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ABSTRACT Lack of independence, or pseudoreplication, in samples from ecological studies of
insects reßects the complexity of working with living organisms: the Þnite and limited input of
individuals, their relatedness (ecological and/or genetic), and the need to group organisms into
functional experimental units to estimate population parameters (e.g., cohort replicates). Several
decades ago, when the issue of pseudoreplication was Þrst recognized, it was highlighted that
mainstream statistical tools were unable to account for the lack of independence. For example, the
variability as a result of differences across individuals would be confounded with that of the exper-
imental units where they were observed (e.g., pans for mosquito larvae), whereas both sources of
variability now can be separated using modern statistical techniques, such as the linear mixed effects
model, thatexplicitlyconsider thedifferent scalesofvariability inadataset (e.g.,mosquitoesandpans).
However, the perception of pseudoreplication as a problem without solution remains. This study
presents concepts to critically appraise pseudoreplication and the linear mixed effects model as a
statistical solution for analyzing data with pseudoreplication, by separating the different sources of
variability and thereby generating correct inferences from data gathered in studies with constraints
in randomization.

KEYWORDS linear mixed effects model, Culex quinquefasciatus, Anopheles nuneztovari, bootstrap,
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Pseudoreplication is probably one of the most widely
cited and misunderstood concepts in the statistical
analysis of ecological studies on insects and other
organisms. Pseudoreplication is deÞned as “the use of
inferential statistics to test for treatment effects with
data from experiments where either treatments are
not replicated . . . or replicates are not statistically dif-
ferent . . .” (Hurlbert 1984). This concept has been
very inßuential and pervasive, to the extent that pseu-
doreplication is widely cited as a major ßaw of most
Þeld studies (Heffner et al. 1996). HurlbertÕs major
claim was correct, and he basically showed that main-
stream statistical tools at that time (e.g., analysis of
variance) were not suitable for the analysis of most
experimental designs. However, the uncritical ap-
praisal of his study has been a major barrier for the
publication of results and, therefore, the advancement
of ecology (Oksanen 2001). HurlbertÕs study did not
prevent the unsuitable analysis of valuable datasets or
the proliferation of unsound experimental practices,
such as the movement of sampling units to control for
spatial/temporal variability (Alto and Juliano 2001a,
2001b; Reiskind and Wilson 2004). As thoughtfully

presented by Oksanen (2001), the goal of ecological
studies is not the application of statistical analysis to
ecological data per se, but rather its application to the
understanding of ongoing ecological phenomena from
variation of individual phenotypic traits to the assem-
blages of organisms in populations, communities, and
ecosystems. Unlike physics or chemistry, in which the
supply of individual objects of study is practically
unlimited, the objects of study for an entomologist (or
more generally a naturalist) are Þnite and constrained.
Thus, limitations in randomization will likely arise, and
the science of statistics has developed new solutions to
correctly analyze the lack of independence in Þeld
data since HurlbertÕs study (Millar and Anderson
2004). The current forum article presents the follow-
ing: 1) key concepts of experimental design to criti-
cally appraise and demystify the concept of pseu-
doreplication; 2) linear mixed effects models
(LMEMs) as powerful tools to analyze data originated
from constrained designs or to produce more general
inferences from classical randomized designs (e.g.,
blocks); and 3) how these tools can be used to further
gain insights from the data that can strengthen our
understanding of insect ecology. In developing point
2, equations and a guide to interpret them as models
used to analyze common entomological data are pre-
sented, as well as the implementation of this type of
analysis in the open source software R.
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Field Studies, Experiments, and Statistical Data
Analysis

Experiments are one of the major tools for hypoth-
esis testing (Fisher 1935). In general, the idea is to
subject individual units of observation to varying de-
grees of independent and/or controllable factor(s),
and to determine how the levels of variation explain a
given pattern (Box 1980). Field studies focus on the
impacts of natural (or controlled) variation in envi-
ronmental factors on individual units of observation.
Hypothesis testing has been central to the develop-
ment of modern science, to the point that hypothesis-
driven experiments or Þeld studies are one of the most
prominent requirements for project support by fund-
ing agencies. One of the major reasons for the wide-
spread appeal of hypothesis-driven experiments and
Þeld studies has been their close association with tools
for data analysis to determine the impact of different
independent variables. The best example of a statis-
tical tool guiding experimental design is the use of the
linear model (LM). This model assumes that variabil-
ity across a set of individual units of observation (yi)
is explained by a series of n independent variables (x1,
x2, . . . , xn) and by a unique source of unexplained
variability, normally referred to as error (�). These
models are linear, because the parameters enter lin-
early into the equation that relates the independent
variables to the outcome (Faraway 2006, Chaves and
Pascual 2007). A major constraint of these models is
that they assume total independence among the sub-
jects of study, i.e., individual observation units are
unrelated at least within strata (i.e., after accounting
for the explanatory variables), which is the formal
deÞnition of “replication.” When there is a lack of
independence across objects of study (i.e., pseudorep-
lication), the use of LMs with a unique source of
variability is inappropriate, because the variability is
modeled incorrectly and can lead to spurious infer-
ences. For example, if mosquitoes are reared in pans
(orkissingbugs in jars) tomeasurebodysizeofemerg-
ing adults from different experimental conditions, the
lack of independence that arises from the aggregation
into pans (or jars) will inßate the error value (a.k.a.
residual variance) of the LM, in some cases leading to
incorrect inferences when the LM is compared with a
model that explicitly models the lack of independence
because of the aggregation into a functional experi-
mental unit (i.e., the pan or jar). More than 20 yr ago,
because of the limited statistical toolbox in ecology,
this issue was a major problem for the correct analysis
of datasets from studies with design constraints (Hurl-
bert 1984). However, strategies to handle the problem
of pseudoreplication were around at the time. For
example, in evolutionary ecology, individuals have
different degrees of common descent, and this vari-
ability by itself is often a subject of study. In the 1980s,
it was common to use nested half-sibling designs to
estimate the variance of families and individuals be-
longing to those families (Conner and Hartl 2004).
Also, the use of deÞned designs such as Greco-Roman
squares, Roman squares, and fractional factorials was

well established in the Þeld of engineering and process
control (Montgomery 2005). Some of these balanced
designs were even used in studies of medically im-
portant insects (Carpenter 1982, Chesson 1984). In
fact, sophistication in randomization, when possible,
can be very useful to evaluate the impact of strategies
to control human-vector contact (Kirby et al. 2008).
For example, randomized control trials have been
used to demonstrate the importance of mosquito
screening in reducing the risk of malaria transmission
(Kirby et al. 2009). However, one of the major limi-
tations of designs that handle pseudoreplication is the
need for balanced designs, i.e., an equal number of
replicates per treatment. The inability to analyze un-
balanced designs with unequal number of replicates
per treatment has been overcome with the develop-
ment of maximum likelihood methods, especially the
restricted maximum likelihood method and its appli-
cation to estimate LMEM (Pinheiro and Bates 2000).
LMEM has the same fundamental assumptions of the
LM; it tries to explain the sources of variability across
a set of individual units of observation (yi) as function
of a series of n independent variables (x1, x2, . . . ., xn),
referred to as “Þxed factors,” but it can incorporate
additional sources of variability (the random factors),
besides the error (�). The random factors can accom-
modate the lack of independence among the individ-
ual units of observation as a result of spatial, temporal,
genetic, or any exogenous environmental factor that is
not fully randomized. For example, the variance of
functional experimental units such as pans for mos-
quitoes or jars for kissing bugs can be explicitly mod-
eled, thus allowing the proper estimation of the
error variance, and thus limiting the chances of
committing a type II error, i.e., rejecting the null
hypothesis when true. Therefore, LMEMs allow the
statistical analysis of pseudoreplicated data. The
next section will provide a series of examples illus-
trating the use of LMEMs and how they compare
with similar LMs. The data used in the examples and
code to perform the analyses using the open source
statistical software R are included as supplementary
online material (http://www.envs.emory.edu/research/
Chaves_SOM_Pseudoreplication.html).

LMs Versus LMEMs

Factorial Designs. To illustrate the most basic dif-
ferences between LMs and LMEMs, I reference a Þeld
experiment designed to study oviposition by Culex
quinquefasciatus Say in Atlanta, GA (Chaves et al.
2009). Cx. quinquefasciatus larvae are normally absent
from lotic systems, such as rivers and creeks. However,
several cities have relic sewage treatment systems
where runoff water and sewage are combined in the
same system, and after large rainfall events the com-
bined sewage efßuent can overßow into urban water
bodies (Chaves et al. 2009). In this experiment, the
effects of combined sewage overßow water and nu-
trient addition on oviposition site selection by this
mosquito species were studied using 10 experimental
pools (water containers) at four sites in a forest patch.
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For this example, data will be used from the experi-
ment when egg rafts were removed daily. Data use has
been restricted to a randomly extracted subsample
from the original data (only four pools per site) to
have a dataset similar to that of a balanced design. In
this experiment, oviposition (y) was measured by
counting the total number of egg rafts oviposited over
5 d. The experiment has three independent variables
(i.e., n � 3): 1) x1 � water quality (with two levels:
combined sewage overßow water and tap water as
control); 2) x2 � nutrient addition (added or absent
as control); and 3) x3 � sites (four in total). Only x1
and x2 are factors (each with two levels), because x3
is an independent variable considered to test the
block effects of forest site on oviposition. Because
all treatments were present at each site, this is a
randomized block 2 � 2 factorial design, which is
randomized because both factors were present in all
four sites (blocks in the model), and 2 � 2 factorial
because each factor has two levels. The goal of a
factorial experiment is to test whether the factors
interact, which can be expressed by the following
LM:

yil � � � �1x1 � �2x2 � �3x1x2 � �4x3l � �il [1]

where � is the average value of the observations; �1,
�2, and �4 quantify the impact of each independent
variable; �3 the interaction of water quality and nu-
trient addition; and � is the error, which is assumed to
be normally distributed. The subscript l denotes block
(site within the forest patch), and i is for individual
pools within a block (containers in a forest site).
Therefore, yil is the total number of rafts from a
given pool and block (i.e., container in a site). Table
1 shows the results of the analysis of variance for the
data using the model presented in (1). The natural
logarithm transformation of ln (y � 1) is done to
normalize the data and fulÞll model assumptions.
Table 1 shows that neither block nor the interaction
between water quality and nutrient addition was
signiÞcant (P � 0.05).

The inßuence of water quality and nutrients on Cx.
quinquefasciatus oviposition can be reanalyzed using a
LMEM. By contrast with the LM analysis, in which
inferences are done over blocks, the LMEM assumes
that blocks are random samples from a larger pop-

ulation and models block variability as a random
factor (Fig. 1). The equivalent to equation 1 for a
LMEM is:

yil � � � �1x1 � �2x2 � �3x1x2 � �l � �il [2]

where �, the �s, and y and � have the same interpre-
tation as in equation 1, and � quantiÞes the variability
across the blocks, which is assumed to be normally
distributed. The signiÞcance of factors can be tested
using F tests, which work well when designs are bal-
anced (equal number of samples per treatment and
block) and parameters can be estimated using maxi-
mum likelihood. More generally, signiÞcance may be
tested using parametric bootstraps, for balanced or
unbalanced designs where parameters are estimated
by restricted maximum likelihood (Pinheiro and Bates
2000, Faraway 2006). Table 2 shows the results of an
analysis of deviance, with parameters of equation 2
estimated using restricted maximum likelihood and
inference based on 1000 replications of parametric
bootstrap (an analysis in which datasets are simulated
and the results of likelihood ratio tests for studied
factors are compared with those of the true data to
compute the signiÞcance of factors). In this example,
inference about the impact of water quality and nu-
trient addition is qualitatively similar using LM or
LMEM. However, LMEM provides additional insight;
it indicates oviposition is Þnely grained. The variance
at the individual container level is larger than at the
block level (Table 2: � � 0.059 and � � 0.024), a
pattern also observed in the original study for the full
dataset (Chaves et al. 2009). The data can be observed
in Fig. 2.
Constrained Designs. One of the major limitations

of the LM is that it is not suited to analyze datasets with
constraints in randomization. For example, all repli-
cates from a treatment should be present in all blocks.
This is a frequent limitation in Þeld studies in which
features of a given landscape cannot be altered, an
underlying motivation behind split-plot designs, in
which some treatments do not vary across blocks.
Split-plots are widely used in agriculture (Faraway
2006) and economic entomology (Blumberg et al.
1997, Haile et al. 2000, Oyediran et al. 2007). However,
constraints in randomization can also arise as a prod-
uct of other trade-offs in experimentation or by the
nature of the questions asked. For example, the orig-
inal design of Chaves et al. (2009) was unbalanced in
the sense that each block had an unequal number of
replicates foreachoneof the treatments.However, for
each block the amount of total nutrients and water
quality was constant; one of the questions was to
determine the grain of mosquito perception for ovi-
position choices. The largest variance was among the
individual oviposition containers, indicating a Þnely
grained perception, in contrast to a scenario of
coarsely grained mosquito perception, in which the
largest variance would be expected for the blocks or
sites. To illustrate the analysis of constrained designs,
the original data of Chaves et al. (2009) are sampled
in such a way that all experimental pools with nutri-
ents added and combined sewage overßow water

Table 1. Analysis of variance for the effects of water quality
and nutrient addition on the ln of total number of egg rafts � 1
oviposited over 5 d by Culex quinquefasciatus in Atlanta, GA
(Chaves et al. 2009)

Factor df
Sum

square
Mean
square

F Value Pr(�F)

Water (�1) 1 0.653 0.653 10.1401 0.01111*
Nutrient (�2) 1 50.634 50.634 786.0312 4.54E-10*
Water � nutrient (�3) 1 0.013 0.013 0.2055 0.66105
Block (�4) 3 0.467 0.156 2.4186 0.13339
Error (�) 9 0.58 0.064

This design was balanced. Original data and R code for analysis are
in the supplementary online material (http://www.envs.emory.edu/
research/Chaves_SOM_Pseudoreplication.html).

*Statistically signiÞcant (P � 0.05).
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came from the same block (Fig. 2), and therefore the
design becomes unbalanced (Fig. 3). Thus, the LM
from equation 1 cannot be employed to analyze the
data, but the LMEM from equation 2 is suitable for
such an analysis. Results are presented in Table 3 and
are similar to those presented in Table 2, showing a
decreased variability in the blocks and a larger error.
In summary, LMEMs can uncover the same variance
pattern in data under pseudoreplication, a major ad-
vantage over LMs.

Spatial Variability

Organisms can be clustered in space, for example,
the larvae of mosquitoes can be associated with only
certain habitats where eggs are oviposited, thus mak-
ing their abundance autocorrelated in space (Pitcairn
et al. 1994). Several statistical tools can accommodate
the lack of spatial independence in data from Þeld
studies (Fortin and Dale 2005), and they have been
widely used with insects of medical importance
(Koenraadt et al. 2007, 2008; Vazquez-Prokopec et al.
2008). However, their description is outside the scope
of this article. LMEM can also be used to consider
spatial variability. LMEM are especially suitable for
cases when spatial scales are nested. For example,
mosquito larval samples coming from containers in
several houses that belong to the same neighborhood
are hierarchically nested. Several studies have used
this approach in recent studies on medically important
insects (Harrington et al. 2008, Chaves et al. 2009,
Gurtler et al. 2009). The LMEM Þtting procedure is
similar to the one used next to consider the lack of
temporal independence in longitudinal studies.

Longitudinal Studies

The fact that observations are repeated through
time in the same place (or from the same organisms)
can lead to data that are not independent and are
autocorrelated in time. One approach to this problem

Fig. 1. Blocks: Þxed or random? The left panel shows the case for blocks as a Þxed factor in LM, in which the assumption
is that inferences are exclusive for the observed blocks (within squares). The right panel shows the case for blocks as a random
factor in LMEMs, in which the observed blocks (within squares) come from a larger population (i.e., blocks inside and outside
squares). (Online Þgure in color.)

Table 2. Analysis of deviance for the effects of water quality
and nutrient addition on the ln of total number of egg rafts � 1
oviposited over 5 d by Culex quinquefasciatus in Atlanta, GA
(Chaves et al. 2009)

Fixed df Log likelihood LRT P 

Water (�1) 1 �7.241 5.874 0.009*
Nutrient (�2) 1 �31.089 53.569 0.000*
Water � nutrient (�3) 1 �4.304 8.612 0.664

Random Mean square (variance)

Blocks (�) 0.024

Error (�) 0.059

This design was balanced. Original data and R code for analysis are
in the supplementary online material (http://www.envs.emory.edu/
research/Chaves_SOM_Pseudoreplication.html). LRT, likelihood ra-
tio test.

  Obtained with a parametric bootstrap.
*Statistically signiÞcant (P � 0.05).
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is to use repeated measurements analysis (Faraway
2006) and time series analysis techniques (Shumway
and Stoffer 2000, Chaves and Pascual 2007). Time
series techniques have been used for longitudinal
studies of some vectors (Hayes and Downs 1980,
Strickman 1988, Feliciangeli and Rabinovich 1998,
Scott et al. 2000, Salomon et al. 2004). Alternatively,
LMEM can model the lack of temporal independence
as a random factor, which is one of the many methods

for repeated measurements analysis (Faraway 2006).
Modeling the lack of temporal independence will be
illustrated by examining data from a study on the
biting and resting behavior of anophelines using ex-
perimental huts in three villages of western Venezuela
(Rubio-Palis and Curtis 1992). Mosquitoes were col-
lected during two nights per month and by catching
the landing mosquitoes on the legs of two catchers
between 1900 and 0700 hours, inside and outside ex-
perimental huts. Although several species were found,
only data for Anopheles nuneztovari Gabaldón from
Guaquitas collected between August 1988 and Octo-
ber 1989 will be analyzed in this study (Fig. 4). In this
case, the response or dependent variable (y) is the
total number of landings for all huts, as presented in
the original study (Rubio-Palis and Curtis 1992). The
Þxed factors are as follows: 1) x1, the site with two
levels, inside and outside the hut; 2) x2, the landing time
with 12 levels corresponding to the hours between 1900
and 0700 hours; and 3) x3, the rainfall season with two
levels: dry (December-May) and wet (JuneÐNovem-
ber). The random factors consider the different scales of
temporal variability: 1) �l, the year l; 2) �kl, the month k
within a given year l; 3) �jkl, the sampling day jwithin a
given month k and year l; and 4) �ijkl,which is the error
i (error for an observation belonging to day j within a
given month k and year l). All random factors are as-
sumed to be independent and normally distributed. The
model equation is as follows:

yijkl 	 � 
 �1x1 
 �2x2 
 �3x3 
 �4x2x3


 �l 
 �kl 
 �jkl 
 �ijkl [3]

In this model, � represents the mean value of all
observations; �1, �2, and �3 quantify the impact of each
independent variable on the number of landings; and
�4 the interaction of season and landing time. Note
that choice of factors is dictated by the study objective:
quantiÞcation of the seasonal nocturnal biting pattern
outside and inside the experimental huts. Such quanti-
Þcation requires landing time, site, and season to be
treated as Þxed independent variables. The other tem-
poral variables need to be random factors accounting

Fig. 2. Boxplots (median and quartiles) for the natural
logarithm number of Cx. quinquefasciatus egg rafts � 1: (A) in
the balanced (Tables 1 and 2) and (B) unbalanced (Table 3)
block designs to study the effects of water quality and nutrient
enrichment on oviposition. Tap indicates tap water and CSO
indicates combined sewage overßow water. Y stands for nutri-
ent addition, and N for no additional nutrients. Data extracted
from Chaves et al. (2009). Original data are available in the
supplementary online material (http://www.envs.emory.edu/
research/Chaves_SOM_Pseudoreplication.html).

Fig. 3. Unbalanced design. Note that one block contains
all samples with added nutrients and combined sewage over-
ßow water, and other treatments have unequal number
across other blocks. (Online Þgure in color.)

Table 3. Analysis of deviance for the effects of water quality
and nutrient addition on the ln of total number of egg rafts � 1
oviposited over 5 d by Culex quinquefasciatus in Atlanta, GA
(Chaves et al. 2009)

Fixed df Log likelihood LRT P 

Water (�1) 1 �10.45 5.477 0.012*
Nutrient (�2) 1 �29.03 42.638 0.000*
Water � nutrient (�3) 1 �7.711 0.0409 0.801

Random Mean square (variance)

Blocks (�) 5.0405e-14
Error (�) 0.125

This design was unbalanced (because of the sampling from the full
dataset). Original data and R code for analysis are in the supplemen-
tary online material (http://www.envs.emory.edu/research/Chaves_
SOM_Pseudoreplication.html). LRT, likelihood ratio test.

  Obtained with a parametric bootstrap.
*Statistically signiÞcant (P � 0.05).
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for the lack of independence that arises from the re-
peated measurements through time. There was no vari-
ability because of the year of the observation (�̂ � 0; see
supplementary online material http://www.envs.emory.
edu/research/Chaves_SOM_Pseudoreplication.html),
and a simpler model, without a parameter for the annual
variability, was Þt, as follows:

yijk 	 � 
 �1x1 
 �2x2 
 �3x3 
 �4x2x3 
 �k


 �jk 
 �ijk [4]

Results for this model are presented in Table 4. The
interaction between season and time and the main

effects of site and season are statistically signiÞcant
(P � 0.05). Daily observations for each month were
more homogeneous, having a lower variance than
those observations across months. For comparison
purposes, a LM was also Þt, as follows:

yi 	 � 
 �1x1 
 �2x2 
 �3x3 
 �4x2x3


 �i . . . [5]

Table 5 shows the results for the analysis with equa-
tion 5. All factors are signiÞcant with this model (P�
0.05). However, when compared with the model with
random effects, the main effect for landing time is not
signiÞcant when the lack of independence in the data
is properly modeled with a LMEM (Table 4). These
analyses illustrate one of the problems of incorrectly

Fig. 4. Boxplots (median and quartiles) for the hourly number of Anopheles nuneztovari landings: (A) outside the house,
dry season; (B) inside the house, dry season; (C) outside the house, wet season; (D) inside the house, wet season. Data
extracted from Rubio-Palis and Curtis (1992). Original data are available in the supplementary online material (http://
www.envs.emory.edu/research/Chaves_SOM_Pseudoreplication.html).

Table 4. Analysis of deviance for the effects of site, landing
time, and season on Anopheles nuneztovari abundance in Guaqui-
tas, Venezuela (Rubio-Palis and Curtis 1992)

Factor df Log likelihood LRT P 

Site (�1) 1 �3550 15.1 0.000*
Landing time (�2) 11 �3619 154.2 0.073
Season (�3) 1 �3548 11.2 0.000*
Landing time �

season (�4)
11 �3542 124.4 0.000*

Random Mean square (variance)

Month (�) 751.46
Day (�) 182.68
Error (�) 1669.42

Original data and R code for analysis are in the supplementary
online material (http://www.envs.emory.edu/research/Chaves_
SOM_Pseudoreplication.html). LRT, likelihood ratio test.

  Obtained with a parametric bootstrap.
*Statistically signiÞcant (P � 0.05).

Table 5. Analysis of variance for the effects of site, landing
time, and season on Anopheles nuneztovari abundance in Guaqui-
tas, Venezuela (Rubio-Palis and Curtis 1992)

Factor df
Sum

square
Mean
square

F Value Pr(�F)

Site (�1) 1 17,914 17,914 6.727 0.009704*
Landing time (�2) 11 162,525 14,775 5.5483 1.55E-08*
Season (�3) 1 286,446 286,446 107.5666 �2.2e-16*
Landing time �

season (�4)
11 77,851 7077 2.6577 0.002432*

Error (�) 671 178,6849 2663

Original data and R code for analysis are in the supplementary
online material (http://www.envs.emory.edu/research/Chaves_
SOM_Pseudoreplication.html).

*Statistically signiÞcant (P � 0.05).
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modeling the lack of independence across observa-
tions: the LM rejects a null hypothesis that is true
(type II error) by saying that landing time by itself is
signiÞcant (Table 5), when in reality it is only signif-
icant when considered in conjunction with the season
(Table 4).

Pseudoreplication: an Issue of the Past

As shown in this forum, pseudoreplication no longer
is an issue preventing the statistical analysis of exper-
iments and Þeld studies. Current statistical tools such
as LMEM can model the lack of independence in Þeld
observations. However, pseudoreplication will most
likely always be present in any ecological study, be-
cause of the complexity of working with living organ-
isms that constrains full randomization or limits the
number of replicates. Although other objects of study,
like molecules or atoms, are numerous and wide-
spread, samples of living organisms are comparatively
few and organisms always are evolutionary and eco-
logically related at some scale. Although this forum has
been focused on demystifying statistical concepts and
presents how to use LMEM models to address the lack
of independence in datasets, the ingenuity of statisti-
cians is laudable because many other techniques out-
side the scope of this article have been developed over
recent years. A best example includes the extension of
LMEM to accommodate non-normal observations in
generalized LMEMs (Bolker et al. 2009). Other tools
that do not consider the individual variability of ob-
servations, but rather the average across all samples,
like the generalized estimating equations (Faraway
2006), can address the lack of independence in ob-
servations, and have been used in the study of med-
ically important insects (Lindblade et al. 2000, Gure-
vitz et al. 2009). A third line of new computer-based
tools, including neural networks, trees (Olden et al.
2008), and random forests (Ruiz et al. 2010), does not
have assumptions on data independence, and has been
successfully used to study insects of public health
importance (Hu et al. 2006, Ruiz et al. 2010). Thus,
pseudoreplication should no longer be considered as
a major ßaw that impairs the statistical analysis of
experiments and Þeld studies. Independence con-
straints in the manipulation and observation of organ-
isms are adequately handled by many available statis-
tical tools, thus enabling valid inferences from
valuable entomological data.
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