
Multiple Regressions

We have already calculated simple linear regressions (i.e., one X to predict Y) and AICs. Today 
we extend to multiple quantitative predictors, and evaluate alternative models with AIC. We set 
aside ANCOVAs that also use categorical predictors today for simplicity and to emphasize 
collinearity and scaling among quantitative variables.

Get the data set: 
1. We use again the cars93 data set in the MASS package. If MASS is already installed, then 

simply load it.
2. Also load car (Companion to Applied Regression – not to be confused with the Cars93 

data set).
3. Because it comes with a package, we load Cars93 differently than if when we import a txt

file:

data(Cars93)
attach(Cars93)
View(Cars93)

Your mission today: make the most plausible model you can to predict gas mileage (MPG.city). 
Below is an example – run through this first, and then use it as a template to proceed with your 
models. 

Model 1: I think MPG.city is predicted by Price and RPM. 

model1 <- lm(MPG.city ~ Price + EngineSize)
summary(model1)

Model 2: I think MPG.city is predicted by Weight and Passengers.

model2 <- lm(MPG.city ~ Weight + Passengers)
summary(model2)

BUT: These predictor variables have very different units and ranges. Because coefficients of a 
model are multiplied by the units (e.g., the a in Y = aX + b), it is then hard to compare 
coefficients for importance if they are on different scales. So we adjust model variables by 
computing a Z-score for each variable, so that they are now all in units of standard deviations. 
This nicely makes all terms comparable but retains relationships.  So instead do this:

model1s <- lm(MPG.city ~ scale(Price) + scale(EngineSize))
summary(model1s)

model2s <- lm(MPG.city ~ scale(Weight) + scale(Passengers))
summary(model2s)

Notice that t- and p-values do not change, but now coefficients are different and can now be 
fairly compared. You can now say that Engine Size has three-fold the effect of Price.
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ANOTHER BUT!: The assumption of independence among data is violated if variables are too 
correlated (a problem called multicollinearity). Closely correlated variables are redundant and 
artificially inflate the explained variance of each other. We measure this with a Variable Inflation
Factor (VIF), where the rule of thumb = values > 10 are too correlated and you should omit one 
from subsequent models. You must choose which one to omit. So run this command (in the car 
package):

vif(model1s)
vif(model2s)

Notice that you must first have a model to compute VIF scores!

A THIRD BUT!: How do you first choose potential variables to make models? You can see a 
correlation matrix of quantitative variables, and/or a grid of scatter plots (remember those?):

require(dplyr) # for the select_if command
quantCars93 <- select_if(Cars93, is.numeric) # keeps numeric columns
cor(quantCars93) # a correlation matrix of variables in quantCars93

Got the basic approach? 
1. Make models that represent hypotheses, using scaled predictors
2. Evaluate collinearity & trim out redundant predictors
3. Compare alternative models with AICc
4. Evaluate residuals of your most plausible model(s).
5. Finally, examine the Adjusted R2 and coefficients of the most plausible model. 

Your mission: develop the most plausible and predictive model for MPG.city, using the
template above. 
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