# Write model model { for (i in 1:n) # for each of the plants { y[i] ~ dnorm(mean[i], prec) # assume normal distribution mean[i] <- b[1] + b[2]*x[i] + b[3]*x2[i] + b[4]*tp[i] + b[5]*x[i]*tp[i]+ b[6]*x2[i]*tp[i] } # uninformative priors for (i in 1:6) { b[i] ~ dnorm(0, 1.0E-6) } prec ~ dgamma(0.001, 0.001) }