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Summary

1. In this study, we use a novel graphical heuristic to compare the way four methods: significance testing, two

popular information-theoretic approaches (AIC and BIC) and Good’s Bayes/non-Bayes compromise (an

underutilized hypothesis testing approach whose demarcation criterion adjusts for n), evaluate the merit of com-

peting hypotheses, for exampleH0 andHA.

2. Aprimary goal of our work is to clarify the concept of strong consistency inmodel selection. Explicit consider-

ations of this principle (including the strong consistency of BIC) are currently limited to technical derivations,

inaccessible tomost ecologists. We use our graphical framework to demonstrate, in simple terms, the strong con-

sistency of both BIC andGood’s compromise.

3. Our framework also locates the evaluated metrics (and ICs in general) along a conceptual continuum of

hypothesis refutation/confirmation that considers n, parameter number and effect size. Along this continuum,

significance testing and particularly AIC are refutative for H0, whereas Good’s compromise and particularly

BIC are confirmatory for the true hypothesis.

4. Ourwork graphically demonstrates thewell-known asymptotic bias of significance tests forHA, and the incor-

rectness of using statistically non-consistentmethods for point hypothesis testing. To address these issues, we rec-

ommend: (i) dedicated confirmatorymethods with strong consistency like BIC for use in point hypothesis testing

and confirmatory model selection; (ii) significance tests for use in exploratory/refutative hypothesis testing, par-

ticularly when conjoined with rational approaches (e.g. Good’s compromise, power analyses) to account for the

effect of n onP-values; and (iii) asymptotically efficient methods like AIC for exploratorymodel selection.

Key-words: Akaike Information Criterion, Bayes factor, Bayesian Information Criterion, confir-

mation test, graph, model selection, neutralmodel, null model,P-value, significance test

Introduction

When making formal statistical inferences, ecologists must

choose from among awide array of hypothesis testingmethods

and model selection approaches. Unfortunately, these choices

are hampered by the absence of a general framework for defin-

ing and distinguishing the characteristics and purpose of partic-

ular methods. For instance, statisticians and statistical

ecologists have thus far described the asymptotic efficiency of

the Akaike Information Criterion (AIC, Akaike 1973) and

strong consistency of the Bayesian Information Criterion

(BIC, Schwarz 1978) in rather abstract terms (Hooten &

Hobbs 2014, p. 15), and without a contextual framework for

frequentist significance tests (FSTs). Further, existing compar-

isons of FSTs and information-theoretic criteria (ICs) gener-

ally disregard BIC and ignore the effects of sample size, effect

size and parameter number. For example, Murtaugh (2014)

described the relatedness of P-values to DAIC for nested alter-

native models differing by one parameter, but did not consider

BIC, and more complex multiparameter settings. Conversely,

Burnham & Anderson (1998, pp. 337–339) distinguished

DAIC and significance testing for nested models with widely

differing numbers of parameters, but ignored BIC, and the

potential effect of sample size. To address this deficiency, we

present a simple graphical heuristic – which simultaneously

accounts for sample size, effect size and number of parameters

– to compare four inferential approaches: frequentist signifi-

cance testing, AIC, BIC and Good’s Bayes/non-Bayes com-

promise (an underutilized hypothesis testing approach whose

demarcation criterion adjusts for n). Our work is intended to:

(i) provide a thorough but non-technical description of strong

consistency in model selection and (ii) clarify the purpose and

trade-offs of inferential methods and their correct (and incor-

rect) uses in ecology.

AIC AND BIC

AIC and BIC are often used by ecologists to identify models

that balance uncertainty, caused by excessive complexity, and

bias, resulting from model oversimplification. These metrics

have the form:*Correspondence author. E-mail: ahoken@isu.edu
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AIC ¼ �2‘̂þ 2p eqn 1

BIC ¼ �2‘̂þ p logðnÞ; eqn 2

where ‘̂ is the log-likelihood of the estimated model, and

p = the total number of parameters estimated in the model,

includingr in general linearmodels.

AIC is a maximum-likelihood estimator for Kullback–Lei-
bler information (Kullback & Leibler 1951) that corrects for

the bias associated with likelihood maximization. AIC is effi-

cient (Box 1). That is, as sample size tends to infinity, a mini-

mum AIC model minimizes the bias-corrected KL distance

from the true data-generating process. Thus, as sample size

increases, AIC will identify the true best predictive model from

a group of candidate approximatingmodels.

BIC is the asymptotic approximation, for the regular expo-

nential family, of a Bayesian hypothesis testing procedure.

Specifically, BIC is approximately two times the log of a Bayes

factor (the ratio of the marginal densities for two models)

resulting from the comparison of the model of interest and a

saturatedmodel. BIC has strong consistency for the truemodel

(Box 1). Thus, as sample size approaches infinity, the true

model, from a group of models, will have the smallest BIC

value. BIC uses the highly diffuse unit-information prior distri-

bution (Fox 2015). Notably, however, BIC is not strictly Baye-

sian because of its use of within-sample likelihood

maximization (seeHooten&Hobbs 2014, p. 15).

Many alternatives to AIC and BIC exist, although they

are seldom used by ecologists (Aho, Derryberry & Peterson

2014). Other approaches include ICs that are asymptotically

efficient (Akaike 1969; Mallows 1973; Sugiura 1978),

strongly consistent (Hannan & Quinn 1979; Chen & Chen

2008; Zhang & Shen 2010) and strictly Bayesian (Watanabe

2010). Further, several authors have attempted to define ICs

that possess both the efficiency of AIC and strong consis-

tency of BIC (Bozdogan 1987). However, these properties

are inextricable. A method cannot simultaneously have

strong consistency and the predictive optimality of efficiency

(Theorem 1, Yang 2005).

The magnitude of IC outcomes will generally increase with

n, and the empirical frame of reference for ICs will shift as

other response variables are considered. Thus, (i) IC outcomes

for models with different response variables are not compara-

ble and (ii) it is the difference in IC outcomes, not IC values

themselves, that provide insight into model optimality. To aid

in interpreting DICs, a generalized likelihood ratio can be

obtainedwith:

expð0�5DICÞ: eqn 3

For BIC, this transformation will approximate a Bayes fac-

tor. For instance, if DBIC = 8, the generalized likelihood

ratio/Bayes factor approximation is 54�6, indicating that the

smaller BICmodel has 54�6 times more empirical support than

the larger BICmodel.

GOOD’S BAYES/NON-BAYES COMPROMISE

Good (1992) proposed an intuitive compromise between FSTs

and Bayesian hypothesis testing based on standardizing P-

values to a sample size of 100 with the transformation: min

(0�5, P ffiffiffi
n

p
=10). The approach acknowledges the proportional-

ity of a Bayes factor to 1=
ffiffiffi
n

p
under H0 when the P-value is

fixed. Good’s compromise addresses a fundamental criticism

of significance testing, namely that, because P-values are par-

tially a function of sample size, significant results may become

scientifically meaningless as n grows large (Oakes 1986; Royall

1997; Johnson 1999).

Based on previously established generalized bounds (Chiani,

Dardari & Simon 2003; Chang, Cosman &Milstein 2011), the

bounds of the probit function in the context of Good’s com-

promise are (Appendix S1; §7, Supporting Information):

0�5 logðnÞ � 0�5 logð2p=eÞ � cU � U�1 1� 5affiffiffi
n

p
� �� �2

� logðnÞ � cL;

eqn 4

where cL = log (100a2) and cU ¼ 0�5cL are constants that

vary with a, and Φ�1(p) is the probit function (standard nor-

mal inverse CDF) at probability p. Thus, for one-parameter

models, Good’s compromise has similar asymptotic properties

to BIC.

HYPOTHESIS TESTING UNDER THE EVALUATED

METRICS

Statistical methods are most often applied by biologists for the

purpose of hypothesis testing (Quinn & Keough 2002, p. 32).

As a result, we evaluate methods here (including ICs) from the

perspective of parametric inference, as opposed to predictive

efficacy (e.g. Brewer, Butler &Cooksley 2016).

Consider the hypotheses:

H0 : l ¼ c;

HA : l ¼ lA 6¼ c:

In the preceding statement, H0 defines an exact fixed value, c,

whereas HA defines an exact but unknown parameter value, lA,
distinct from c. To standardize the way inferential methods

assess the validity ofH0 andHA,we use the likelihood ratio test

Box 1. Consistency and efficiency

Consistency:Assume that the truemodel or hypothesis is present

within a set of candidatemodels or hypotheses under considera-

tion. As n tends to infinity, amethodwith strong consistencywill

identify the truemodel or hypothesis with probability one, whereas

amethodwithweak consistencywill identify the truemodel or

hypothesis with probability tending to one.

Efficiency:As n goes to infinity, an efficientmethodwill identify,

with probability one, themodel or hypothesis whose squared pre-

diction error best approximates the optimal theoretical model or

hypothesis.
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statistic,X2 ¼ �2ð‘̂0 � ‘̂AÞ, that is twice the difference inmaxi-

mized log-likelihoods undermodels representingH0 andHA.

For simplicity, we impose classical constraints in which: (i)

hypotheses represent nested models (H0 in HA) that differ with

respect to the inclusion or exclusion of a single parameter, and

(ii) data are a random sample from a normal distribution with

a known variance, r2 (cf. P€otscher 1991; Stoica, Sel�en & Li

2004; Dziak et al. 2012;Murtaugh 2014).

Demarcation

We define the line of demarcation for choosing H0 or HA, when

using ICs, to be DIC = 0 under those hypotheses. That is, let

IC0 and ICA be the IC values under H0 and HA, respectively.

Then

IC0 � ICA [ 0 favoursHA

IC0 � ICA\0 favoursH0:

Under these conditions, the AIC and BIC lines of demarca-

tion are X2 = 2 and X2 = log (n), respectively (Appendix S1

§1–4; cf., S€oderstr€om 1977; Ter€asvirta & Mellin 1986; Foster

& George 1994; van der Hoeven 2005; Claeskens & Hjort

2008). We note that alternative demarcation criteria have been

proposed forDAIC (Royall 1997; Burnham&Anderson 1998,

pp. 70–71), Bayes factors (Jeffreys 1961) and DBIC (Raftery

1995, table 6).

For FSTs using significance level a = 0�05, the line of

demarcation is the critical valueX2 ¼ v2ð1;0�95Þ � 1�962, wherein
v2ð1;0�95Þ denotes the chi-squared inverse CDF at probability

0�95. Good’s (1992) compromise suggests the adjusted signifi-

cance level aadj ¼ 10a=
ffiffiffi
n

p
, resulting in the line of demarcation:

X2 ¼ U�1 1� aadj
2

� �n o2

¼ v2ð1;1�aadjÞ: eqn 5

Distribution of X2 under H0

Under our assumptions, the likelihood ratio test statistic will

asymptotically follow a v21 distribution under H0 (Wilks 1938).

Therefore,

EðX2jH0Þ ¼ 1; eqn 6

VarðX2jH0Þ ¼ 2; eqn 7

whereX2|H0 denotes the sampling distribution ofX2 underH0.

Distribution of X2 under HA

Under a series of local alternative hypotheses, the sampling dis-

tribution of X2 will be asymptotically non-central-chi-squared

distributed with one degree of freedom, with non-centrality

parameter, d, reflecting the deviation of HA from H0 (Sugiura

1969; Shapiro 2009). For our purposes, d = n(lA � c)2/r2

(Appendix S1; §5).
The mean of the non-central-chi-squared distribution is

k + d, where k = the number of (central) chi-squared degrees of

freedom, and the variance is 2k + 4d (Chun & Shapiro 2009).

Let

c ¼
ffiffiffi
d
n

r
¼ lA � c

r
;

represent effect size, we have, for the current application:

EðX2jHAÞ ¼ kþ d ¼ 1þ nc2; eqn 8

SDðX2jHAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþ 4d

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 4nc2

p
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0�5þ nc2

p
;

eqn 9

where X2|HA denotes the sampling distribution of X2 under

HA. Thus, when n is large and the alternative hypothesis is true,

the mean of X2 grows in proportion to n, and the standard

deviation ofX2 grows in proportion to 2
ffiffiffi
n

p
.

Agraphical heuristic

The mathematical definitions given in the previous section are

graphically expressed in Fig. 1.

Consider the role that r2 and (lA – c)2 play in determining

the slope ofE(X2|HA). Asr2 increases and (lA – c)2 decreases,

the slope for themean function flattens, and larger samples will

be required to establish the invalidity of false null hypotheses

(Fig. 1). A counterbalancing factor is that the flatter the slope,

the smaller the standard deviation because of these same quan-

tities (eqns 8 and 9).

Figure 2 extends Fig. 1 by showing X2 under H0, and X2

under HA for the levels of c considered in Fig. 1. Note that

the distributions for HA and H0 are probablistically indistin-

Fig. 1. Values of X2 as a function of n. Dashed lines indicate lines of

demarcation for Akaike Information Criterion (AIC), Bayesian Infor-

mationCriterion (BIC), Good’s Bayes/non-Bayes compromise and fre-

quentist significance tests (FSTs). If X2 falls below the line, the

respective framework supports H0. Conversely, if X
2 falls above the

line, the respective framework supports HA. Solid lines show themeans

of X2, under HA, for differing effect sizes, c. Any line with an intercept

of 1 and linear in nwith a positive slope is a candidate.
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guishable for small sample sizes, but become increasingly dis-

tinct as n increases, particularly for larger effect sizes (Fig. 2d).

The increasing variance of X2|HA with n is also evident.

Figure 2 also depicts methodological power. Specifically,

the power of a method is the area under the X2|HA curve,

above the demarcation bounds (dashed coloured lines). For

instance, under BIC, and |c| = 0�08, a sample size of approxi-

mately 500 would be required to correctly select HA over H0

with probability (power) = 0�24 (Fig. 2c). For

|c| = 0�25, power increases to approximately 0�999 for the

same sample size (Fig. 2d). The ordering of demarcation lines

is in agreement withDziak et al. (2012) who previously defined

AIC and BIC as methods that emphasize sensitivity (statistical

power) and specificity (avoidance of type I error) in null

hypothesis tests, respectively.

A CONTINUUM OF REFUTATION/CONFIRMATION

The likelihood ratio test statistic (the Y-axis in Fig. 1) mea-

sures the weight of evidence for HA relative to H0 (Johnson

2008). Indeed, the generalized likelihood ratio given in eqn 3

can be obtained directly from X2. For example, under BIC we

have exp(0�5DBIC) = exp(0�5(X2 � log(n))), which approxi-

mates a Bayes factor.

Fig. 2. Non-central-chi-squared with non-centrality parameter d, that is v21ðdÞ, densities under HA and central v21 densities under H0, with respect to

X2 quantiles. Distributions ofX2 are shown for (a) n=60, c=0�08, (b) n=60, c=0�25, (c) n=500, c=0�08, (d) n=500, c=0�25. As in Fig. 1,
dashed lines indicate lines of demarcation. SeeAppendix S3 for additional graphical perspectives on these relationships.

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 8, 47–56
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Along the X2 continuum, lines of demarcation reveal the

views of the metrics, regarding H0 and HA, given the same evi-

dence. Note that, unlike AIC and FSTs, Good’s compromise

and BIC demand more evidence against H0 for rejection as

sample size increases. This causes the BIC line of demarcation

to surpass those of AIC and FSTs at n = 8 and n = 47, respec-

tively, and the line of demarcation for Good’s compromise to

exceed those of AIC and FSTs at n = 11 and n = 101, respec-

tively (Fig. 1). Thus, as n increases, demarcation lines lower on

the Y-axis represent methods whose focus is refutation of the

null hypothesis, and lines higher on the Y-axis represent meth-

ods whose intent is confirmation of the true hypothesis. As a

result, we define FSTs and particularly AIC as exploratory and

refutative, relative to Good’s compromise and BIC, which are

progressively confirmatory.

BIC AND GOOD’S COMPROMISE ARE CONSISTENT

Confirmatory methods will often have the property of strong

consistency. As noted earlier (Box 1), this requires:

lim
n!1Pr H0 rejectedjHA trueð Þ ¼ 1; and

lim
n!1Pr H0 rejectedjH0 trueð Þ ¼ 0:

eqn 10

Thus, a method with strong consistency will always choose

the correct hypothesis as sample size approaches infinity. Our

heuristic demonstrates that BIC has this characteristic.

If HA is true then the mean of X2 grows with n at a

much faster rate than the BIC line of demarcation,

whereas the standard deviation grows at a slower rate than

the mean (eqns 8 and 9). Thus, as sample sizes grow extre-

mely large, the probability of an X2 outcome being below

the BIC line of demarcation goes to zero. An assumption

of normality is not necessary here – only Chebyshev’s

inequality (Bienaym�e 1853), which requires at least 75% of

any distribution to be within two standard deviations of

its mean. Conversely, if H0 is true, the probability that X2

falls above log(n) goes to zero as n ? ∞ (Figs 1 and 2).

For a formal proof of strong consistency under our heuris-

tic, see Appendix S1 §6.
As suggested by its name, Good’s compromise is intermedi-

ate between BIC and frequentist significance testing with

respect to hypothesis refutation/confirmation (Fig. 1).

Nonetheless, the line of demarcation for Good’s method

increases with n, but more slowly than
ffiffiffi
n

p
, insuring that it also

has strong consistency (and asymptotic confirmation) for the

truemodel or hypothesis (see Appendix S1 §7�3).
Whereas our paper is the first to demonstrate the

strong consistency of Good’s compromise, the strong con-

sistency of BIC (and Bayes factors) is well known (e.g.

Chen & Chen 2008; Casella et al. 2009). The proofs for

this property, however, have relied on mathematics inac-

cessible to most ecologists. As a result, considerations of

the strong consistency of BIC have remained (until now)

terse in ecological publications (e.g. Hooten & Hobbs

2014, p. 15).

AIC AND SIGNIF ICANCE TESTING ARE NOT CONSISTENT

The principle of strong (and weak) consistency does not hold

for either AIC or frequentist significance testing. For FSTs:

Pr H0 rejectedjH0 trueð Þ ¼ Pr X2 [ bjH0 true
	 
 ¼ ab [ 0;

where b is the demarcation value and ab is the associated signif-
icance level. This condition is not dependent on sample size.

Thus,

lim
n!1Pr H0 rejectedjH0 trueð Þ ¼ ab [ 0;

which violates consistency.

AIC does not consider n, and thus, its probability of type I

error will also remain fixed at some nonzero value, which vio-

lates consistency (for our application, this is

Prðv21 � 2Þ � 0�16). Of course, as noted earlier, AIC was

designed to be efficient, not consistent.

We emphasize that AIC and significance testing are both

consistent when HA is true. That is, both will correctly choose

HA over H0, with probability 1 as n approaches infinity.

Indeed, both approaches will have smaller type II error rates

than BIC. Both methods, however, are biased against H0

(Schervish 1996; Sellke, Bayarri & Berger 2001, p. 71) and by

definition must incorrectly reject H0 with some positive proba-

bility (e.g. a) when H0 is true. Notably, this property is in con-

flict with a common pedagogic presentation of FSTs as a

criminal trial in which the burden of proof is said to be on HA

(guilty verdict), not H0 (innocent verdict) (e.g. Trosset 2009, p.

207).

COMPLEX MODELS

We can extend our heuristic to selection among models that

differ widely with respect to numbers of parameters, reflect-

ing a more conventional usage of AIC and BIC by ecolo-

gists. Under the assumptions given previously, consider a

situation in which a null model, H0, and a more complex

alternative model, HA, differ with respect to the presence or

absence of d parameters. The demarcation surfaces of BIC

and AIC are now X2 = log (n)d and X2 = 2d, respectively.

The FST plane is X2 ¼ v2ðd;1�aÞ, where v2ðd;pÞ is the chi-

squared inverse CDF with d degrees of freedom at probabil-

ity P, and the demarcation surface for Goods compromise is

X2 ¼ v2ðd;1�aadjÞ. Figure 3 summarizes these ideas by depicting

a diagonal slice through a three-dimensional space that

defines X2 as a function of all possible combinations of n and

d (see Fig. S3-2 for a complete overview).

Earlier we emphasized the shared non-consistency of

FSTs and AIC and revealed their resulting similarities for

comparisons of nested models differing by one parameter

(Figs 1 and 2). The monotonic relatedness of P-values and

DAIC in this context has been noted previously by a large

number of authors (e.g. Burnham & Anderson 1998; Mur-

taugh 2014; Brewer, Butler & Cooksley 2016). Figure 3,

however, reveals that FST and AIC demarcation bounds

may diverge substantially when comparing models with

widely varying complexities.
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A likelihood ratio FST considers the differing number of

parameters in HA compared with H0 by altering the degrees of

freedom in the v2d null distribution. AIC and other ICs, how-

ever, address the magnitude of d explicitly through the use of

penalty terms. Because of this difference, the demarcation

plane of AIC increases rapidly with d, causing the AIC surface

to exceed the FST surface at d = 8, and Good’s surface when

d[ 0�5v2ðd;1�aadjÞ (Fig. 3). In application, this property will

cause FST model selection (e.g. pick the smallest significant

model at a = 0�05) to tend to choose more complex optimal

approximatingmodels comparedwithAIC.

A final difference between AIC and FST model selection is

not evident in Fig. 3. This is that, unlike FSTs, ICs do not

require that the H0 model be parametrically nested in HA, or

even that these models have the same assumed error distribu-

tions. The only requirement is that the same response variable

be used in all models under consideration. Akaike (1981),

Burnham & Anderson (1998, p. 36, 133), Aho, Derryberry &

Peterson (2014) and Fox (2015, p. 608) consider additional

issues with model selection using FSTs, including logical prob-

lems, and simultaneous inference. While Good’s approach

remains ostensibly a compromise between BIC and conven-

tional FSTs (Fig. 3), this approach is also ill-suited for general-

ized model selection for the same reasons that FSTs are

ill-suited.

Because the BIC demarcation surface increases with both n

and d, BIC has, except for extremely small sample sizes, lower

type I error rates than AIC, FSTs, or Good’s compromise.

Thus, when a set of models under consideration includes the

true model, and n is sufficiently large, BIC will select the true

model and AIC and FST model selection (which emphasize

sensitivity over specificity) will tend to choose models that are

more complex than the true model. The purpose of AIC, how-

ever, is not asymptotic consistency, but identifying useful pre-

dictive models. This means that BIC may select underfit

models, compared with AIC, because the general scenario log

(n) > 2 requires greater penalization from BIC. As a result, an

investigator must choose a model selection ‘worldview’ (see

Aho, Derryberry & Peterson 2014). If the goal is model confir-

mation, suggesting that the set of proposed models includes a

specific well-justified model, then BIC is the appropriate crite-

rion. On the other hand, if the goal is model exploration and

practical generalization, reflecting a situationwherein ‘all mod-

els are false or insufficient, but some are useful’, thenAIC is the

appropriate choice.

Discussion

Our approach provides a graphical depiction of strong consis-

tency and allows comparisons of FSTs, Good’s compromise,

AIC and BIC along a continuum of refutation/confirmation.

The relative positioning of demarcation criteria in Figs 1–3
clarifies both the purpose and correct usage of these inferential

methods.

Interestingly, our heuristic also provides insight into the gen-

eral epistemology and ontogeny of model selection and

hypothesis testing approaches. In conventional usage, Popper

(1934) would not view H0 as embodying a ‘bold hypothesis’.

Nonetheless, we feel that refutatory methods like FSTs

acknowledge the tenets of severe falsificationism, and thus sug-

gest the influence of the hypothetico-deductive archetype on R.

A. Fisher (see Quinn & Keough 2002, p. 32). On the other

hand, consistent methods are to varying degrees confirmatory

and thus address the practical concerns of philosophers of

science in the context of well-justified theories (Lakatos 1978),

or for inferences that encompass a phenomenon that is

observed (essentially) in its entirety (‘empirical laws’ sensuCar-

nap 1966, Ch. 23).

L IMITATIONS AND FUTURE WORK

We emphasize that our presentation is intentionally simplistic.

For example, to clarify differences in hypothesis and model

selection approaches, our graphs define strict standards distin-

guishing support for H0 or HA. In practice, however, we rec-

ommend against this potentially thoughtless approach.

Following the advice of Fisher (1956, pp. 41–42, 80, 100) and
(most?) modern statisticians, we recommend that X2 (and, if

applicable,P-values) be viewed as a continuousmeasure of evi-

dence with respect to decision rule benchmarks, particularly

when those conditions are allowed to vary rationally with

power, sample size and/or parameter number.

Our approach also has conventional statistical assumptions,

including the independence of outcomes. The performance of

ICs in violation of these constraints can be considered with

simulation (Brewer, Butler & Cooksley 2016). In future work,

we intend to consider the generalities and limitations of our

comparative heuristic by employing this approach.

Fig. 3. Demarcation for Akaike Information Criterion (AIC), Baye-

sian Information Criterion (BIC), frequentist significance testing and

Good’s compromise as a function of particular combinations of

increasing sample size, n = 1, . . ., 1000, and differences in the number

of parameters in null and alternative models, d = 1, . . ., 20. A more

complex depiction of X2 as a function of all possible combinations of n

and d is shown inAppendix S3.
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Practical confirmational inferences

Our work also can be criticized on the grounds that considera-

tion of strong consistency is necessarily asymptotic and that

strong consistency may not insure useful confirmational infer-

ences for small or realistic sample sizes. This limitation is illus-

trated by considering the refutation/confirmation perspectives

of other ICs using their penalty terms (Fig. 4).

With respect to efficient and non-consistent methods, AICc

(Sugiura 1978), which has the form: AIC + (2p(p + 1)/

(n � p � 1)), converges to AIC as n becomes large. AICc,

however, applies a larger penalty term than AIC for smaller

sample sizes, making itmore confirmatory than AIC, but (gen-

erally) less confirmatory thanGood’s compromise or BIC.

The ‘corrected AIC’ (CAIC) of Bozdogan (1987), a

strongly consistent but non-efficient method, has the demar-

cation surface dlog(n + 1), making it slightly more confirma-

tory than BIC (Fig. 4). Conversely, the Hannan–Quinn

information criterion (HQC, Hannan & Quinn 1979),

another strongly consistent but non-efficient method, uses

the surface 2dlog(log(n)). Because of its double log transfor-

mation of n, HQC is less confirmatory than BIC and (given

d = 1) Good’s method, or even significance testing for

n < 922 (Fig. 4). Still less confirmatory is the strongly consis-

tent and non-efficient ‘adjusted-BIC’ (Rissanen 1978; Sclove

1987), with the surface dlog((n + 2)/24).

Obviously, while non-consistent methods are inappropriate

for confirmatory inferences, consistent methods (dashed lines

in Fig. 4) may vary greatly with respect to their degree of refu-

tation/confirmation for hypotheses, given n � ∞. Thus, con-

sistency alone does not insure that a method will provide

useful confirmational inferences (see Claeskens & Hjort 2008,

p. 113).

Confirmation of a hypothesis is amuchmore difficultmatter

than refutation (Popper 1934). This is because refutation can

occur as the result of one observation, whereas confirmation

requires all possible observations (sensu ‘the problem of induc-

tion’ §4, Hume 1748; ‘black swan hypothesis’, Taleb 2007). It

follows that probabilistic confirmational inferences should

require much larger sample sizes than those required for epis-

temically equivalent refutative inferences. Given a moderately

large sample size, for example n = 100, both CAIC and BIC

begin a rapid divergence from FSTs, and Good’s compromise

is equivalent to FSTs; however, HQC and adjusted-BIC will

perform, for small d values, as strongly refutative methods,

with high levels of type I error. At n = 1000, CAIC, BIC and

Good’s compromise are all distinctly confirmational compared

with FSTs; however, HQC and adjusted-BIC remain ambigu-

ous with respect to refutation/confirmation.

RECOMMENDATIONS

AIC, BIC, FSTs and Good’s compromise address a funda-

mental scientific concern: quantifying the strength of empirical

evidence to aid in choosing among models and hypotheses. As

a result, all four approaches constitute potential catalysts for

scientific progress. Like all tools, however, the methods may

have limited usefulness when applied incorrectly or to inappro-

priate tasks.

Hypothesis testing

We have defined FSTs to be strongly refutative for H0. As

summarized by the inventor of bothP-values andH0:

‘. . .the null hypothesis is never proved or established, but is

possibly disproved, in the course of experimentation. Every

experiment may be said to exist only in order to give the

facts a chance to disprove the null hypothesis’.

R. A. Fisher (1935, p. 18).

However, ecologists seldom believe that a null hypothesis

representing ‘zero effect’ is literally true (Barber & Ogle

2014), and if this belief is correct, then Fig. 2 shows that a

researcher need only sufficiently increase sample size to

reject H0 with probability (power) = 1. This outcome has

been the basis for many criticisms of FSTs, on the grounds

that (i) H0 will always equate to a straw man hypothesis

that must give way under increasing sample size, and (ii) a

correct significant result can be the by-product of a trivial

(biologically meaningless) effect size (Oakes 1986; Royall

1997; Johnson 1999; Trafimow & Marks 2015; Wasserstein

& Lazar 2016). This issue become more striking when con-

sidering the negligible probability that true effect sizes can

ever be ‘exactly zero’ for ecological systems because of the

potential for confounded effects and coincidental associa-

tions (sensu ‘ambient extraneous correlations’, Lykken 1968;

‘crud factor’ Meehl 1990).

Related complications arise in the less frequent converse

case that FSTs are applied to a well-justified point hypothesis

given asH0.Many proposed theoretical frameworks in ecology

Fig. 4. Demarcation for H0 and HA models that differ with respect to

the inclusion/exclusion of a single parameter. Dotted lines indicate

asymptotically efficient methods, dashed lines indicate methods with

strong consistency, and solid lines indicate methods which are neither

efficient nor strongly consistent.
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(Appendix S2), including neutral models (Gotelli & Graves

1996), effectively describe natural systems, and investigators

have generally quantified the validity of said theories by setting

them as null hypotheses in FSTs (Appendix S2, Case study 1).

This is done because an explicit fixed effect (generally 0) can be

set for H0, whereas HA can only define ‘some effect’ distinct

from H0 (Quinn & Keough 2002; Aho 2013, Ch. 6). FSTs,

however, do not allow empirical confirmation of null hypothe-

ses. Instead, under Fisher’s (1935) refutatory framework, we

‘reject’ or provisionally ‘fail to reject’ H0.

The non-confirmatory character of FSTs becomes particu-

larly relevant in the context of extremely large and high-

dimensional modern data sets and simulation studies (White

et al. 2014). Such formats have become increasingly preva-

lent, particularly in molecular and spatial ecology, prompting

an explosion of new methods for data management (Altschul

et al. 1990; Huson et al. 2007; Song et al. 2012; Gong, Geng

& Chen 2015) and data analysis (Benjamini & Hochberg

1995; Benjamini & Yekutieli 2001; Yoo, Ramirez & Liuzzi

2014; Gandomi & Haider 2015). As models become complex

or sample sizes become large, FSTs will reject a strongly

truth-directed null hypothesis with high probability, whereas

BIC, because of its emphasis on minimizing type I error,

may suggest retention of H0 (Fig. 3; Appendix S2, Case

study 2).

On the other hand, P-values may provide a valuable

exploratory tool for establishing ‘some effect’ and quantifying

empirical departures from H0 (e.g. Murtaugh 2014; Stanton-

Geddes, Gomes De Freitas &De Sales Dambros 2014). This is

particularly true when P-values and FSTs are conjoined with a

method like Good’s compromise that accounts for the effect of

n. In a paper titled ‘The Common Sense of P-values’, de Val-

pine (2014) reaffirms our characterization ofP-values as simul-

taneously falsificationist, exploratory, and widely useful.

Specifically, the author argues that: ‘. . .the purpose ofP-values

is to convince a skeptic that a pattern in data is real’, and

‘When there is a scientific need for skeptical reasoning with

noisy data, the logic of P-values is inevitable’. Nonetheless,

FSTs are inappropriate for confirmatory testing, and because

of a number of issues, including the impossibility of comparing

non-nested models – or comparing models with differing error

distributions – FSTs (and Good’s compromise) are unsuitable

for general model selection.

For confirmatory hypothesis testing of point hypotheses,

we recommend using non-ambiguously confirmatory

approaches with strong consistency like BIC. Other useful

confirmational methods include Bayes Factors (Kass & Raf-

tery 1995), which ignore priors, and Bayesian posterior prob-

abilities (Jeffreys 1961), which consider priors, thus allowing

‘coherent’ assessments of complex hypotheses (Lavine &

Schervish 1999). Non-Bayesian likelihood-based methods for

fixed-response data (e.g. log-likelihood ratios) and non-con-

sistent IC approaches (e.g. DAIC and Akaike weights) are

ostensibly n-insensitive. These approaches, however, were not

designed to be confirmatory, and furthermore are generally

applied in the context of n-invariant decision standards (e.g.

a = 0�05 and DAIC = 10) that ignore, among other things,

the required increase in E(X2|HA) with n.

Model selection

Our graphs demonstrate that model selection techniques rep-

resent trade-offs with respect to sensitivity (i.e.

Power = 1 � Pr(type II error)) and specificity (1 � Pr(type I

error)). Attention to type I error is purportedly emphasized

over attention to type II error in classic hypothesis testing –
although BIC generally has far lower rates of type I error

than FSTs – because the former constitutes an incorrect state-

ment, while the latter is merely a ‘failure to reject’ (Dziak

et al. 2012). De-emphasis of type II error, however, may

result in underfitting and loss of predictive power. Thus, one

must choose a worldview. If, as in significance testing, the

aim is non-confirmatory and we merely wish to identify –
from a set of imperfect and potentially non-nested models – a

useful predictive model, then we should use an efficient

method like AIC. Conversely, when comparing and assessing

models and hypotheses representing well-justified theories, we

should rely on methods, such as BIC, that are both statisti-

cally consistent and confirmatory.
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