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abstract: Microbiomes can dramatically alter individual plant per-
formance, yet how these effects influence higher-order processes is
not well resolved. In particular, little is known about howmicrobiome
effects on individual plants alter plant population dynamics, a ques-
tion critical to imperiled species conservation. Here we integrate
bioassays, multidecadal demographic data, and integral projection
modeling to determine how the presence of the natural soil micro-
biome underlies plant population dynamics. Simulations indicated
that the presence of soil microbiomes boosted population growth
rates (l) of the endangeredHypericum cumulicola by 13% on average,
the difference between population growth versus decline in 76% of
patches. The greatest benefit (47% increase in l) occurred in low-
nutrient, high-elevation habitats, suggesting that the soil microbiome
may help expand H. cumulicola’s distribution to include these stress-
ful habitats. Our results demonstrate that soil microbiomes can sig-
nificantly affect plant population growth and persistence and support
the incorporation of soil microbiomes into conservation planning.

Keywords: integral projection modeling, plant-microbe interactions,
endangered species, Florida rosemary scrub, Hypericum cumulicola,
demography.

Introduction

Microbiomes are ubiquitous in nature and play an outsized
role in the performance of their plant and animal hosts
(Wardle et al. 2004; Harris 2009). However, ecologists are
still in the early stages of scaling these microbiome effects
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to higher-order ecological processes (Bever et al. 1997; Kardol
et al. 2006; Schnitzer et al. 2011). One substantial knowledge
gap is how microbiomes affect their host’s population dy-
namics (Ehrlén et al. 2016). Filling this gap requires unifica-
tion of host-microbiome interactions and demographicmod-
eling, two broad and rapidly growing fields that have largely
developed separately from one another (e.g., Ehrlén et al.
2016; Fierer 2017). Better integration of these fields will con-
nect individual-level fitness effects through population dy-
namics to community patterns and ecosystem processes. In
the cases of imperiled species, such integration will addition-
ally inform their management and conservation.
There are two major challenges to linking plant-

microbiome interactions to plant population dynamics. First,
the magnitude and direction of microbial effects on plant
performance often vary across the plant’s life stages (Kardol
et al. 2013). Second, these stage-specific microbial effects on
individuals must be appropriately integrated into the host
plant’s demography to determine their effects at the popula-
tion level (e.g., Chung et al. 2015). Therefore, scaling micro-
bial effects to the population level requires both detailed
knowledge of plant species’ demography and quantification
of microbial effects on the critical vital rates (e.g., germina-
tion, growth, reproduction) underlying demography. To date,
such work has been confined to a single genus of tightly
coevolved, endophytic fungi (Yule et al. 2013; Chung et al.
2015) or, in studies that do consider whole-soil microbiomes
(e.g., Bever et al. 1997), has largely ignored the importance
of demography in population persistence.
Here we investigated the role of soil microbiomes in plant

population growth. First, we conducted a bioassay to quantify
microbial effects on two critical vital rates of the endangered
plant Hypericum cumulicola—germination and early plant
growth (Picó et al. 2003)—in soils spanning several environ-
mental gradients (e.g., fire history, elevation above the water
table). Second, we scaled these individual-level performance
effects to population-level consequences using an integral
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projection model (IPM) constructed from our bioassay data
and 120 years of field observations from 110,000 individual
plants. Our results provide the first evidence that plant pop-
ulation persistence can depend on the soil microbiome, espe-
cially in stressful habitats.
Methods

Study System

The Florida scrub ecosystem is highly imperiled, with !15%
of its original extent remaining (Weekley et al. 2008). Within
this ecosystem, the fire-dependent rosemary scrub habitat
occurs at relatively high elevations above the water table
(mean p 1:2750:52 m ½SD�; Quintana-Ascencio et al. 2018).
Hypericum cumulicola (Small) P. Adams, a federally and
state-listed endangered species, specializes on open sand gaps
found between shrubs in rosemary scrub patches (Quintana-
Ascencio et al. 2018). This perennial herb typically germi-
nates in the winter, reproduces between June and Septem-
ber, and dies back in November–December. Individuals
are killed by fire, but seeds can survive fire and persist in a
long-lived seed bank (Quintana-Ascencio et al. 2018). Previ-
ous work indicated that germination of H. cumulicola in-
creased with the presence of microbially active soil crusts
(Hawkes 2004), suggesting that this species was suitable for
our study.
Bioassay

Experimental Design. We grew H. cumulicola in a factorial
experiment that manipulated the presence of microbes us-
ing a soil sterilization treatment (“live” vs. “sterilized” con-
ditions) in soils collected from 14 rosemary scrub patches
at Archbold Biological Station, Venus, Florida (277110N,
817210W). Patches were selected to represent a range of en-
vironmental conditions and included six long-termH. cumu-
licola monitoring patches (table A1; tables A1–A4 are avail-
able online). In total, the bioassay included 5,880 seeds sown
in 196 pots (14 soils#2 soil sterilization treatments#7 rep-
licates, with 30 seeds per pot).

Collection of Soils and Seeds. Soils were collected from the in-
terior of open sand gaps at least 1 m from the nearest shrub
to a depth of 15 cm. In the field, we sieved soils through a
0.64-cm mesh to remove large debris. Seeds were collected
from mature fruits of hundreds of plants (∼2 or 3 fruits
per plant) growing throughout the northern half of Arch-
bold Biological Station in September 2016. We sorted and
removed damaged seeds in the laboratory.

Experimental Setup. To manipulate the presence of soil mi-
crobes, we inoculated pots with live (unmanipulated, micro-
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bially active soil) or sterilized soils. Pots were filled with a
50-mL base of sterilized soil, a 9-mL inoculation layer (15%
soil volume) of live or sterilized soil, and a 2-mL cap of ster-
ilized soil to prevent microbial desiccation. All pots (66 mL;
Cone-tainers; Stuewe and Sons, Tangent, OR) and sterilized
soils were autoclaved at 1217C twice prior to use, and each
pot contained soil from a single rosemary scrub patch. We
sowed 30 seeds per pot, which is consistent with previous
estimates of seed density.

Data Collection. Seeds were allowed to germinate in a grow
room at the University ofMiami at room temperature under
ambient natural light conditions, adding supplemental fluo-
rescent light at 20 weeks (16L∶8D conditions). We recorded
germinants and harvested plants after 8 months to record
growth (aboveground height and dried biomass) when plants
were comparable to “yearlings” in the field (new,!15-cm-tall,
single-stem plants).
We analyzed soil properties associated with the 14 rose-

mary scrub soils used in the bioassay (assessed by theUniver-
sity of Florida Analytical Research Laboratory, Gainesville,
FL). Total C and N were measured using a vario MAX cube
CNS analyzer (Elementar Americas, Mount Laurel, NJ), and
total P and K were measured using a SPECTRO ARCOS In-
ductively Coupled Plasma Spectrophotometer (SPECTRO
Analytical Instruments, Mahwah, NJ).
We obtained additional patch-specific environmental data

for the 14 patches from which we collected soil (table A1).
Relative elevation, an approximation of the distance to the
water table, was calculated as the difference in patch eleva-
tion and the elevation of the upper boundary of the nearest
mapped wetland (Quintana-Ascencio et al. 2018). Time
since fire, patch area, and patch aggregation were obtained
from Archbold records and previous studies (see the appen-
dix, available online; Quintana-Ascencio and Menges 1996;
Menges et al. 2017).

Data Analysis. All analyses were conducted using R ver-
sion 3.3 (R Development Core Team 2017). We analyzed
germination and height data using generalized linear mixed
effects models (binomial error) and linear mixed effects
models (natural log transformation), respectively, using the
lme4 package (Bates et al. 2015) after ensuring the data met
the assumptions of the respective models. Both models in-
cluded the microbe treatment, relative elevation, time since
fire, and two-way interactions between the microbe treat-
ment and the covariates. The rosemary scrub patch from
which soil was collected was included as a random effect. For
the height analysis, we also included the number of surviving
plants in each pot as a covariate. For both germination and
height analyses, we evaluated all possible models and selected
the most likely model based on a corrected Akaike informa-
tion criterion (tables A2–A4).We used a principal component
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analysis of the correlation matrix to reduce the dimensional-
ity of the soil nutrient data and overlaid vectors for relative
elevation and time since fire using the envfit() function in
the R vegan package (Oksanen et al. 2016).
1 Code that appears in The American Naturalist is provided as a conve-
nience to readers. It has not necessarily been tested as part of peer review.
IPM

To model the effects of soil microbes on population growth
rate, we incorporated the bioassay results into an IPM.
The model was initially constructed by Quintana-Ascencio
et al. (2018) to project population growth rates of H. cumu-
licola in rosemary scrub patches based on a patch’s unique
set of environmental factors (see the appendix) but did
not consider the role of soil microbes in population dynam-
ics. The IPM was based on 22 years of annual census data
from 15 populations that included 38,313 observations of
10,910 H. cumulicola individuals. The life cycle of the plant
was divided into three stages—seed bank, yearling, and adult.
Vital rate functions were constructed while accounting for
four patch-level environmental covariates that varied across
the landscape: elevation relative to the water table, time since
fire, patch aggregation, and patch area. These vital rate func-
tions were combined into a kernel that estimated transition
rates between both size (height) and life-history stages.

We incorporated our germination data into the fecundity
subkernel described in Quintana-Ascencio et al. (2018) in
two ways. First, the original IPM estimated that seeds enter
the seed bank at a constant rate (12 germination rate). We
replaced this constant germination rate with predictions
from our most likely germination model (table A2) evaluated
for a given microbial treatment and set of environmental
factors associated with a rosemary scrub patch. Second, we
used the same method to better estimate germination rates
between the seed bank and yearling stages. We did not alter
the distribution of yearling size in the original IPM, since
we found no evidence of microbial effects on plant height
in our bioassay (see “Results”).

We used the IPM to simulate population growth rates for
populations on both live and sterilized soils across the en-
vironmental conditions found in 92 rosemary scrub patches
at Archbold Biological Station. Each simulation was run for
the first 10 years postfire, during which fires rarely occur
(Menges et al. 2017) and H. cumulicola population growth
rates typically exhibit a hump-shaped pattern, increasing
rapidly and then slowly declining (Quintana-Ascencio et al.
2003, 2018). For each postfire year in each patch, we recalcu-
lated vital rates to construct the kernel and calculated the pop-
ulation growth rate (l) as the dominant eigenvalue (Ellner
and Rees 2006).

To evaluate contributions of microbes and environmen-
tal factors to the variation in l across these 92 patches, we
used analysis of variance to partition its components fol-
lowing Sheth and Angert (2018). This approach allowed us
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to investigate how the predictor variables (both binary and
continuous) explained the variance in l across a realistic
range of environmental conditions. Because the hump-
shaped relationship between l and time since fire was con-
sistent across patches and differed only in height (see “Re-
sults”), we used the maximum l value for a patch as the
response variable. For each population, we modeled the (log-
transformed) maximum l value predicted by the IPM as a
function of microbe presence, elevation above the water table,
patch area, patch aggregation, the two-way interactions be-
tween microbes and both relative elevation and aggregation,
and all interactions between the three covariates. Through
comparison of the sums of squares of predictor variables, we
partitioned their effects on l across the landscape. All data
from the bioassay have been deposited in the Dryad Digital
Repository (https://doi.org10.5061/dryad.d7p497r; David
et al. 2019), and scripts are included in a zip file, available
online.1
Results

Bioassay

The bioassay revealed positive microbial effects on Hyper-
icum cumulicola germination but no effects on plant growth.
The most likely model for germination included relative ele-
vation to the water table, the microbial treatment, and their
interaction (table A2). The presence of soil microbes nearly
doubled H. cumulicola germination (31%55% [SE] in live
soils vs. 16%53% [SE] in sterilized soils; P ! :001; fig. 1A;
table A3). Interestingly, while overall germination decreased
with relative elevation to the water table (Elev: P p :019),
the strength of the positive microbial effect on germination
increased with relative elevation (Microbe#Elev: P ! :001;
fig. 1B). Soil analyses showed that both relative elevation
and time since fire were negatively associated with soil C
and N (fig. A1; figs. A1–A4 are available online). Together,
these findings suggest that the benefits of microbes to germi-
nation increase as the soil becomes more nutrient poor. In
contrast, we found that the most likely model for plant height
included neither the microbial treatment nor any of the envi-
ronmental covariates but instead only plant density, which
was negatively associated with height (table A4; fig. A2).
Population Modeling

Simulations indicated that the presence of soil microbes in-
creased population growth rate (l) by 13%, a benefit that
for most habitat patches (76%) was the difference between
07/26/19 09:27rnational
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a decreasing population in sterilized soil (mean maximum
l p 0:9550:07 [SD]) and an increasing population in live
soil (mean maximum l p 1:0750:03 [SD]; fig. 2A). Pop-
ulations grown in the presence of soil microbes exhibited
boom-bust dynamics following fire (fig. 2A) similar to those
described by Quintana-Ascencio et al. (2018), but those
populations without soil microbes rarely experienced any
population growth. Soil microbes increased the number of
postfire years with positive population growth, with 96% of
populations in live soil experiencing ≥1 year of growth com-
pared to 20% in sterilized soil (fig. 2B). This contrast was
even more pronounced when considering the percentages
of populations with ≥4 years of growth (84% for live vs.
1% for sterilized), indicating that without soil microbes,
most populations of this endangered species would decline.
Furthermore, the presence of soil microbes explained 47%
of the variation in patches’maximum l values, substantially
more than relative elevation (31%), aggregation (7%), or
patch area (0.1%; fig. A3), suggesting that the presence of soil
microbiomes is more important than these other environ-
mental variables for population persistence in this system.

Microbial effects were particularly influential in high-
relative-elevation, low-nutrient patches where l values were
generally low (fig. 2C). At low relative elevation, populations
in live soil had 4% higher l than in sterilized soil, while at
high relative elevation this benefit increased to 47% (fig. 2D).
This finding suggests that H. cumulicola is able to occupy
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stressful, high-elevation patches in large part because of the
beneficial effects of microbes found in these habitats.
Discussion

By scaling plant-microbe effects from individuals to popu-
lations, we have demonstrated that the presence of soil
microbes can underlie plant population growth and persis-
tence. Moreover, our results show that microbial mitigation
of harsh environmental conditions for imperiled plants can
be critical for allowing persistence in stressful habitats. Below
we discuss how the soil microbiome shapes plant species’ de-
mography and distributions and how our findings support
the integration of soil microbiomes into conservation.
Recent advances in host-microbiome research overwhelm-

ingly show thatmicrobes can benefit their hosts, and our study
demonstrates that such individual-level effects can scale up to
exert strong population-level effects. Similar work examining
the consequences of microbes on plant demography is quite
limited (e.g., Yule et al. 2013; Chung et al. 2015) and for below-
ground microbes is completely unknown (Ehrlén et al. 2016).
Our findings on the benefits of the microbiome for host plant
persistence agree with previous work showing that an above-
ground, tightly coevolved endosymbiotic fungus is required
for persistence of the rare grass Poa alsodes (Chung et al. 2015).
Evolutionary theory predicts stronger selection for micro-
bially conferred benefits in the fungal endosymbiont system,
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Figure 1: Bioassay results for proportion of germinating seeds. A, Live soil (red) increases germination compared to sterilized soil (blue;
back-transformed means5SE). B, Benefit of live soil to germination increases with relative elevation above the water table. Mean responses
(proportion germinated) for each patch’s soil51 binomial SE as a function of patch elevation (above the nearest wetland) plotted on a logit
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where the systemic symbiont is vertically transmitted and
host and microbe fitness are thus tightly linked, than in our
systemwhere the soil microbiome is horizontally transmitted
(Ewald 1987). Indeed, ourmean estimate of the soil microbial
effect on l (13%) is lower than analogous estimates of the ef-
fect of systemic, aboveground endophytes on l of their host
grasses (18%–32%; Yule et al. 2013; Chung et al. 2015). How-
ever, in high-relative-elevation patches, microbial effects on
l (47%) exceed these previously published estimates, empha-
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sizing the critical role played by soil microbiomes in certain
habitats despite their transmission mode. Furthermore, the
strength of microbial effects on l can exceed those of more
traditionally recognized environmental gradients (e.g., patch
relative elevation, area, and aggregation; Ehrlén et al. 2016;
Gurevitch et al. 2016; Quintana-Ascencio et al. 2018). While
we caution that our findings are based on comparisons with
sterilized soils that would not be found in a natural environ-
ment and therefore could overestimate these effects, our study
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nevertheless quantifies the crucial, overlooked role that soil
microbes play in plant population dynamics.

Microbes exerted strong effects on population dynamics
by influencing one of the host’s critical vital rates: germina-
tion. We speculate that microbes can mitigate stressful soil
conditions by increasing soil moisture, thereby stimulating
seed germination (e.g., Baskin and Baskin 1998). Such ef-
fects may be particularly important for germination in high-
elevation patches, where soils are especially xeric (Weekley
et al. 2007). While one limitation is that we could not eval-
uate microbial effects on later life stages of the plant, previ-
ous work (Picó et al. 2003) demonstrated that these other vi-
tal rates are less critical to population growth of Hypericum
cumulicola (as shown through elasticity analyses). There-
fore, microbial effects on these less important vital rates
would have to be quite strong to similarly affect population
dynamics. Importantly, many studies of soil microbiome ef-
fects on plant fitness focus on adult biomass (e.g., Kardol et al.
2006; Schnitzer et al. 2011); however, for species where adult
size is not actually associated with a critical vital rate (e.g.,
adult survival or seed production), conclusions drawn about
population-level effects could be misleading.

Species distributions can be shaped by biotic interactions
that expand or contract species’ ecological niches (Bruno
et al. 2003). Microbes can facilitate or exacerbate stressors
found in particular habitats, thereby expanding or reducing
the habitat utilized by a given plant species and ultimately
the species’ distribution (Peay 2016; David et al. 2018). Our
model projected population growth in stressful, higher-relative-
elevation habitats only when populations were grown with
microbes, suggesting that microbes expand the distribution
of H. cumulicola into this habitat. Afkhami et al. (2014) sim-
ilarly showed that by ameliorating drought stress a vertically
transmitted fungus can dramatically expand a host plant range
into drier regions of California; however, our present study
generalizes these effects on distributions to the more common
interaction between plants and soil microbiomes. Our work
furthers the idea that the physiological traits that allow spe-
cies to persist in a given environment (e.g., germination un-
der stressful conditions) could in fact be microbe derived
(Rodriguez et al. 2008; Peay 2016).

Finally, our finding that soil microbiomes underlie popu-
lation persistence carries important implications for conser-
vation and management. First, it suggests that a plant species
cannot be conserved without also conserving its accompa-
nying natural soil microbiome. Second, such conservation of
the soil microbiome is especially important in stressful hab-
itat and for the species endemic to that habitat. Soil amend-
ments have long been used to reintroduce native microbes
to degraded habitat (Harris 2009). Our findings suggest that
such amendments could help boost plant population growth
rates, particularly for species whose germination both re-
sponds positively to soil microbes and is critical to its de-
58945.proof.3d 6 Achorn Inte
mography. Management that relies on transplanting indi-
viduals germinated in the laboratory or greenhouse into
the field could similarly benefit from germinating seeds in
the presence of microbes. The soil microbiome is clearly es-
sential for the preservation of biodiversity.
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Supplemental Methods
We briefly discuss the underlying data collection and model construction of the IPM published by Quintana-Ascencio
et al. (2018) that we have built on to determine the impact of soil microbiomes on plant population dynamics.
Demographic Data

Plants from 15 Florida rosemary scrub patches were censused annually during their peak reproductive period in July–
August between 1994 and 2015. Censusing resulted in 38,313 unique observations from a total of 10,910 individuals of
Hypericum cumulicola. Plants were classified by stage (yearling vs. adult), with yearlings defined as new, untagged
plants found at census time within permanent plots or plants in that patch found outside permanent plots that had a
single stem that was less than 15 cm (threshold defined using an optimization algorithm that maximized correct
identification and minimized mistakenly including older plants in this stage). For a subset of years, we recorded total
number of reproductive structures (flowers and fruits). We used bioassays to estimate several plant reproductive
metrics (fruiting, seed production, seed germination, survival to yearling stage, and seed dormancy) separately from
the annual census.
Rosemary Scrub Patch Data

We calculated four environmental covariates for each rosemary scrub patch: elevation relative to the water table, time
since fire, patch aggregation, and patch area. We used zonal statistics and an existing lidar data set to calculate relative
elevation as the difference between the average elevation of a rosemary scrub patch and the average elevation of the
wetland edges within a selected buffer surrounding that rosemary patch. Time since fire was determined using historical
records of Archbold Biological Station (Menges et al. 2017). Patch area was calculated using geographic information
system mapping. We calculated patch aggregation using the index provided by Hanski and Thomas (1994):

Si p 2

�Xn

j

exp(2adij)#Aj

�
, ðA1Þ

where dij is the distance in kilometers from focal patch i to patches j to n, Aj is patch area in hectares, and a p 1.
IPM

The basic form of the IPM consisted of a kernel (Kj,i) comprised of a survival and growth subkernel (Pj,i) and a recruitment
subkernel (Fj,i; Ellner and Rees 2006):

Kj,i p Pj,i 1 Fj,i, ðA2Þ
Pj,i p ji#gj,i, ðA3Þ
Fj,i p Seedj,i 1 Yearlingj,i, ðA4Þ

where j is the index for the vector of size classes n at t 1 1 and i the index at time t. The Pj,i subkernel consisted of
the survival probability (ji) at size i and the probability of growth (gj,i) from size i to size j. The Fj,i subkernel predicted
the number of seeds and the number of yearlings of size j produced by an individual of size i based on a composite
of sequential events including seed production, dormancy, germination, and survival until reaching the yearling stage.
The transition matrix consisted of a Goodman (1969) matrix model (with 301#301 cells; fig. 2b in Quintana-Ascencio
et al. 2018) that describes the population dynamics of three stages, one discrete (dormant seeds) and two continuous
1
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(yearlings and adults). Every transition matrix consisted of two merged rectangular matrices (of 300#150 cells each for
yearlings and adults, respectively), one column vector for germination of dormant seeds and their survival to census
as yearlings, one row vector for contributions to the seed bank, and one scalar describing long-term seed dormancy.
Yearlings, by definition, were first-year plants. However, their vital rates varied based on their size, just as with adult
plants, and therefore they occupy an equal percentage of the transition matrix. The IPM was integrated over L p 22:3
to U p 4:5 (logarithm values of 0.1–90 cm in height, respectively).

Recruitment of new seeds into the seed bank was modeled using estimates of seed survival in the seed bank at time t(s(t)),
probability of reproduction (φ0), number of reproductive structures (φ1), fruit set (φ2), seeds per fruit (φ3), and the proportion
of seeds going dormant (dE). Seeds that germinated immediately were not considered part of the seed bank:

Seed( y, t 1 1) p s(t)1

ðU

L
[φ0(x)φ1(x)φ2φ3s(t)dE]dx: ðA5Þ

Yearling recruitment occurred either via newly produced seeds or from the seed bank. Recruitment from the seed bank
was modeled using the fraction of germinating seeds (12 dE) that survived until monitoring based on the same factors as
above and survival of germinants to the yearling stage (φ4):

Yearling( y, t 1 1) p Seed(x, t)(12 dE)φ4 1

ðU

L
[φ0(x)φ1(x)φ2φ3(12 dE)φ4]dx: ðA6Þ

Values of all variables were calculated for each patch using fitted mixed effects regression models based on the four
covariates, with the exceptions of scalar values for fruit set (φ2 p 0:55) and seeds per fruit (φ3 p 12:9; see the supplemental
zip file; Quintana-Ascencio et al. 2018). Prior to conducting these analyses, we checked that none of the four covariates
were significantly correlated with one another (all correlations were ≤0.40). We note that φ4 was the output of a nonlinear
regression function, and this function accounts for the humped shape of the curve in figure 2A and explains much of the
temporal variation in population growth rates. Many of the vital rates are functions of time since fire, and thus the kernel has
a different value for each year postfire.

For the present study, we altered the dE term from the constant term used in Quintana-Ascencio et al. (2018). The
probability of a seed going dormant in patch E was modeled using the coefficients (b) from the most likely model
from the germination bioassay data (table A2) and was evaluated for a given patch using the patch’s relative elevation
(Elev) and a given microbial treatment (Microbe: 0 or 1).

dE p 12 inverse logit[b0 1 b1#ElevE 1 b2#Microbe1 b3#Microbe#ElevE]: ðA7Þ

Although H. cumulicola populations immediately following fire are not in their stable size distribution, l is still the
best metric of overall population growth. To illustrate this point, we simulated a population postfire that began with
100 seeds, zero yearlings, and zero adults. For each of these three stages, we calculated the ratio of increase as Nt11=Nt.
As figure A4 shows, the dynamics of any individual stage are fairly complex, but l represents an average of the
three stages. In particular, the dynamics of the adult stage converge with l fairly quickly, such that they are almost
perfectly matched by the fourth year.
2
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Table A1: Description of patches from which soils were collected for the bioassay
Patch ID

Relative

elevation (m)

Time since fire

(years)

Area
(h)
 Aggregation
3

Total C
(%)
Total N
(%)
Total P
(mg/kg)
Total K
(mg/kg)
Long-term
monitoring
1
 1.98
 17
 .56
 2.85
 .41
 .01
 2.1
 7.67
 Yes

4
 .93
 0
 .17
 2.59
 .55
 .02
 1.36
 11.86
 No

13
 1.52
 15
 .08
 3.28
 .43
 .01
 1.66
 5.74
 No

29
 .6
 1
 1.40
 3.68
 .34
 .01
 1.68
 6.1
 Yes

32
 .68
 19
 .22
 4.83
 .22
 .01
 1.79
 5.08
 Yes

37
 2.56
 19
 .13
 5.56
 .29
 .02
 1.73
 4.53
 No

39
 2.42
 19
 .14
 5.9
 .18
 .00
 1.98
 4.51
 No

42
 1.19
 6
 1.70
 7.66
 .52
 .01
 1.54
 3.8
 Yes

45
 .35
 15
 .23
 5.37
 1.09
 .04
 1.78
 5.73
 Yes

88
 1.11
 8
 .27
 10.3
 .37
 .02
 1.76
 5.33
 Yes

92
 1.39
 30
 .35
 7.23
 .46
 .00
 2.28
 10.44
 No

94
 .94
 6
 .06
 10.1
 .77
 .02
 1.4
 7.19
 No

6054
 1.52
 6
 3.59
 8.87
 .87
 .03
 1.79
 6.39
 No

9591
 1.53
 30
 .35
 9.55
 .22
 .00
 1.48
 4.59
 No
Note: Patch ID refers to the official Archbold Biological Station identification. Relative elevation and time since fire data were accessed using Archbold’s grid database
(Menges et al. 2017). Patch aggregation, a function of distance to other patches and their area, was previously calculated by Quintana-Ascencio and Menges (1996). Total C,
N, P, and K of soils were analyzed in the present study (fig. A1). Patches were chosen to represent a range of relative elevation (across 92 patches: mean5SD p 1:2650:51 m,
min p 0:35 m, max p 3:25 m), patch area (mean5SD p 0:43650:550 ha, min p 0:003 ha, max p 3:594 ha), and patch aggregation (mean5SD p 7:4553:48,
min p 2:16, max p 11:8; Quintana-Ascencio et al. 2018). For time since fire, we selected patches that provided a range of fire return intervals relevant to Hypericum cumulicola,
which tends to boom and bust during the first 10 years following fire. Menges et al. (2017) calculated the percentages of all patches at Archbold Biological Station in a given fire
return interval: 2–10 years (15%), 10–19 years (35%), 20–59 years (45%), and 60–100 years (5%). Several of the patches selected contained long-term monitoring populations of
H. cumulicola (Quintana-Ascencio et al. 2018).
Table A2: Model selection for Hypericum cumulicola germination
Term
 df
 AICc
 D
Elev 1 Microbe 1 Microbe#Elev
 4
 2,158.59
 .00

Elev 1 Microbe 1 TSF 1 Microbe#Elev
 5
 2,159.82
 1.24

Elev 1 Microbe 1 TSF 1 Microbe#Elev 1 Microbe#TSF
 6
 2,160.54
 1.95

Elev 1 Microbe 1 TSF 1 Microbe#TSF
 5
 2,168.75
 10.17

Elev 1 Microbe
 3
 2,172.03
 13.45

Elev 1 Microbe 1 TSF
 4
 2,173.21
 14.63

Microbe 1 TSF 1 Microbe#TSF
 4
 2,308.98
 150.39

Microbe 1 TSF
 3
 2,313.27
 154.68

Microbe
 2
 2,328.48
 169.90

Elev
 2
 2,368.74
 210.16

Elev 1 TSF
 3
 2,369.94
 211.35

TSF
 2
 2,505.41
 346.82

Null
 1
 2,520.08
 361.50
Note: The global model was fitted using a generalized linear mixed effects model with binomial error. The rosemary scrub patch from which
soil was collected (soils from 14 patches were used in the bioassay) was used as a random effect. We included the microbe treatment (Microbe;
sterilized vs. live), relative elevation above the nearest wetland (Elev), time since fire (TSF), and the two-way interactions between Microbe and
the covariates. All covariates were standardized (mean p 0, SD p 1) prior to analysis. The boldface row depicts the most likely model using a
corrected Akaike information criterion (AICc). D is the difference in AICc between each model and the model with the lowest AICc.
Table A3: Model coefficients for analysis of Hypericum cumulicola germination
Term
 Estimate
 SE
 P
Intercept (b0)
 2.76
 .19
 . . .

Elev (b1)
 2.29
 .16
 .019

Microbe (b2)
 2.96
 .07
 !.001

Microbe#Elev (b3)
 2.22
 .06
 !.001
Note: See table A2 for a description of model terms. P values were obtained using analysis of deviance.
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Table A4: Model selection for analysis of Hypericum cumulicola height
Term
4

df
 AICc
 D
Plants
 4
 91.90
 .00

Plants 1 TSF
 5
 92.00
 .10

Plants 1 Soil
 5
 93.95
 2.05

Plants 1 Soil 1 TSF
 6
 94.11
 2.21

Plants 1 Elev
 5
 94.11
 2.21

Plants 1 Elev 1 TSF
 6
 94.26
 2.36

Plants 1 Elev 1 Soil 1 Soil#Elev
 7
 95.15
 3.25

Plants 1 Elev 1 Soil 1 TSF 1 Soil#Elev
 8
 95.42
 3.52

Plants 1 Elev 1 Soil
 6
 96.26
 4.36

Plants 1 Elev 1 Soil 1 TSF
 7
 96.39
 4.49

Plants 1 Soil 1 TSF 1 Soil#TSF
 7
 96.52
 4.62

Plants 1 Elev 1 Soil 1 TSF 1 Soil#Elev 1 Soil#TSF
 9
 97.04
 5.14

Plants 1 Elev 1 Soil 1 TSF 1 Soil#TSF
 8
 98.87
 6.97

Null
 3
 139.56
 47.66

Elev 1 Soil 1 Soil#Elev
 6
 141.17
 49.27

TSF
 4
 141.30
 49.40

Elev
 4
 141.40
 49.50

Soil
 4
 141.42
 49.52

Elev 1 TSF
 5
 142.55
 50.65

Elev 1 Soil 1 TSF 1 Soil#Elev
 7
 142.55
 50.65

Soil 1 TSF
 5
 143.21
 51.31

Elev 1 Soil
 5
 143.40
 51.50

Elev 1 Soil 1 TSF
 6
 144.66
 52.76

Elev 1 Soil 1 TSF 1 Soil#Elev 1 Soil#TSF
 8
 144.86
 52.96

Soil 1 TSF 1 Soil#TSF
 6
 145.31
 53.41

Elev 1 Soil 1 TSF 1 Soil#TSF
 7
 146.83
 54.93
Note: The global model was fitted using a linear mixed effects model. Mean stem height of surviving plants in each pot was natural log
transformed prior to analysis. The rosemary scrub patch from which soil was collected (soils from 14 patches were used in the experiment)
was used as a random effect. We included the microbe treatment (Microbe; sterilized vs. live), relative elevation above the nearest wetland (Elev),
time since fire (TSF), the two-way interactions between Microbe and the covariates, and the number of plants surviving in the pot (Plants). All
covariates were standardized (mean p 0, SD p 1) prior to analysis. The boldface row depicts the most likely model using a corrected Akaike
information criterion (AICc). D is the difference in AICc between each model and the model with the lowest AICc.
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Figure A1: Principal component analysis for soil properties (total C, N, P, K) of soils collected from 14 rosemary scrub patches at
Archbold Biological Station. All metrics were mean centered around zero with a standard deviation of one to account for different units.
Numbers represent patch IDs, and red vectors depict each element. Vectors for elevation relative to the water table (Elev) and time since
fire (TSF) were overlaid. C and N concentrations were negatively associated with TSF and Elev.
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Figure A2: Bioassay result for plant height (back-transformed means5SE) of Hypericum cumulicola in the live and sterilized microbe
treatments. The microbe treatment was not included in the most likely model (table A3).
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Figure A3: Variance components analysis of environmental factors that predict variation in maximum Hypericum cumulicola l values
across 92 rosemary scrub patches at Archbold Biological Station. The maximum l value of each patch typically occurred in years 5 or
6 postfire.
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Figure A4: Comparison between asymptotic population growth rate (l) and the ratio of increase for each of the three life stages (seed
bank, yearling, adult). The simulation was parameterized by setting elevation, area, and aggregation to zero (mean of each mean-
centered covariate) and used initial starting values of 100 seeds, zero yearlings, and zero adults. The plot shows that l acts as an average
of the dynamics experienced by the different life stages. In particular, there is a boom of adults immediately postfire, but this is at the
expense of depleting the seed bank until adults have grown large enough to replenish it.
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