number of P values, whereas
the gray data points are means of the total number of P values standardized by the
number of authors on a given paper. The error bars are 95% confidence intervals
of the mean. Lines are best-fit logistic models. The increase in number of P values
suggests an increase in the complexity of the research being reported.
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produced via increasingly complex models fit to
the same data, the observation of a rising number
of P values may indicate a trend, already noted in
ecology, toward the overfitting (inclusion of too
many parameters) of models and theory (Ginzburg
and Jensen 2004). If a trend toward overfitting
exists, one would expect an increase in measures of
model fit, but this improved fit would come with a
decrease in predictive power when the model is
applied to new data. R2 values can be a measure of
either model fit or its predictive power when the
model is applied to novel data.

Explanatory power

We found that the mean R2 values reported per
paper have decreased linearly with time
(weighted linear regression R2 = 0.62; Figure 3). If
we extrapolate the current rate of decline (–0.005
per year) far outside the range of our data, we
would make the improbable but alarming predic-
tion that ecology’s marginal explanatory power
will be zero within the next 100 years (WebPanel
1). This decline is consistent across all subdo-
mains of ecology. All topics for which a signifi-
cant trend could be detected exhibit a marked
decline in R2 values (WebPanel 3; WebFigure 2).
This pronounced decline contrasts with previous work in
criminology, which found no trend in R2 values over
approximately the same time interval (Weisburd and
Piquero 2008). Although authors in other fields have
warned that small R2 values can be obtained from the
analysis of variables that do have important effects
(“Abelson’s paradox”; Rosenthal and Rubin 1979;
Abelson 1985; King 1986), here we are not interested in
the importance of specific variables but in ecology’s gen-
eral ability to explain or predict variance. Furthermore, to
be explained by such a phenomenon, the trend observed
in R2 values would require an increase in the relative fre-
quency of studies reporting variables that have little
explanatory power but are of major biological impor-
tance. Although we have no objective method for con-
firming or refuting the existence of these patterns, we
have no a priori reason to expect a change in the ratio of
explanatory power to biological importance.

Even with the observed decrease, our findings provide
an encouraging indication that ecologists are far better at
explaining variation than has previously been reported.
Whereas Jennions and Møller (2002) suggested a dismal
2.51–5.42% of variation explained by ecologists, we find
an overall mean R2 of 0.55 (55% of variance explained)
over the time period we analyzed, and an average of 0.51
after the year 2000. Part of this difference may be due to
differences in the type of statistic presented. Jennions and
Møller (2002) calculated R2 values from other statistics
presented in reports of meta-analysis, whereas we consid-
ered only directly reported R2 values. Ecologists obtaining

low R2 values may prefer to present alternative statistical
values, such as P value, effect size, or a coefficient of cor-
relation (r value). For example, r values, which range
between 0 and 1, are always larger than their equivalent
squared value (R2). Our finding supports this bias in
choice of statistics or associated analysis; for equivalently
low explanatory power, more r values are reported than R2

values (WebFigure 3). The relatively high mean R2 value
found in ecology suggests a strong capacity to explain or
predict phenomena and an increasing confrontation of
theory with measurements, and the increasing complex-
ity of phenomena under study suggests that ecology is a
maturing science. This trend may not be specific to ecol-
ogy and similar studies should be performed in other
fields. Nonetheless, the decline in predictive power
requires explanation, and possibly corrective action. We
propose three main potential mechanisms for the declin-
ing explanatory power in the articles reviewed: (1) the low
hanging fruits of ecology have been picked bare, (2) we are
progressing toward the true mean explanatory power of
ecology, or (3) there has been a steady shift in the “publica-
tion bias” within the development of the discipline, or at
least in the journals reviewed (WebPanel 1).

n Hypotheses for observed trends 

Low hanging fruit

The low hanging fruit hypothesis proposes that simple
discoveries are made early in the development of a disci-

1.00

0.75

0.50

0.25

0.00
R

2

1930                 1950                 1970                1990                 2010

Year

Yearly mean of the
maximum of R2 values in each paper

mean of R2 values in each paper

minimum of R2 values in each paper

Figure 3. Maximum (pale blue), mean (dark blue), and minimum
(green) R2 values reported as yearly means. The trend lines are weighted
least squares regressions (R2 = 0.62 and slope of –0.005 per year for
mean values). The error bars are 95% confidence intervals of the mean.
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pline and what remains to be explained, at the margins, is
increasingly complicated and difficult to reach. In ecology,
there appears to be a trend away from single species studies
toward more complex community studies, as well as less
emphasis on topics that are more observational and
arguably less dependent on statistics, such as behavior and
physiology, with concurrent increases in statistically com-
plex topics such a biodiversity (Carmel et al. 2013).
Explaining phenomena involving only a single species may
be simpler, leading to higher R2 values, whereas explaining
patterns in communities may be comparatively more diffi-
cult; many more unobserved factors are at play, resulting in
lower R2 values. This may be reflected by a change in the
level of interpretation being made, from explanations con-
tingent on the specific conditions of the study system to
generalized non-contingent interpretations. 

The low hanging fruit hypothesis has also been pro-
posed as an explanation for trends across other scientific

disciplines (Huebner 2005; Arbesman 2011). For exam-
ple, large planets, large mammals, and more stable ele-
ments were discovered first (Arbesman 2011). In general,
science appears to follow a characteristic development
pattern from simple to specialized (Strumsky et al. 2010)
and experiments executed by a single scientist evolve
into complex manipulations requiring large infrastructure
and more personnel (Wuchty et al. 2007; Jones et al.
2008). The low hanging fruit hypothesis may explain the
observed decrease in R2 values as simple and strong rela-
tionships between variables become exhausted over time.
Known strong relationships could also be increasingly
controlled for in experiments and observations, with
analysis focusing on the effect of novel marginal vari-
ables. In addition to falling R2 values, the low hanging
fruit hypothesis is supported by the observed increase in
complexity within the articles, as denoted by the increas-
ing number of P values. This hypothesis is an expression
of diminishing marginal returns (WebPanel 1). In a
maturing science, where the low hanging fruits have been
removed, more effort is required to obtain the same mar-
ginal gains in explanatory power that would have been
easily achieved in the past.

True mean explanatory power

Increased effort, possibly in the form of additional repli-
cation and larger sample sizes, may provide a second
explanation for the decline in R2 values. As a result of the
“law of large numbers” (stating that the average con-
verges toward the expected value), greater sample sizes in
ecological studies would lead to statistics, including esti-
mates of R2, converging toward the population values of
those parameters. Larger sample sizes, in concert with a
publication bias (see Lortie et al. 2007) toward statisti-
cally significant results, could lead to a decline in the
average R2 value reported. Such a publication bias in
favor of larger R2 values, at least as perceived by ecolo-
gists, is suggested by their preference for the presentation
of correlation coefficients (r) rather than coefficient of
determination (R2) when values are low (WebFigure 3).
A funnel plot best illustrates the combined effect of con-
stant publication bias and increasing sample size (Figure
4; Murtaugh 2002; Strumsky et al. 2010). In the past, low
sample sizes would lead to a large range of R2 values, only
the highest of which would correspond with statistically
significant effects and would therefore be published (all
others would be relegated to the “file drawer”). As time
progresses, larger studies with more statistical power
would be able to obtain lower R2 values that remain sta-
tistically significant. The yearly mean of R2 values would
thus decline steeply at first, but the rate of decline would
subsequently slow and the mean value would near the
true explanatory power of the field as sufficient mean
sample size is reached. Such declines over time in esti-
mated parameters have been observed for effect sizes
when attempts were made to replicate novel findings and
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theoretical frameworks (Palmer 2000; Leimu and
Koricheva 2004). Consistent with this hypothesis, we
observed an increase in the number of replicates as seen
by an increase of 4.4 units per year in mean denomina-
tor degrees of freedom in reported F ratios and a dou-
bling every 5 years in maximum denominator degrees of
freedom over the same time period (WebFigure 4). If
this hypothesis is valid, it does not bode well for ecol-
ogy’s explanatory power, given that the rate of decline
in R2 values does not seem to have slowed; we would
expect the true mean R2 for the field of ecology to be far
below current levels. This low average across ecology
may indeed hide cases of strong explanatory power
within some subdisciplines or for specific phenomena.
This hypothesis may be tightly linked to the low hang-
ing fruit hypothesis, as the larger sample sizes are neces-
sary to detect weaker and more obscure relationships or
general ubiquitous relationships that are left to be elu-
cidated. Both of these hypotheses affect the distribu-
tion of reported R2 values via a filter, acting at the pub-
lication stage (publication bias), that remains constant
over time; however, publication bias may change
through time.

Shifting publication bias

A third alternative explanation for the observation of
decreasing R2 values may be attributed to a temporal shift
in publication biases. This hypothesis posits that
researchers are producing the same distribution of R2 val-
ues over time, but that studies including R2 values that
would have been rejected in the past are now getting pub-
lished, or that studies with higher R2 values are being
published in other journals than those under considera-
tion here. As can be seen conceptually, through the use of
a funnel plot, publication bias on P values can affect the
distribution of R2 values being reported (Figure 4). Thus,
the change in publication bias may also be acting on R2

values indirectly through a similar, more lenient selection
based on higher P values. A potential shift in publication
bias, acting directly on R2 values or indirectly through P
values, could have been caused by the changes in ecol-
ogy’s publication landscape or by a growing recognition of
the importance of publishing “negative results” (Web-
Panel 1). The number of journals in the field of ecology
has grown steadily (Bergstrom and Bergstrom 2006).
While Ecology, the Journal of Ecology, and the Journal of
Animal Ecology have persisted, their allure to ecologists
with statistical results to report, including strong R2 val-
ues, might have declined. Current influence metrics (eg
ISI impact factor, eigenfactor, or influence factor) do not
have the historical depth to allow us to measure the
potential decline in the importance of the journals stud-
ied. However, a study of contemporary ecological journals
suggests that impact factor, a surrogate for journal influ-
ence, does not attract studies with larger effect sizes
(Lortie et al. 2013). Within some subdisciplines, however,

journal impact factor sometimes influenced effect size
(Murtaugh 2002) and studies with disconfirming evi-
dence were published in lower impact journals (Leimu
and Koricheva 2004). Alternatively, there may be a
decrease in the standards required to publish in these
journals or in the field of ecology as a whole, as journals
compete for articles to fill their pages (Bergstrom and
Bergstrom 2006). There may also be a shift toward the
publication of studies that present results that do not
meet statistical cutoffs in an effort to alleviate problems
associated with the “file-drawer effect” (WebPanel 1). For
example, a greater number of studies failing to replicate
the statistically significant results of previous studies
could be getting published. Questions remain about the
importance of the role of the publication process as a fil-
ter, to separate the wheat from the chaff, compared to the
risk of limiting the dissemination of valid science.

n Looking forward

A combination of the proposed hypotheses is possibly dri-
ving the observed trends in R2 values being reported in
the ecological literature. The absence of low hanging
fruit, a move toward true mean explanatory power, and a
potential shift in publication bias could all be acting in
concert in different disciplines or differentially across
time. Irrespective of the causal mechanism of the
observed decline in R2 values, the observed trend pro-
vides an impetus to evaluate procedures and motivations
of the discipline. Among these are the relative strengths
of the incentives offered to researchers for undertaking
marginal improvements on existing studies rather than
risk-taking and original research (Alberts et al. 2014), and
for their capacity to produce statistically significant
results rather than for their ability to explain and ideally
predict ecological patterns and processes (Fischer et al.
2012; Loyola et al. 2012). We recognize that models need
not always explain large amounts of variation to be use-
ful, and that prediction need not be the sole criterion of
success in ecology (Odenbaugh 2005). 

As the discipline progresses, we should be aware of the
tension between expanding the frontier of ecology, with
its focus on high-dimensional and interacting systems,
and the historical approach to understanding simpler
systems and making useful predictions. Strong predic-
tive and explanatory power as one product of the study
of ecology has never been more crucial to help us antic-
ipate and cope with global change (Clark et al. 2001).
Applications of ecological science linked to environ-
mental conservation and restoration will be essential to
anticipate and abate global trends of environmental
degradation. Analyses of the production and dissemina-
tion of research findings like those presented in this
study will help to ensure the continued contribution of
ecological research to both our fundamental under-
standing and management of natural systems in a
changing world.
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