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Dormant life stages are often critical for population viability in stochastic environments, but accurate field data characterizing 
them are difficult to collect. Such limitations may translate into uncertainties in demographic parameters describing these 
stages, which then may propagate errors in the examination of population-level responses to environmental variation. 
Expanding on current methods, we 1) apply data-driven approaches to estimate parameter uncertainty in vital rates of 
dormant life stages and 2) test whether such estimates provide more robust inferences about population dynamics. We 
built integral projection models (IPMs) for a fire-adapted, carnivorous plant species using a Bayesian framework to estimate 
uncertainty in parameters of three vital rates of dormant seeds – seed-bank ingression, stasis and egression. We used stochastic 
population projections and elasticity analyses to quantify the relative sensitivity of the stochastic population growth rate 
(log ls) to changes in these vital rates at different fire return intervals. We then ran stochastic projections of log ls for 1000 
posterior samples of the three seed-bank vital rates and assessed how strongly their parameter uncertainty propagated into 
uncertainty in estimates of log ls and the probability of quasi-extinction, Pq(t). Elasticity analyses indicated that changes 
in seed-bank stasis and egression had large effects on log ls across fire return intervals. In turn, uncertainty in the estimates 
of these two vital rates explained  50% of the variation in log ls estimates at several fire-return intervals. Inferences about 
population viability became less certain as the time between fires widened, with estimates of Pq(t) potentially  20% 
higher when considering parameter uncertainty. Our results suggest that, for species with dormant stages, where data is 
often limited, failing to account for parameter uncertainty in population models may result in incorrect interpretations of 
population viability.

Variation is the rule, rather than the exception, in natural 
settings (Tuljapurkar 1990, Boyce et  al. 2006, Morris 
et  al. 2008, Ehrlén et  al. 2016). Selection pressures have 
emerged that shape strategies maximizing the passing on of 
genes to the next generation in the light of such a variation 
(Benton and Grant 1996, Smallegange and Coulson 2013). 
Dormancy is a life history strategy allowing organisms to 
avoid stress (Grime 1977) via sporulation in microorganisms 
(Pozzi et al. 2015), diapause in some animals (Schiesari and 
O’Connor 2013), or persistent seed banks in many plants 
(Doak et  al. 2002). In the latter, seeds delay germination 
under environmental unpredictability, compensating for the 
risk of mortality associated with other stages through time 
(Cohen 1966, Venable 2007).

Persistent seed banks play a crucial role in the viability 
of many plant populations (Baskin and Baskin 1998, Doak 
et al. 2002), including in rare and invasive species (Adams 
et  al. 2005, Gioria et  al. 2012). Seed dormancy typically 
evolves in habitats where important events, such as pre-
cipitation (Gremer and Venable 2014) or fires (Quintana-
Ascencio et  al. 2003, Menges and Quintana-Ascencio 

2004), are unpredictable. In these habitats, plant species 
with high temporal variation in reproductive output and 
high risk of reproductive failure with increasing envi-
ronmental stochasticity typically produce dormant seeds 
(Baskin and Baskin 1998, Venable 2007, Tielbörger et al. 
2012). The resulting seed banks may buffer against envi-
ronmental stochasticity (Cohen 1966, Rees et  al. 2006) 
and, in turn, against genetic drift (Honnay et  al. 2008). 
Therefore, seed banks are of great interest in ecological 
and evolutionary processes because they may provide an 
important link between environmental stochasticity and 
population viability.

Understanding how seed banks influence population 
dynamics in stochastic environments is crucial to accu-
rately project population trends (Menges 2000, Adams 
et  al. 2005). Plant species with persistent seed banks may 
optimize fitness in stochastic environments by decoupling 
two key demographic processes: reproduction and survival-
dependent growth (Doak et  al. 2002). On the one hand, 
seeds that enter (ingress) and remain dormant (stasis) in the 
seed bank do not contribute to immediate germination and 
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aboveground growth, therefore lowering apparent short-term 
population growth rate estimates ( λ ). On the other hand, 
germination (egression) from the seed bank can be triggered 
by environmental cues at a later time (Venable 2007), thus 
increasing λ . Failing to accurately describe seed-bank tran-
sitions and the uncertainty around related parameters may 
therefore result in flawed estimates of projected population 
growth rates and extinction probability (Higgins et al. 2000, 
Doak et al. 2002).

Parameter uncertainty in general has been shown 
to contribute substantially to uncertainty in stochastic 
population models including dormant stages. However, 
the specific contributions to this uncertainty of vital-rate 
parameters describing seed-bank transitions remain little 
explored (Evans et  al. 2010, Elderd and Miller 2016). In 
part, this is due to the difficulty of obtaining data for such 
vital rates, which results in models omitting, using simpli-
fied, or using latent (unobserved) parameters (Doak et al. 
2002, Evans et  al. 2010). Obtaining long-term seed-bank 
data is challenging for two reasons: 1) seeds may persist in 
the soil for periods far exceeding our own lifespans (Shen-
Miller et al. 1995), and 2) due to their typically small size, 
tracking the fates of individual seeds in natural habitats 
without disrupting the soil is currently a nearly impossible 
task (Baskin and Baskin 1998, Navarra and Quintana-
Ascencio 2012). Consequently, even if data on seed banks 
are collected, researchers usually extrapolate their long-term 
fates (Fig. 1) from short-term field experiments or models 
(Menges 2000). These approaches are sensitive to parameter 
uncertainty due to relatively small sample sizes and must 
account for this uncertainty when estimating population 
dynamics.

Here we show that in population models incorporating 
limited data on critical vital rates describing seed-bank 
transitions, the related parameter uncertainty alone (inde-
pendent of other vital rates) may contribute greatly to the 
uncertainty around estimates of stochastic population 

dynamics. Therefore, incorporating parameter uncertainty 
into stochastic simulations will significantly improve 
demographic interpretations. Using the fire-adapted car-
nivorous Drosophyllum lusitanicum (Drosophyllaceae) as a 
case study, we quantified how parameter uncertainty in seed-
bank dynamics affected the potential interpretation of pop-
ulation-level responses to changes in fire regimes. The role of 
the seed bank is not well known for the study species, but we 
expected related vital rates to play a critical role in the esti-
mation of viability as has been shown for other fire-adapted 
species (Menges and Quintana-Ascencio 2004, Adams et al. 
2005). Building on existing approaches to separate sources 
of variation (Evans et  al. 2010, Elderd and Miller 2016), 
we developed Bayesian stochastic integral projection models 
(IPMs; Easterling et al. 2000, Ellner and Rees 2006) using 
census data for above-ground and limited experimental  
data for the seed-bank transitions. We used elasticity analy-
ses to determine the relative sensitivity of the stochastic 
population growth rate, log ls, to changes in the mean of the 
three seed-bank vital rates. We then used stochastic simula-
tions of different fire return intervals and IPMs built from 
parameter samples of seed-bank vital rates to estimate nested 
levels of variation in log ls and assess the variation (uncer-
tainty) in estimates of the probability of quasi-extinction, 
Pq(t), among parameter samples. We provide R scripts to 
apply the models and simulations (Supplementary mate-
rial Appendix 1). Our results have important implications 
for the use of models to understand complex life cycles (e.g. 
those including diapause, vegetative dormancy, or migra-
tion) where vital rate quantification from data may contain 
high uncertainty.

Material and methods

Study species

We used data from natural populations of the fire-adapted, 
carnivorous short-lived subshrub Drosophyllum lusitanicum 
(Drosophyllaceae), (Drosophyllum hereafter) to build IPMs. 
This species is endemic to the southwestern Iberian Penin-
sula and northern Morocco and is associated with fire-prone 
Mediterranean heathlands (Paniw et  al. 2015). Natural 
heathlands burn every 40 years on average, but may burn 
as early as 10 years after fire or remain unburned for  70 
years (Ojeda 2009, Plan INFOCA 2012). Burned stands 
recover to mature vegetation within 3–5 years following fires 
(Calvo et  al. 2002), and shrubs outcompete above-ground 
Drosophyllum individuals (Paniw unpubl.). Plants flower  
in the second year after germination and produce hard-
coated, pear-shaped seeds (2.48 cm  0.1 SE in length; 
Salces-Castellano et al. 2016). Most seeds remain dormant 
in the soil, and mass germination occurs after fire (Correia 
and Freitas 2002, Supplementary material Appendix 2). 
Reproductive plants produce 9.1 ( 2.6) viable seeds per 
fruit and up to 66 fruits (6.0  0.3) per plant. Although 
viable dormant seeds can accumulate in vast numbers 
(Salces-Castellano et al. 2016), and populations persist largely 
as seeds in the soil in between fires (Paniw unpubl.), little is 
known about the importance of seed fates for population 
dynamics of this rare carnivorous species.

Figure 1. Possible fates of seeds after maturation at time t in the 
studied species Drosophyllum lusitanicum. Mature seeds either ger-
minate and become established as recruits (goCont) the growing 
season following maturation in t  1 or enter the persistent seed 
bank (goSB). Once in the seed bank, seeds may either survive 
another year without germinating (staySB) or germinate (outSB) at 
t  2, or in later years. Mortality of seeds or seedlings before estab-
lishment is indicated by red lightning bolts and was only estimated 
from data for seeds before they reach soil.
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Demographic data

We parameterized integral projection models (IPMs) with 
census and experimental field and laboratory data. We esti-
mated vital rates of individuals with above-ground biomass 
from five annual censuses (2011–2015) comprising a total 
of 1371 individuals from five populations spanning the dis-
tribution range of Drosophyllum in southwestern Spain. The 
populations differed with respect to the time since last fire 
of the habitat (TSF, hereafter), being two, four, six, 10 and 
29 years in 2015 (see Table A2.1 in Supplementary material 
Appendix 2 for details on TSF for all site–year combinations). 
Vital rates included survival (s), growth (g), probability of 
flowering (f0), number of flowering stalks (f1), number of 
flowers per stalk (f2), number of seeds per flower (f3), and 
seedling size distribution the next year (f4) (Supplementary 
material Appendix 2). The IPM’s state variable for its con-
tinuous component was size  log(no. of leaves  length 
of longest leaf (cm)), after model selection for s, g, f0 and 
f1. We also quantified above-ground seed survival from the 
demographic census data in each population and year as 
sS  1 – flower damage (Supplementary material Appendix 
2). We then used this parameter to modify vital rates describ-
ing seed production (f0, f1, f2, f3 and f4).

We performed two three-year field seed burial experiments 
and a greenhouse germination trial, overall using  5100 
seeds, to quantify the possible fates of seeds – including 
seeds in the seed bank, the discrete component in the IPM 
(Fig. 1). Details on all experiments can be found in Supple-
mentary material Appendix 2. Both field experiments were 
initiated in September 2012 and 2013, when reproductive 
Drosophyllum individuals release seeds. In one experiment, 
we randomly collected seeds from five populations and bur-
ied mesh bags containing 20 seeds each in recently burned 
and adjacent unburned heathland patches. We then dug out 
mesh bags 18 months after burial to estimate seed seed-bank 
stasis (staySB), which consisted of two probabilities: surviv-
ing and not germinating from the seed bank (Fig. 1). We 
assumed that the proportion of viable seeds encountered after 
18 months corresponded to stasis within one time interval in 
the IPMs (one year), ensuring that seed-bank dynamics were 
at the same time scale as the rest of the species’ life cycle 
modeled (Supplementary material Appendix 2). In a separate 
experiment, using the same design as in the mesh-bag burial 
experiment, we sowed 50 seeds  1 cm below the soil surface. 
We recorded germination 6 and 18 months after sowing to 
estimate, respectively, immediate seedling establishment, i.e. 
the probability of establishment in the spring following seed 
dispersal (goCont), and the probability of establishment, or 
egression, from the seed bank at least two springs after dis-
persal (outSB; Fig. 1). The vital rate outSB consisted of two 
probabilities that we could not separate: seedling emergence 
and survival to establishment (Fig. 1). We defined the pro-
portion of seeds entering the seed bank (goSB) as 1 – goCont 
– wS, where wS  seedling mortality prior to the census, i.e. 
seedlings that emerged four months after sowing but failed 
to establish (Supplementary material Appendix 2). Lastly, in 
greenhouse trials, we exposed seeds to heat and smoke treat-
ments and quantified germination, which we used as a proxy 
for seed-bank egression after fires (outSB in TSF0). Similarly, 
seed-bank stasis after fire was estimated from an examination 

of Drosophyllum seeds in soil samples from recently burned 
patches (Supplementary material Appendix 2).

Model parameterization

We used a Bayesian framework to fit all vital-rate mod-
els because of its advantages over frequentist approaches, 
including straightforward inclusion of spatial and temporal 
variation and ease of uncertainty simulation (Evans et  al. 
2010, Elderd and Miller 2016).

We modeled the above-ground vital rates as functions 
of size using generalized linear mixed models (GLMMs). 
To account for environmental variability in vital rates, we 
included TSF as a covariate in all vital-rate models. As heath-
land habitats  3 years after fire do not change significantly 
in species composition and structure, we organized TSF into 
a categorical variable consisting of 1, 2, 3 or  3 years since 
fire. IPMs for TSF0 (burning) consisted of stasis in and ger-
mination from the seed bank, with 0 transition probabilities 
elsewhere, reflecting the death of above-ground individuals 
by fire. Using the deviance information criterion (DIC), we 
chose the most plausible model for each vital rate (Table 1; 
see Supplementary material Appendix 3 for all candidate 
models). The best-fit models describing growth (g) and prob-
ability of flowering (f0) were defined as

g size sizei j i c i jc i s i( )( ) ( ) ( ) ( ) ( )µ α α β β α= + + × + × +0 	 (1)

where g() is the link function applied to the likelihood dis-
tribution of the response m for each individual i; a0 is the 
model intercept; aj is the mean response at each TSF level 
j, compared with the model intercept; bc is the overall slope 
for size; bjc is the change of the size slope at each TSF level 
j; and as is the random effect on the model intercept for 
each site s (Table 1). Ideally, both random temporal and spa-
tial variation should have been included, but our data did 
not offer enough degrees of freedom, as year  site interac-
tions are confounded with TSF effects. In our models we 
used only spatial variation. Sites were chosen to span the 
topographic gradient for our species (Supplementary mate-
rial Appendix 2). Size  TSF interactions (bjc) were not  
significant for survival (s), the number of stalks (f1), and 
number of flowers per stalk (f2), so these models contain 
only additive effects (Table 1). No data were available to link 
seedling size in time t  1 to parent size in t, and we there-
fore excluded the b parameters, keeping all other aspects 
of the general model design (Eq. 1, Table 1). Number of 
seeds per flower (f3) was treated as a constant in all models 
as it did not depend on size or TSF (likelihood ratio test, 
D  1.4, DF  1).

Vital rates related to seed-bank transitions (goSB, staySB 
and outSB, Table 1) were defined as binomial functions of the 
post-fire status of experimental patches (arranged as blocks), 
ap(r), for each replicate r, where p could be either burned or 
unburned, and a random block effect, ab:
g r p r b r( )( ) ( ) ( )µ α α α= + +0 	 (2)
The predictions obtained from Eq. 2 were then associated 
with different TSF categories, assuming that the fixed effects 
of models for the three seed-bank vital rates in burned and 
unburned patches represented dynamics in TSF1,2 and 
TSF3, 3, respectively (Table 2).
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Parameter uncertainty

We used MCMC sampling to estimate the distributions of 
all 99 model parameters quantifying vital rates. In all mod-
els, we used normal (m  0; 1/q2  1 10–06) or uniform 
uninformative priors for most fixed factors. The posterior 
sampling was based on 100 000 iterations, after a burn-in 
of 100 000 steps, using four chains and subsampling every 
400th simulated value (see Supplementary material Appendix 
3 for details on all priors and MCMC sampling procedures). 
We therefore obtained the parameter distributions for goSB, 
staySB and outSB from 1000 samples of the joint posterior 
distribution of the parameters a0 and ap(r) (Eq. 2). The full 
Bayesian models and application of MCMC convergence 
diagnostics can be found in the R script BayModel.R in 
the Supplementary material Appendix 1. We ran all MCMC 
simulations in OpenBUGS ver. 3.2.3 using the R package 
BRugs to create an R interface to OpenBUGS (Thomas et al. 
2006).

Stochastic simulations of population dynamics

We built the TSF-site specific IPMs for each posterior 
parameter sample (n  1000) associated with the vital rates 
describing seed-bank transitions: ingression into (goSB), 
stasis (staySB), egression from the seed bank (outSB), and 
both staySB and outSB. We sampled parameters for seed-
bank stasis and egression independently because seeds that 

IPM construction

In order to associate environmental (post-fire) states with 
vital rates in stochastic simulations, we built IPMs for  
each combination of TSF and site-effect estimates. The 
IPMs consisted of two coupled equations integrated over 
L  0 and U  9.6 sizes x at t to give a vector of sizes y at  
t  1. The lower and upper integration limits corresponded 
to the minimum observed size (individual with one, 1-cm 
long leaf ) and 1.1  maximum observed size, respectively. 
The first of the two equations describes the composition  
of the seed bank (S) at t  1 through the contribution of 
seeds produced by above-ground individuals (goSB) and 
dormant seeds remaining in the seed bank (staySB) at t:

S t S t staySB x x x goSBn x t dx
L

U

S+( ) = ( ) + ( ) ( ) ( ) ( )∫1 0 1 2 3ϕ ϕ ϕ ϕ σ ,  (3)

The second equation describes the dynamics of above-ground 
individuals through emergence and establishment of seed-
lings from the seedbank, survival of established individuals, 
and contributions of seedlings by reproductive individuals 
the previous year:

n y t S t outSB y

x y x

˘ x x x
L

U

,

,

+( ) = ( ) ( )

+ ( ) ( )

+ ( ) ( ) ( )

∫

1 3

0 1 2 3

ϕ

σ γ

ϕ ϕ ϕ ϕ σσ ϕSgoCont y n x t dx4 ( ) ( ),

	 (4)

Table 1. Parameterization of the models used to describe vital rates of Drosophyllum lusitanicum. The models shown described the data 
best among several candidate models. Superscripts indicate the names of parameters in the R scripts (Supplementary material Appendix 1). 
The distributions B, ℵ, and NB correspond to the Bernoulli, normal, and negative binomial distribution, respectively. TSF – time since last 
fire. PFS – post-fire habitat status. ∆DIC indicate the difference in values between the chosen model and the second-best model with fewer 
parameters, which could be a – intercept-only; b – size only; c – size  TSF. See main text and Supplementary material Appendix 3 for 
detail.

Vital-rate model Parameters Link function Likelihood distribution ∆DIC

Survival (s) µ α α β αsurv surv
j
surv

c
surv

s
surv site= [ ]+ + × +0 [TSF] size logit(s) σ (µ∼ B surv ) –432.0b

Growth (g) µ α α β β αgr gr
j
gr

c
gr

jc
gr

s
gr site= [ ]+ + + × +0 [ ] ( )TSF size none γ µ τ∼¿( , )gr gr

–5.0c

Probability of flowering (f0) µ α α β β αfl fl
j
fl

c
fl

jc
fl

s
fl site= [ ]+ + + × +0 [ ] ( )TSF size logit(j0) ϕ µ0 ∼ B fl( ) –9.0c

Number of flowering stalks (f1) µ α α β αfs fs
j
fs

c
fs

s
fs site= [ ]+ + × +0 [ ]TSF size log(j1) ϕ ,ρ µ1

fs fsNB∼ ( ) –7.0b

Number of flowers per stalk (f2) µ α α β αfps fps
j
fps

c
fps

s
fps site= [ ]+ + × +0 [ ]TSF size log(j2) ϕ ρ µ2

fps fpsNB∼ ( ), –5.0b

Seedling size (f4) µ α α αsds sds
j
sds

s
sds site= [ ]+ +0 [ ]TSF none ϕ µ τ3

sds sds∼¿( , ) –20.0a

Immediate germination (goCont) µ α α αgoCont goCont
p
goCont

b
goCont block= [ ]+ +0 [ ]PFS logit(goCont) goCont ∼ B goCont( )µ –38.2a

Stasis is seed bank (staySB) µ α α αstaySB staySB
p
staySB

b
staySB block= [ ]+0 + [ ]PFS logit(staySB) staySB ∼ B staySB( )µ –6.8a

Egression from seed bank (outSB) µ α α αoutSB outSB
p
outSB

b
staySB block= [ ]+ +0 [ ]PFS logit(outSB) outSB ∼ B outSB( )µ –206.0a

Table 2. Extrapolation of seed-related vital rates calculated from field experiments to time since fire (TSF) categories used to build integral 
projection models (IPMs) for Drosophyllum lusitanicum. The four vital rates estimated in burned (B) and unburned (U) heathland patches (see 
methods) were modeled as binomial functions (Table 1); Constant values (†) of vital rates in some TSF categories were obtained from soil seed 
bank cencuses (staySB in TSF0,1), a greenhouse germination trial (outSB in TSF0), measurements of seedling mortality (goSB in TSF2,3, 3), or 
censuses of actual field germination (c; Supplementary material Appendix 2 for details); sS is seed survival in TSF2,3, 3.

TSF0 TSF1 TSF2 TSF3 TSF 3

Immediate germination (goCont) 0 0 sS2  goCont_U c† sS3  goCont_U c† sS  3  goCont_U  c†

Ingression into seed bank (goSB) 0 0 sS2  (1-goCont_U-0.03†) sS3  (1-goCont_U-0.03†) sS  3  (1-goCont_U-0.03†)
Stasis in seed bank (staySB) 0.1† 0.05† staySB_B staySB_U staySB_U
Egression from seed bank (outSB) 0.81† outSB_B outSB_B  c† outSB_U  c† outSB_U  c†
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site IPMs at a given TSF state was randomly chosen, while 
the sequence of TSF states during the iterations was deter-
mined by the Markov-chain process (Fig. 2). For each simu-
lation, we calculated the stochastic population growth rate, 
log ls (Caswell 2001, Eq. 14.61). Scripts for the simulations 
of population viability are available in sLambdaSimul.R 
and sLambdaRmpi.R for implementation using parallel 
processing.

Our simulations therefore produced two nested levels of 
log ls estimates obtained from 1) 1000 samples of param-
eters, and 2) 100 simulations of population projections 
within each parameter sample (Fig. 2). Differences in log ls 
among parameters represented parameter uncertainty while 
differences among the 100 simulations represented environ-
mental variability. The latter variability consisted of both 
between-state (picking IPMs corresponding to different TSF 
categories at each iteration) and within-state (picking a site 
from the random effect estimates at each iteration) variability. 
We quantified the contribution of parameter uncertainty 

do not stay in the seed bank may die before successful 
establishment, i.e. outSB ≠ 1 – staySB (Fig. 1). We kept the 
remaining vital rate parameters at their average posterior val-
ues to assess effects of parameter uncertainty on estimates of 
population viability of seed-bank related vital rates only (see 
makeIPM.R in Supplementary material Appendix 1).

For each parameter sample, we ran 100 simulations of 
stochastic population projections to assess population via-
bility under a naturally occurring range of fire return inter-
vals for the study region (Ojeda 2009): 10 to 100 years 
at 10-year increments (Fig. 2). At each fire return inter-
val, we defined TSF transitions as a Markov-chain process 
with states corresponding to the five TSF categories: 0, 1, 
2, 3 and  3 years after fire and transitions between states  
corresponding to fire probability  1/fire return interval 
(Fig. 2). Each of 100 simulations for a given fire return inter-
val initiated with an IPM depicting TSF0, and population 
dynamics were projected for t  4000 years after discarding 
the initial 500 iterations (Fig. 2). At each iteration, one of five 

1,000 parameter samples for goSB, staySB, outSB

e.g.,
0 1 1

Vital rate Parameter sample Simulation log λs
goSB 1 1 - 0.02

goSB 1 2 - 0.05

goSB 1 3 0.02

goSB … … - 0.11

goSB 1000 100 …

Census data Field experiments+

Hierarchical Bayesian models fit to vital rates

100 stochastic simulations for each parameter

0.1 0.1 0.1 0.1 0.1

0.9 0 0 0 0

0 0.9 0 0 0

0 0 0.9 0 0

0 0 0 0.9 0.9

TSF
0

Environmental state matrix 

simulate

TSF
0
, TSF

1
,

IPM0C IPM1A IPM2A
t

t
+
1

TSF
1
TSF

2
TSF

3

TSF
>3

TSF
0

TSF
1

TSF
2

TSF
3

TSF
>3

time t

tim
e 
t
+
1

TSF
2
,

IPM3E

TSF
3
,

t

t
+
1

t

t
+
1

t

t
+
1

…

Figure 2. Hierarchical structure of simulations of the stochastic population growth rate, log ls, incorporating parameter uncertainty of three 
vital rates: seed-bank ingression (goSB), stasis (staySB), and egression (outSB; Fig. 1). Bayesian posterior distributions were sampled to 
obtain 1000 parameters for each vital rate. For each parameter, log ls were simulated from 100 stochastic projections, each run over 4000 
discrete time steps t using Markov chain transitions between five time-since-fire (TSF) environments (0, 1, 2, 3,  3). The transitions 
depended on 10 fire return intervals (here 0.1 probability of burning corresponds to 1 fire in 10 years). Each environmental TSF state was 
associated with five IPMs, one for each site (A–E) modeled in the study. The first row and column of IPMs (grey) depict seed-bank 
transitions. Differences in log ls estimates among the 1000 parameter samples and 100 stochastic projections depicted parameter uncertainty 
and environmental variability, respectively.
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ls, of Drosophyllum populations across fire return intervals 
(Fig. 3). In particular, changing the average of staySB pro-
duced the highest relative elasticities, Em, among all vital 
rates (0.5 at fire return interval of 100 years), followed by 
outSB. For both vital rates, relative Em increased with fire 
return interval (Fig. 3). Ingression into the seed-bank, goSB, 
had relatively low Em, remaining approx. 0.05 across the five 
fire return intervals simulated.

Influence of parameter uncertainty on estimation of 
population growth and extinction

In all simulations, average log ls decreased monotonically 
with increasing fire return interval (Spearman’s r  –1), while 
Pq(t) increased with increasing fire return interval (Fig. 4, 5). 
In simulations using mean parameter values, log ls vari-
ance decreased with increasing fire return interval because 
fewer TSF states (largelyTSF  3) were sampled at each itera-
tion with burning becoming less likely (Fig. 4). However, 
when uncertainties in staySB, outSB, or both were incorpo-
rated into simulations, estimates of log ls were more vari-
able compared to simulations based on mean parameters, 
and their variation increased with increasing fire return  
(Fig. 4). Accordingly, the proportion of variation among 
the 100 000 log ls estimates attributed to parameter uncer-
tainty varied across fire return intervals and vital rates 
sampled, being  0.01 for goSB and increasing from  0.1 
at 10 years to  0.7 at 100 years return interval for staySB  
and outSB (Fig. 4, Supplementary material Appendix 4  
Table A4.2). The largest contribution of parameter uncer-
tainty was obtained when including samples of both staySB 
and outSB into simulations (Supplementary material 
Appendix 4 Table A4.2).

The high uncertainty in the estimates of log ls at increas-
ing fire return intervals influenced potential inferences about 
population viability. Whereas the 100 projections of log ls 
based on environmental variability alone (grey boxplots in 

to variation in log ls by fitting a GLMM to the estimates 
of log ls  at each fire return interval treating the posterior 
parameters as a random effect (Evans et al. 2010). Lastly, we 
compared the distribution of log ls estimates when incorpo-
rating parameter uncertainty to estimates based on environ-
mental variability only. We obtained the latter by calculating 
log ls for 100 simulations using IPMs built from average 
parameter samples for each TSF category (makeIPM.R in 
Supplementary material Appendix 1).

From the mean and variance of the 100 log ls estimates at 
each posterior parameter sample and fire return interval, we 
analytically obtained the probability of quasi-extinction Pq(t) 
at t   50 and 100 years as described in Trotter et al. (2013). 
We chose the extinction threshold to be 0.01, i.e. popula-
tions were considered extinct when population sizes (includ-
ing seeds in the seed bank) fell to 1% of current population 
sizes (Quintana-Ascencio et al. 2003).

In order to compare the effects of changes in goSB, staySB 
and outSB on log ls, relative to other vital rates, at differ-
ent fire-return intervals, we perturbed each vital rate used 
to compose the IPMs by its mean, m, and standard devia-
tion, s, across all environmental states (see perturbVR.R 
in Supplementary material Appendix 1). We then used the 
chain rule to calculate 1) how these perturbations affected 
the IPM kernels, and 2) how the latter in turn affected log 
ls. These calculations provided us with elasticities, Em and 
Es of log ls to changes in the mean and variance of vital 
rates, respectively (Tuljapurkar et  al. 2003, Haridas and 
Tuljapurkar 2005, Supplementary material Appendix 4). 
Unlike deterministic elasticities however, Em and Es do not 
sum to one and thus do not provide a measure of relative 
contribution (Haridas and Tuljapurkar 2005). To calculate 
the relative elasticities focusing on changes in the mean of 
each vital rate, we therefore divided the Em for each vital rate, 
for example staySB, summed over all affected IPM kernel 
entries, j, by the total E, summed over Em and Es for all vital 
rates, vr, (Morris et al. 2008):

j staySBj

i vri vri

E

E E
∑

∑ + )(
µ

µ σ 	 (5)

We used mean parameter values and a subset of five fire 
return intervals, 10, 30, 50, 80 and 100 years, to calculate 
the elasticities. As Drosophyllum is a post-fire dwelling, short-
lived species with vital-rate variation governed by post-fire 
habitat succession, we did not consider intrinsic demo-
graphic tradeoffs, for example between reproduction and 
growth (Miller et al. 2012), in the elasticity calculations.

Data deposition

Data available from the Dryad Digital Repository: < http://
dx.doi.org/10.5061/dryad.rq7t3 > (Paniw et al. 2016).

Results

Importance of seed-bank vital rates for stochastic 
population dynamics

Seed-bank stasis (staySB) and egression (outSB; Fig. 1) had 
the largest relative effects on the stochastic growth rate, log 

Figure 3. Seed-bank vital rates govern the population dynamics of 
Drosophylum, regardless of fire return interval. Elasticities of the 
stochastic population growth rate, log ls, to changes in the mean, 
Em, of seed-bank stasis (staySB) and egression (outSB) are higher 
compared with other vital rates (filled grey points and lines) at  
five simulated fire return intervals: 10, 30, 50, 80 and 100 years.  
SE around the relative Em obtained from 100 simulations 
were   1  10–03.
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Discussion

Dormant life stages such as larvae in diapause, some spores, 
or seeds in permanent seed banks are believed to play key 
roles in the adaption of species to environmental stochasticity 
(Benton and Grant 1996, Smallegange and Coulson 2013). 
Demographic information on these life stages, however, is 
often limited (Doak et al. 2002). When incorporating such 
data in population models, the parameter uncertainty in 
vital rates describing dormant life stages must be quantified 
in order to separate sources of variability for measures such 
as extinction or invasion risk or the stochastic population 

Fig. 4) showed a clear decline in viability at a fire return 
interval of  50 years, high uncertainty associated with these 
projections meant that the certainty in the threshold of 50 
years (fire return interval) was relatively low (Fig. 4). In fact, 
uncertainty in Pq(t) markedly increased when accounting 
for parameter uncertainty in staySB and outSB. Compared 
with estimates based on mean parameter values, Pq(t) could 
be  20 percentage points higher or lower under particular 
combinations of staySB and outSB (Fig. 5). The strongest 
effects of parameter uncertainty appeared at t  100 years, 
where Pq(t) as high as 0.77 cannot be ruled out at a fire 
return interval of 100 years (Fig. 5b).

Figure 4. Parameter uncertainty contributes significantly to variation of simulated stochastic population growth rate estimates (log ls).  
Box-and-whisker plots display log ls as function of fire return interval (x-axis). At each fire return interval, the black and red box plots 
summarize the variation among 100 000 log ls obtained from 100 stochastic projections of log ls for each of 1000 posterior parameter 
samples describing (a) seed-bank ingression (goSB), (b) stasis (staySB), (c) egression (outSB), and (d) both staySB and outSB. Red box plots 
indicate a proportional contribution of parameter uncertainty to the variation in log ls  50%. Grey box plots in (a)–(d) summarize 
variation in log ls estimates from 100 stochastic simulations using mean parameter values for all vital rates. Black horizontal dashed lines 
indicate stable population sizes.

Figure 5. Increases in the probability of quasi-extinction, Pq(t), at t  50 or 100 years as function of fire return interval. The extinction 
threshold was assumed to be 0.01. At each fire return, Pq(t) was calculated from the mean and variance of 100 stochastic growth rates 
obtained for each of 1000 posterior parameter samples describing seed-bank ingression (goSB), stasis (staySB), egression (outSB), and both 
staySB and outSB (different colors in plot). Points represent Pq(t) averaged over the 1000 parameter samples. Error bars show  95%  
non-parametric quantile CI (2.5 and 97.5 quantile) obtained from the Pq(t) for each of the 1000 parameter samples.
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around estimates of both log ls and Pq(t) increased with 
fire-return interval modeled. This occurred mainly because 
seed-bank dynamics become more important for persistence 
of a fire-adapted species in the absence of fires (Quintana-
Ascencio et  al. 2003), with uncertainty in their estimates 
increasingly affecting the accuracy with which population 
dynamics can be assessed. Therefore, with limited data on 
seed-bank dynamics in the case of Drosophyllum and many 
other species (Baskin and Baskin 1998), a robust interpreta-
tion of viability analyses in long unburned populations relies 
primarily on the incorporation of parameter uncertainty into 
population analyses. Meanwhile, interpretations about the 
role of environmental processes themselves (e.g. fire regimes) 
become increasingly uncertain when projecting data-limited 
population dynamics into the future (Boyce et al. 2006).

With high potential for errors in the estimates of pop-
ulation dynamics for species with limited demographic 
data, uncertainty analyses can become critical when defin-
ing management strategies (Hunter et  al. 2010). Fire is of 
vital importance for Drosophyllum, a species that reaches full 
reproductive potential within the first 2–4 post-fire years 
in natural Mediterranean heathlands (Correia and Freitas 
2002) and then mostly persists in the seed bank until the 
next fire or disturbance occurs (Paniw et  al. 2015). How-
ever, current fire return intervals in the Mediterranean have 
increased due to fire suppression (Ojeda 2009, Turco et al. 
2016), threatening population viability (Paniw et al. 2015). 
At fire return intervals of  50 years, which is still within 
the upper range of natural fire regimes across Mediterranean 
heathlands (Ojeda 2009, Plan INFOCA 2012), the mean 
estimates of log ls  0, implying population decline. How-
ever, the variation around this mean attributed to parameter 
uncertainty in staySB and outSB indicates that Drosophyllum 
populations may be able to persist with a fire return interval 
of about 60 years, and some even with a fire return interval 
of up to 70 years. For conservation management of this spe-
cies, which may include prescribed burning or controlling 
for factors that may jeopardize survival of dormant seeds in 
the seed bank (Paniw et al. 2015), the accurate estimation 
of parameter uncertainty may directly define the heathlands 
considered for management depending on time since last 
fire. As population growth of Drosophyllum showed non-zero 
elasticities to changes in the remaining vital rates (Fig. 4) 
and given the large number of parameters estimated in our 
models, including samples of all parameters into the simula-
tions would further increase the uncertainty of log ls and 
Pq(t) estimates (Evans et al. 2010, Supplementary material 
Appendix 4). However, our aim here was to emphasize that 
interpretations of long-term stochastic population dynamics 
may strongly depend on quantification of a few critical vital 
rates and their uncertainties.

Implications of uncertainty for other life histories

Studies of other species with adaptations to buffer environ-
mental stochasticity may also benefit from a better under-
standing of different sources of uncertainty, particularly 
under the emerging threats of climate change. In plants, 
vegetative dormancy may be as difficult to estimate as seed 
dormancy (Lesica and Crone 2007) but can play a critical 
role in buffering populations from stress, either physical 

growth rate, log ls (Ellner and Fieberg 2003, Evans et  al. 
2010, Lee et  al. 2015). Here we provide evidence that 
uncertainty around vital-rate parameters describing critical 
seed-bank transitions of a fire-adapted plant may translate 
into large uncertainty in the estimates of population-level 
parameters, and omitting it can seriously bias interpreta-
tion of population performance. The Bayesian framework 
we employed to quantify parameter uncertainty was devel-
oped by Evans et  al. (2010) for matrix population models 
and recently extended to IPMs by Elderd and Miller (2016). 
Our study provides an important extension to the work by 
Elderd and Miller – the explicit consideration of discrete, 
dormant stages and categorical covariates (TSF) when con-
structing Bayesian IPMs, simulating stochastic environmen-
tal transitions, and quantifying contributions of parameter 
uncertainty to population dynamics.

The role of the seed bank for population dynamics

Our results showed that life-cycle transitions related to the 
seed bank (Fig. 1) strongly influence population dynamics of 
the fire-adapted Drosophyllum lusitanicum. Seed-bank stasis 
can ensure population persistence when above-ground indi-
viduals cannot survive in long-unburned habitats (Menges 
and Quintana-Ascencio 2004, Adams et  al. 2005); while 
large egression events after fires and periodic egression into 
favorable microhabitats in unburned stands result in growth 
of above-ground individuals, which replenish the seed bank 
(Quintana-Ascencio et  al. 2003, Paniw et  al. 2015). Our 
elasticity analyses suggested that increases in both seed-bank 
stasis and egression would strongly, positively affect the sto-
chastic population growth rate (Fig. 3). However, these two 
vital rates are negatively correlated, implying that seed-bank 
stasis can only be optimized at the expense of egression and 
vice versa (Benton and Grant 1996). At long fire return inter-
vals, an increase in the importance of seed-bank stasis has 
been shown in other studies (Quintana-Ascencio et al. 2003, 
Menges and Quintana-Ascencio 2004) and would likely be 
more critical for Drosophyllum populations than egression. 
This is because egression is highly dependent on open micro-
habitats being created in unburned habitats, which occurs 
irregularly and on a small scale in natural heathlands (Paniw 
unpubl.). On the other hand, changes in seed-bank ingression 
affected population growth far less than either seed-bank sta-
sis or egression. This vital rate varied little across time-since-
fire habitats (Supplementary material Appendix 2), and vital 
rates related to above-ground fecundity have a stronger effect 
on population dynamics, which has been demonstrated for 
a number of disturbance-adapted, early colonizing species 
(Silvertown et al. 1996, Smith et al. 2005).

Parameter uncertainty in dormant life stages and 
inference about population dynamics

Quantifying parameter uncertainty of vital rates with strong 
effects on population growth can help researchers to account 
for the uncertainty in the effect of environmental processes 
on stochastic population dynamics (Evans et al. 2010). For 
Drosophyllum, parameter uncertainty related to seed-bank 
stasis and egression explained up to 79% of log ls variation 
among our 100 000 simulations. Overall, the uncertainty 



908

scholarship granted by the Spanish Ministerio de Economía y 
Competitividad, RSG by the Australian Research Council 
(DE140100505), the Max Planck Institute for Demographic 
Research and a NERC IRF NE/M018458/1, and PFQA by  
NSF-DEB 1347247 and NSF-DEB 0812753.

References

Adams, V. M. et al. 2005. Importance of the seed bank for popu-
lation viability and population monitoring in a threatened 
wetland herb. – Biol. Conserv. 124: 425–436.

Baskin, C. C. and Baskin, J. M. 1998. Seeds: ecology, biogeography 
and evolution of dormancy and germination. – Academic 
Press.

Benton, T. G. and Grant, A. 1996. How to keep fit in the real 
world: elasticity analyses and selection pressures on life histories 
in a variable environment. – Am. Nat. 147: 115–139.

Boyce, M. S. et al. 2006. Demography in an increasingly variable 
world. – Trends Ecol. Evol. 21: 141–148.

Calvo, L. et  al. 2002. The dynamics of Mediterranean shrubs 
species over 12 years following perturbations. – Plant Ecol. 
160: 25–42.

Caswell, H. 2001. Matrix population models: construction, analysis 
and interpretation. – Sinauer.

Cohen, D. 1966. Optimizing reproduction in a randomly varying 
environment. – J. Theor. Biol. 12: 119–129.

Correia, E. and Freitas, H. 2002. Drosophyllum lusitanicum, an 
endangered west Mediterranean endemic carnivorous plant: 
threats and its ability to control available resources. – Bot. J. 
Linn. Soc. 140: 383–390.

Doak, D. F. et  al. 2002. Population viability analysis for plants: 
understanding the demographic consequences of seed banks 
for population health. – In: Beissinger, S. R. and McCullough, 
D. R. (eds), Population viability analysis. Univ. Chicago Press, 
pp. 312–337.

Eager, E. A. et  al. 2014. Modeling and analysis of a  
density-dependent stochastic integral projection model for a 
disturbance specialist plant and its seed bank. – Bull. Math. 
Biol. 76: 1809–1834.

Easterling, M. R. et  al. 2000. Size-specific sensitivity: applying a 
new structured population model. – Ecology 81: 694–708.

Ehrlén, J. et  al. 2016. Advancing environmentally explicit 
structured population models of plants. – J. Ecol. 104:  
292–305.

Elderd, B. D. and Miller, T. E. 2016. Quantifying demographic 
uncertainty: Bayesian methods for integral projection models 
(IPMs). – Ecol. Monogr. 86: 125–144.

Ellner, S. P. and Fieberg, J. 2003. Using PVA for management 
despite uncertainty: effects of habitat, hatcheries, and harvest 
on salmon. – Ecology 84: 1359–1369.

Ellner, S. P. and Rees, M. 2006. Integral projection models for 
species with complex demography. – Am. Nat. 167: 410–428.

Evans, M. E. et al. 2010. Fire, vital rates, and population viability: 
a hierarchical Bayesian analysis of the endangered Florida 
scrub mint. – Ecol. Monogr. 80: 627–649.

Gioria, M. et al. 2012. Soil seed banks in plant invasions: promoting 
species invasiveness and long-term impact on plant community 
dynamics. – Preslia 84: 327–350.

Gremer, J. R. and Venable, D. L. 2014. Bet hedging in desert 
winter annual plants: optimal germination strategies in a 
variable environment. – Ecol. Lett. 17: 380–387.

Gremer, J. R. et al. 2012. Are dormant plants hedging their bets? 
Demographic consequences of prolonged dormancy in variable 
environments. – Am. Nat. 179: 315–327.

Grime, J. P. 1977. Evidence for the existence of three primary 
strategies in plants and its relevance to ecological and 
evolutionary theory. – Am. Nat. 111: 1169–1194.

(Shefferson et al. 2005) or climatic (Salguero-Gómez et al. 
2012). Likewise, in many insects, prolonged diapause can 
spread adult survival over several years but may be difficult to 
estimate (Solbreck and Widenfalk 2012). Whether and how 
such strategies may continue to buffer populations under 
human-induced disturbance and climatic changes is an 
emerging question (Boyce et al. 2006, Radchuk et al. 2013). 
An equally important question may be how to account for 
the inherent uncertainty due data-limited vital rates when 
assessing the significance of climatic variables on changes in 
population dynamics (Elderd and Miller 2016).

Within a given life cycle, the quantification of parameter 
uncertainty may also be important for the estimates of corre-
lated vital rates. Uncertainties in egression of seeds from the 
seed bank may for example influence estimates of recruitment 
(Eager et al. 2014). In Drosophyllum, recruitment is depen-
dent on the environment and not so much on plant den-
sity. However, many species with persistent seed banks may 
exhibit a negative density dependence of seedling establish-
ment (Eager et al. 2014). Here, uncertainty in the number of 
recruits from the seed bank may propagate to uncertainties 
in above-ground vital rates. In other organisms, responses to 
stress such as vegetative dormancy may have future conse-
quences on fitness, e.g. lower growth as above-ground indi-
vidual (Gremer et al. 2012). As such, large variation in the 
estimates of dormancy may directly influence the estimates 
of several other vital rates once individuals emerge above-
ground. Studies of population dynamics encounter many 
types of covariation in vital rates (Tuljapurkar 1990, Morris 
et  al. 2008), and the potential propagation of uncertainty 
throughout different vital rates has received little attention 
in plant demography as opposed to animal demography 
(Hunter et al. 2010, Lee et al. 2015).

Conclusions

Increasingly sophisticated methods are being used to address 
ecological and evolutionary questions regarding environmen-
tal stochasticity (Salguero-Gómez and de Kroon 2010, Low-
Décarie et  al. 2014). Population models have also gained 
complexity and realism in the last decades, allowing for more 
reliable analysis of population dynamics by accounting for 
different sources of variation in underlying vital-rate regres-
sions (Evans et al. 2010, Merow et al. 2014, Tye et al. 2016). 
Here, we have contributed to this important body of literature 
by showing that, when dealing with dormant life-cycle stages 
with limited field data, stochastic models may gain robust-
ness in the interpretation of projected population dynamics 
by including parameter uncertainty around vital rate means. 
An exhaustive sensitivity analysis to parameter uncertainty 
may strongly influence conservation management decisions, 
and we encourage population ecologists to explicitly address 
such uncertainties in their modeling approaches.

Acknowledgements – We are grateful to M. Gil-López, M. Scott, and 
M. Collado-Aliaño for logistical support during the data collection, 
to V. González-Ortiz Drosophyllum illustrations, and A. Jiménez’s 
CITI team (UCA) for access to parallel processing.
Funding – This study has been financed by project BREATHAL 
(CGL2011-28759/BOS; Spanish Ministerio de Economía y 
Competitividad) to FO and RSG. MP was supported by a FPI 



909

Radchuk, V. et al. 2013. Each life stage matters: the importance of 
assessing the response to climate change over the complete life 
cycle in butterflies. – J. Anim. Ecol. 82: 275–285.

Rees, M. et  al. 2006. Seed dormancy and delayed flowering in 
monocarpic plants: selective interactions in a stochastic 
environment. – Am. Nat. 168: E53–E71.

Salces-Castellano, A. et al. 2016. Attract them anyway – benefits 
of large, showy flowers in a highly autogamous, carnivorous 
plant species. – AoB Plants, plw 017.

Salguero-Gómez, R. and de Kroon, H. 2010. Matrix projection 
models meet variation in the real world. – J. Ecol. 98:  
250–254.

Salguero-Gómez, R. et al. 2012. A demographic approach to study 
effects of climate change in desert plants. – Proc. R. Soc. B 
367: 3100–3114.

Schiesari, L. and O’Connor, M. B. 2013. Diapause: delaying the 
developmental clock in response to a changing environment. 
– Curr. Topics Dev. Biol. 105: 213–246.

Shefferson, R. P. et  al. 2005. Adult whole-plant dormancy 
induced by stress in long-lived orchids. – Ecology 86:  
3099–3104.

Shen-Miller, J. et al. 1995. Exceptional seed longevity and robust 
growth: ancient sacred lotus from China. – Am. J. Bot. 82: 
1367–1380.

Silvertown, J. et al. 1996. Interpretation of elasticity matrices as an 
aid to the managament of plant populattions for conservation. 
– Conserv. Biol. 10: 591–597.

Smallegange, I. M. and Coulson, T. 2013. Towards a general, 
population-level understanding of eco-evolutionary change. 
– Trends Ecol. Evol. 28: 143–148.

Smith, M. et al. 2005. Stochastic flood and precipitation regimes 
and the population dynamics of a threatened floodplain plant. 
– Ecol. Appl. 15: 1036–1052.

Solbreck, C. and Widenfalk, O. 2012. Very long diapause and 
extreme resistance to population disturbance in a galling insect. 
– Ecol. Entomol. 37: 51–55.

Thomas, A. et  al. 2006. Making BUGS Open. – R News 6:  
12–17.

Tielbörger, K. et  al. 2012. Bet-hedging germination in annual 
plants: a sound empirical test of the theoretical foundations. 
– Oikos 121: 1860–1868.

Trotter, M. V. et  al. 2013. Beyond the mean: sensitivities of  
the variance of population growth. – Meth. Ecol. Evol. 4: 
290–298.

Tuljapurkar, S. 1990. Population dynamics in variable environments. 
– Springer.

Tuljapurkar, S. et al. 2003. The many growth rates and elasticities 
of populations in random environments. – Am. Nat. 162: 
489–502.

Turco, M. et al. 2016. Decreasing fires in Mediterranean Europe. 
– PLoS ONE 11: e0150663.

Tye, M. R. et  al. 2016. A demographic ménage à trois:  
interactions between disturbances both amplify and dampen 
population dynamics of an endemic plant. – J. Ecol. 104: 
1778–1788.

Venable, D. L. 2007. Bet hedging in a guild of desert annuals.  
– Ecology 88: 1086–1090.

Haridas, C.V. and Tuljapurkar, S. 2005. Elasticities in variable 
environments: properties and implications. – Am. Nat. 166: 
481–495.

Higgins, S. I. et  al. 2000. Predicting extinction risks for plants: 
environmental stochasticity can save declining populations.  
– Trends Ecol. Evol. 15: 516–520.

Honnay, O. et  al. 2008. Can a seed bank maintain the genetic 
variation in the above ground plant population? – Oikos 117: 
1–5.

Hunter, C. M. et  al. 2010. Climate change threatens polar bear 
populations: a stochastic demographic analysis. – Ecology 91: 
2883–2897.

Lee, A. M. et al. 2015. An integrated population model for a long-
lived ungulate: more efficient data use with Bayesian methods. 
– Oikos 124: 806–816.

Lesica, P. and Crone, E. E. 2007. Causes and consequences of 
prolonged dormancy for an iteroparous geophyte, Silene 
spaldingii. – J. Ecol. 95: 1360–1369.

Low-Décarie, E. et al. 2014. Rising complexity and falling explanatory 
power in ecology. – Front. Ecol. Environ. 12: 412–418.

Menges, E. S. 2000. Population viability analyses in plants: 
challenges and opportunities. – Trends Ecol. Evol. 15: 51–56.

Menges, E. S. and Quintana-Ascencio, P. F. 2004. Population 
viability with fire in Eryngium cuneifolium: deciphering a 
decade of demographic data. – Ecol. Monogr. 74: 79–99.

Merow, C. et al. 2014. Advancing population ecology with integral 
projection models: a practical guide. – Meth. Ecol. Evol. 5: 
99–110.

Miller, T. E. et al. 2012. Evolutionary demography of iteroparous 
plants: incorporating non-lethal costs of reproduction into 
integral projection models. – Proc. R. Soc. B. rspb20120326.

Morris, W. F. et al. 2008. Longevity can buffer plant and animal 
populations against changing climatic variability. – Ecology 
89: 19–25.

Navarra, J. J. and Quintana-Ascencio, P. F. 2012. Spatial pattern 
and composition of the Florida scrub seed bank and vegetation 
along an anthropogenic disturbance gradient. – Appl. Veg. Sci. 
15: 349–358.

Ojeda, F. 2009. 4030 Brezales secos europeos. – In: Bases ecológicas 
preliminares para la conservación de los tipos de hábitat de 
interés comunitario en España. Ministerio de Medio Ambiente, 
y Medio Rural y Marino, pp. 1–66.

Paniw, M. et al. 2015. Local-scale disturbances can benefit an endan-
gered, fire-adapted plant species in Western Mediterranean 
heathlands in the absence of fire. – Biol. Conserv. 187: 74–81.

Paniw, M. et al. 2016. Data from: Accounting for uncertainty in 
dormant life stages in stochastic demographic models. – Dryad 
Digital Repository, < http://dx.doi.org/10.5061/dryad.rq7t3 >.

Plan INFOCA 2012. Incedios forestales. – Junta de Andalucia: 
Consejería de Medioambiente y Ordenación del Territorio. 
< www.juntadeandalucia.es/medioambiente >

Pozzi, A. C. et al. 2015. In-planta sporulation phenotype: a major 
life history trait to understand the evolution of Alnus-infective 
Frankia strains. – Environ. Microbiol. 17: 3125–3138.

Quintana-Ascencio, P. F. et  al. 2003. A fire-explicit population 
viability analysis of Hypericum cumulicola in Florida rosemary 
shrub. – Conserv. Biol. 17: 433–449.

Supplementary material (available online as Appendix oik-
03696 at < www.oikosjournal.org/appendix/oik-03696 >). 
Appendix 1: overview of the R code provided in the man-
uscript. Appendix 2: details on demographic censuses and 
field experiments. Appendix 3: additional information on 
the modeling processes. Appendix 4: additional modeling 
results.


