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Abstract
Aim: Ecological theory is not often applied to human appropriation of net primary 
production (HANPP), which estimates reduction of natural net primary production 
(NPP) due to harvest and land use. Here we use predator–prey theory to evaluate 
HANPP as “predation”. Macroecology and adaptive life history strategies also help 
evaluate relationships among global terrestrial HANPP, NPP, and plant biomass (B).
Location: Lands worldwide.
Time period: 2000.
Major taxa studied: Terrestrial plants.
Methods: HANPP and potential NPP allometric scaling were estimated for terrestrial 
ecoregions (N = 819, for 86% of global land surface area) in the year 2000. HANPP 
and NPP scaling were compared and projected to current and year 2050 conditions. 
NPP scaling for potential versus actual conditions were also compared, as were bio-
mass turnover rates (T; per year).
Results: Global HANPP scales predictably with B; consistent with predator–prey the-
ory, HANPP scaling is not clearly satiated at greater B. NPP scaling supports adaptive 
life history strategies theory. HANPP scaling is c. 16% of NPP scaling; a conserva-
tive estimate compared to a grid-based 22%. HANPP scaling could become 25–35% 
of potential NPP scaling by 2050 due to population growth, or be constrained to 
20–26% of potential NPP scaling if resource use efficiency improves. However, B is 
more sensitive than NPP to human effects, and human population size and HANPP 
now dominate as predictors of T.
Main conclusions: Three ecological theories converged here to broadly support prior 
empirical estimates and enable novel insights. B and T are more sensitive to global 
human impacts than is NPP and should be priorities for carbon budgets and conser-
vation. Human population growth and resource use efficiency strongly affect terres-
trial plant HANPP, B and T, and thus global carbon budget. Both human “top-down” 
effects (evaluated here) and “bottom-up” drivers (e.g., climate, nutrients, CO2) need 
to be incorporated into global carbon models.
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1  | INTRODUC TION

While modifying and using >75% of terrestrial land area (Pandit et al., 
2018), humans appropriate a substantial portion of global terrestrial 
annual plant growth (Haberl, Erb, & Krausmann, 2014; Imhoff et al., 
2004; Vitousek, Ehrlich, Ehrlich, & Matson, 1986). For example, an-
nual crop growth per unit area is often less than in primary forests 
cleared for those crops, and plant growth in urban areas is typically 
reduced by paved and roofed areas. Plant growth is known as net 
primary production (NPP), and is quantified as a rate (g C/m2/year; 
Table 1). Human appropriation of NPP (HANPP; also g C/m2/year; 
Table  1) quantifies human impacts on NPP, including the sum of 
harvest and land use–related changes (e.g., agriculture, timber har-
vesting, urban development; Haberl et al., 2014). This definition of 
HANPP builds on earlier work (Vitousek et al., 1986; Whittaker & 
Likens, 1973; Wright, 1990) and is more inclusive than most earlier 
definitions (Haberl et al., 2014). In turn, the portion not appropri-
ated by humans quantifies NPP available for the planet’s remaining 
biodiversity and sustained ecosystem function. Accordingly, HANPP 
research has influenced discussions of sustainable population 
growth, conservation planning, planetary “tipping points”, and the 
Anthropocene (e.g., Barnosky et al., 2012; Ellis et al., 2013; Foley 
et al., 2005; Mellody et al., 2014; Running, 2012). HANPP focuses 
on terrestrial ecosystems and complements other analyses of non-
renewable resources (e.g., Brown et al., 2014; Meadows, Meadows, 
Randers, & Behrens III, 1972; Sabin, 2013) as a measure of our col-
lective impact. Comparison of NPP and HANPP directly relates to 

global carbon analyses because NPP is related to removal of C from 
the atmosphere by plants, whereas HANPP contributes to increased 
atmospheric C.

Global HANPP has been estimated for over 40 years using differ-
ent definitions and increasingly sophisticated methods (see review 
by Haberl et al., 2014). Those differences mean that estimates can-
not be easily compared, but recent values (i.e., after 1970s in table 1  
of Haberl et al., 2014) average 24  ±  10% (standard deviation) of 
potential NPP; a large impact by humans. Human effects on global 
plant biomass (B; g C/m2; Table 1) and turnover have also been quan-
tified (e.g., Erb et al., 2016, 2018).

Analyses of global HANPP and human effects on B quantify land 
use changes and effects on the global carbon cycle, but have not 
been evaluated through the lens of ecological theory. If ecological 
theory is general (i.e., not peculiar to specific ecological systems), 
it should: work at global scales; apply to humans; predict relation-
ships among HANPP, NPP and B; and offer an explanatory basis for 
models of these variables that are vital to ecosystem ecology, global 
carbon cycling and sustainable human use of natural resources. In 
turn, using ecological theory to evaluate global HANPP, NPP and 
B tests that theory and helps to unite it with sustainability science 
(e.g., Opdam, Luque, Nassauer, Verburg, & Wu, 2018).

Here we apply predator–prey theory to evaluate global HANPP 
as “top-down” regulation of plants in the sense of a food chain, 
where humans are the predator and “predation” on plants includes 
all effects in the definition of HANPP. This view complements “bot-
tom-up” estimates of NPP based on plant biology, CO2 enrichment 

TA B L E  1   Terms used in this work, with definitions, acronyms, units, meanings and uses

Term Acronym Units What it measures How it is used

Potential net primary 
production

NPPpot g C/m2/year Potential plant growth rate, for natural 
conditions

NPPpot ~ B; natural NPP 
scaling

Actual net primary production NPPact g C/m2/year Actual plant growth rate, after human 
land use effects

NPPact ~ B; recent (year 
2000) NPP scaling

Ecological net primary 
production

NPPeco g C/m2/year Actual plant growth, after human land use 
effects and harvest

As part of HANPP estimates 
(HANPP = NPPpot–NPPeco)

Human appropriation of net 
primary production

HANPP g C/m2/year Human use of plant growth, including land 
use (HANPPlu) and harvest (HANPPharv)

HANPP ~ B; estimate 
of human functional 
response, in the sense of 
predator–prey theory

Potential plant biomass Bpot g C/m2 Potential, aboveground + belowground 
plant mass in an area, for natural 
conditions

As the predictor axis for 
allometric scaling of 
NPPpot, HANPP and Tpot

Actual plant biomass Bact g C/m2 Actual, aboveground + belowground plant 
mass in an area, after human effects

As the predictor axis for 
allometric scaling of 
NPPact and Tact

Potential plant biomass turnover 
rate

Tpot Per year Potential rate that biomass changes (as 
in a slope coefficient for NPP/B), for 
natural conditions

Allometric scaling of natural 
T; how T is predicted 
by plant B in natural 
conditions

Actual plant biomass turnover 
rate

Tact Per year Actual rate that biomass changes (as in 
a slope coefficient for NPP/B), after 
human effects

Allometric scaling of actual 
T; how T is predicted by 
plant B and human effects
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and climate conditions (e.g., Körner, 2015; Malhi et al., 2015). 
Ultimately, both perspectives will likely prove valuable in more in-
tegrative global ecosystem models. We use a confluence of three 
ecological theories (predator–prey, macroecology, and adaptive life 
history strategies; Figure  1) to investigate relationships between 
HANPP, NPP and B (Brown 1995; Grime & Pierce, 2012; Holling, 
1959; May, 1977; Noy-Meir, 1975). Below is a brief synopsis of each 
theory as it applies here, and the confluence between them.

1.1 | Graphical predator–prey theory

Graphical predator–prey theory evaluates and then compares two 
curves. Predator consumption and prey growth are each expressed 
as a function of prey quantity (Figure  1a,b; May, 1977; Noy-Meir, 
1975). A predator consumption curve is also known as a functional 
response and classically expected to be linear, asymptotic or sig-
moidal in shape (Types I–III, respectively), where the shape of the 
curve indicates behaviour of a predator population (Holling, 1959). 
A linear Type I curve means predator consumption tends to increase 
proportionally with prey abundance (i.e., without satiation), whereas 
a Type II curve means predator consumption slows with satiation 
(Figure 1a). Humans follow a Type I curve at local or regional spatial 
scales (Kahlert, Fox, Heldbjerg, Asferg, & Sunde, 2015; Van Deelen 
& Etter, 2003), but a human functional response for global ‘consump-
tion’ of plant material (i.e., HANPP) is unknown. If supported, such a 
response is a strong test of the generality of this concept. A Type III 

curve occurs when predators switch to the subject prey (here plants) 
when it reaches greater abundance. Here Types I or II are possible, 
but Type III would need a prior resource and does not apply.

Predator functional responses have been developed to describe 
individual predators or local populations; we here extend that anal-
ysis to the global human population. This extension is justifiable 
because: (a) humans are dominant, hyperkeystone, super-predators  
(Darimont, Fox, Bryan, & Reimchen, 2015; Vitousek, Mooney, 
Lubchenco, & Melillo, 1997; Worm & Paine, 2016); (b) the human 
population now outweighs all wild mammals (Bar-On, Phillips, & 
Milo, 2018), consistent with our role as a dominant global popu-
lation; (c) the human population acts globally on terrestrial plants, 
as evidenced by > 2 trillion kg of agricultural and forestry products 
transported annually (Chatham House, 2018); and (d) HANPP is 
common to nearly all human socioeconomic and cultural groups.

The other half of predator–prey theory is the prey growth curve 
(Figure 1b; here NPP ~ B). Original models expected a hump-shaped 
curve because only new green growth was considered (May, 1977; 
Noy-Meir, 1975), and so the curve declined with greater B as stems, 
etc. contributed proportionally more to total B. For global terrestrial 
NPP (here representing all aboveground and belowground growth, 
including woody stems and roots), the curve should not be hump-
shaped but instead rise to an asymptote (Jenkins & Pierce, 2017).

Graphical predator–prey theory compares predator functional 
response and prey growth curves (Figure 1a,b; May, 1977; Noy-Meir, 
1975). As long as predator consumption is less than prey growth 
(where totals are evaluated by area under each curve), the predator 

F I G U R E  1   Three ecological theories unified to analyse global human “consumption” of plants. (a,b) Graphical predator–prey theory 
compares predator consumption (a) and prey growth (b) as a function of prey quantity. (c,d) Macroecology theory uses allometric scaling 
(based on logarithmic axes) to find general patterns across wide-ranging data. It has not been applied to human appropriation of net primary 
production (HANPP) (c), but has been used for plant net primary production (NPP) as a function of plant biomass (B), where metabolic theory 
predicts linear plots in log-log space (d). At wider ranges of B, curved patterns arise, consistent with adaptive life history strategies theory. 
(e,f) Work here uses a predator–prey context to evaluate alternative curves and compare HANPP and NPP scaling
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and prey can coexist. If the predator consumption curve intersects 
the prey growth curve, a stable or unstable equilibrium may occur, 
depending on the location of the intersection (May, 1977; Noy-Meir, 
1975; Scheffer, 2009). This theory is a basis for subsequent research 
on alternative stable states and thresholds (e.g., Beisner, Haydon, & 
Cuddington, 2003; Scheffer, 2009).

1.2 | Macroecology and allometric scaling

Predator–prey theory as outlined above originally used linear scales 
(Figure 1a,b; May, 1977; Noy-Meir, 1975), where prey quantity (e.g., 
biomass) is the independent predictor for both predator consump-
tion rate and prey growth rate. Biomass is also commonly used as an 
independent axis in allometric scaling and in macroecology (Brown, 
1995), where “scaling” describes how a response (e.g., metabolic 
rate) “scales” with biomass. Unlike original predator–prey theory, 
allometric scaling axes are log-transformed because: growth hap-
pens exponentially; data (and model errors) are multiplicative; data 
span orders of magnitude; and regression assumptions are better 
met (Kerkhoff & Enquist, 2009; Mascaro, Litton, Hughes, Uowolo, 
& Schnitzer, 2013).

Allometric scaling has not been applied to HANPP (Figure 1c), but 
NPP scaling has been extensively researched, especially to test pre-
dictions of metabolic theory (e.g., Brown, Gillooly, Allen, Savage, & 
West, 2004; Enquist, Brown, & West, 1998; West, Brown, & Enquist, 
1999). Metabolic theory is based on fractal vascular tissues, and like 
other fractal patterns (e.g., fractal river basins; Rodriguez-Iturbe & 
Rinaldo, 2001), linear scaling patterns in log-log space are expected. 
NPP scaling analyses within various systems (e.g., grasslands or for-
ests) have straight linear patterns in log-log space and fit metabolic 
theory (e.g., Enquist et al., 1998; Jenkins, 2015). However, those 
analyses also have ranges of NPP and B that are narrower than the 
global analyses conducted here. At a wider scope of NPP and B (e.g., 
grasslands and forests), NPP scaling bends away from expectations 
of metabolic theory (Figure 1d), consistent with theory (summarized 
below) that expects adaptive life histories to affect growth and size 
in different ecological conditions (Grime & Pierce, 2012; Jenkins & 
Pierce, 2017).

1.3 | Adaptive life history strategies theory

Adaptive life history strategies theory focuses on competitive, 
stress-tolerant and ruderal strategies (and intermediates) and is pre-
dictive for productivity (Grime & Pierce, 2012). Plants that exhibit 
competitive life history strategies can reach large body sizes that 
have greatest NPP (rather than senesce; Stephenson et al., 2014) 
over long life spans. In contrast, ruderal strategists have shorter life 
spans, tend to attain smaller B, and dedicate proportionally more 
NPP to reproduction (Grime & Pierce, 2012). Stress-tolerant strat-
egists withstand harsh environmental conditions and tend to have 
low NPP, but span a range of sizes among species (e.g., within the 

Cactaceae). Considered together for NPP scaling, high NPP and B 
are predicted for competitive strategists, whereas stress-tolerants or 
ruderals should have low NPP across a range of B, and intermediate 
strategists should have intermediate NPP and B (see fig. 1 in Jenkins 
& Pierce, 2017). Communities including mixed strategies should also 
have intermediate NPP and B. These strategies (and intermediates) 
represent adaptive constraints on metabolic theory based on fractal 
vascular tissues, and thus predict nonlinear NPP scaling (Figure 1d; 
Jenkins & Pierce, 2017).

Consistent with that expectation, NPP scaling is sigmoidal in 
shape when evaluated from populations to biomes and across wide 
data ranges (c. 7 and > 5 orders of magnitude for B and NPP, respec-
tively; see fig. 3 in Jenkins & Pierce, 2017). Ecosystems NPP scaling 
was relatively truncated in those analyses (c. 3 orders of magnitude 
for B) and best represented as a quadratic curve that approached 
an asymptote (see fig. 2e in Jenkins & Pierce, 2017). Because that 
curve fit was placed amidst sigmoidal curves, it was interpreted to 
support a truncated portion of adaptive life histories strategy theory 
(Jenkins & Pierce, 2017) representing especially asymmetric size-
based competition (Kerkhoff & Enquist, 2006).

1.4 | Confluence of theory and predictions

Predator–prey theory, macroecology, and adaptive life history strat-
egies theory (summarized above) converge to provide a framework 
for analyses of global human impacts on terrestrial plant growth and 
biomass. Here we evaluate the global human functional response, 
where we use HANPP as a measure of human consumption in the 
predator–prey context (i.e., HANPP ~ B; Figure 1e), but also using al-
lometric scaling. Based on the research summarized above, HANPP 
scaling should approximate a Type I curve (in log-log space). In the 
two-part predator–prey context, we also evaluate global terrestrial 
NPP scaling (Figure 1f). Based on the above-described background, 
global NPP scaling for ecoregions is a strong test of competing 
predictions about NPP scaling (Figure 1d), where we expect a cur-
vilinear shape in log-log space that supports adaptive life histories 
strategy theory. To complete the predator–prey context (arrow be-
tween Figure 1e,f), we compare totals of each scaling curve (using 
areas under curves).

We also consider two alternatives to the above approach. We 
compare potential and actual NPP scaling (i.e., NPPpot  ~  Bpot and 
NPPact ~ Bact), where the difference is, by definition, due to human 
effects on NPP and B. As an alternative, we consider biomass turn-
over rate (T; per year; Table 1), which is estimated as NPP/B and is 
thus comparable to a slope coefficient for NPP scaling (i.e., NPP ~ B) 
used here. Biomass turnover rate (per year) is the inverse of biomass 
turnover time (year), which is reduced at greater HANPP, with ram-
ifications for the global C budget (Carvalhais et al., 2014; Erb et al., 
2016; Friend et al., 2014; Thurner et al., 2017). For example, global 
terrestrial B turnover time in the year 2000 was half that for natural 
(potential) conditions, due to human land use (Erb et al., 2016). For 
biomass turnover rate (T), ecosystems with relatively high NPP and 
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low plant B (e.g., grasslands) should naturally have greater T than 
ecosystems with large plant B (e.g., rain forests). Here we evaluate 
allometric scaling of T (i.e., T ~ B) and human effects on T scaling.

1.5 | Current and future status

We use data representing the year 2000 (Erb et al., 2018; Haberl 
et al., 2007). Human population has already increased 24.6% since 
2000 and is expected to increase 59% by mid-century [i.e., 6.1 bil-
lion people in 2000; 7.6 billion in 2019; 9.7 billion by 2050; United 
Nations, Department of Economic and Social Affairs, Population 
Division (UN DESA), 2017]. We update results for HANPP as a por-
tion of NPP in year 2000 to current conditions and forecast future 
conditions. In addition to global population projections, those pre-
dictions require per capita HANPP rates (Krausmann et al., 2013). 
Projections of per capita HANPP rates beyond 2000 here applied 
two scenarios, based on estimated per capita HANPP estimates 
from 1910–2005 (Krausmann et al., 2013). The first scenario is pessi-
mistic because it assumes reduction in global per capita HANPP has 
stagnated, broadly consistent with warnings of limits to human inno-
vation (e.g., Ehrlich, 1968; Ehrlich & Ehrlich, 1990, 2012, 2013) and 
summarized as the “prophet” view (Mann, 2018). The second sce-
nario is optimistic because it assumes improved efficiency (i.e., more 
food and other biomass-derived products delivered to consumers 
per unit of HANPP due to raised NPP of agro-ecosystems, improved 
harvest indices and reduced biomass losses in supply chains; Haberl 
et al., 2014) since World War II (WWII) in per capita HANPP will 
continue, as assumed by Krausmann et al. (2013) and consistent with 
the “wizard” view (Mann, 2018).

2  | METHODS

2.1 | Data sources and processing

We used publicly available (http://www.aau.at/blog/globa​l-hanpp​
-2000) HANPP and NPP data representing the year 2000 (Haberl 
et al., 2007). Potential NPP (NPPpot) data represent the hypotheti-
cal absence of land use, calculated by the Lund–Potsdam–Jena dy-
namic global vegetation model (LPJ; Sitch et al., 2003) and developed 
further to include hydrological and edaphic factors (Haberl et al., 
2007). The NPP model thus surpasses some concerns about sim-
pler NPP models that do not account for soil fertility, etc. (Šímová 
& Storch, 2017). Like Haberl et al. (2007), we treat potential NPP 
estimates here as representing natural conditions. Data for the year 
2000 are the mean of years 1998–2002 at 5 arc minutes resolu-
tion (c. 10-km grids at the equator; Haberl et al., 2007). The HANPP 
data from Haberl et al. (2007) were based on a variety of sources, 
including cropland and harvest statistics, LPJ model estimates of 
actual NPP (NPPact), and NPP harvested or destroyed (see Table 1 
for definitions). HANPP due to by human-induced fires is not in-
cluded. The HANPP estimate of Haberl et al. (2007) was calculated 

as HANPP = NPPpot – NPPeco, where NPPeco = NPPact – HANPPharv 
(Table 1; also see Haberl et al., 2014). Both NPP and HANPP data 
were expressed as g C/m2/year.

Previous analyses compared HANPP to NPPpot per grid cell (e.g., 
Haberl et al., 2007). Here we repeat that, but in an allometric scaling 
context (i.e., HANPP ~ B is compared to NPPpot ~ B) to combine pred-
ator–prey theory and allometric scaling (Figure 1). We also compare 
NPPpot and NPPact scaling in the year 2000 as an alternative mea-
sure of human effects. Total B (i.e., aboveground  +  belowground;  
g C/m2) data were the independent predictor in NPP and HANPP 
scaling (obtained from Erb et al. (2018). These B data were a com-
bination of Global Forest Resource Assessment data (Food and 
Agriculture Organization, 2010) and quantitative estimates for 
non-forest lands (see Erb et al., 2018 for details). The global B model 
represented global B patterns well, compared with other models (Erb 
et al., 2018: extended data Figures 1, 3, 4).

Analyses here use spatially explicit data on HANPP, NPP and 
B (resolution = 5 arc minutes; Erb et al., 2016, 2018; Haberl et al., 
2007). These grid data are robust but spatially autocorrelated (see 
Supporting Information Figure S1), so we used mean values of ecore-
gions (N = 819) in analyses. By comparing NPP and HANPP scaling 
relationships, we also address statistical covariance of each response 
with B, similar to analyses in finance, where risk and reward are each 
expressed as a function of company size (e.g., Podobnik, Horvatic, 
Petersen, & Stanley, 2009).

The NPP, HANPP and B data sets were generated at 5′ resolution 
using raster and stack commands (as appropriate to the data set) from 
the raster package in R (Hijmans, 2019; R Core Team, 2018), which 
yielded 9,331,200 global grid cells. Terrestrial NPP, HANPP and B 
data were retained and matched to terrestrial ecoregions, yielding 
2,059,206 grid cells. Allometric scaling analyses use log-transformed 
axes for reasons explained above (Kerkhoff & Enquist, 2009), so grid 
cells with values = 0 (e.g., in the Sahara Desert) were removed from 
analyses. This step left 1,778,398 data values representing 86% of 
the global land surface (see Supporting Information Appendix S1 for 
code and Appendix S2 for data). Mean ecoregion values (±1 SD) were 
calculated from these data to represent 819 of 825 (99%) of possi-
ble terrestrial ecoregions (from https://www.world​wildl​ife.org/publi​
catio​ns/terre​stria​l-ecore​gions​-of-the-world; Olson et al., 2001) and 
were used in analyses below.

2.2 | Analyses

Local estimation (loess) regressions were used for NPP and HANPP 
scaling to minimize residual mean square error and provide an ef-
ficient, independent test of hypothesized curve shapes (Figure 1) 
without forcing a priori mathematical functions (e.g., Type I or II 
predator functional responses). This point warrants emphasis: 
loess models are useful here for inference precisely because they 
are ‘phenomenological’ and free to fit data shape, independent of 
a priori expectations. Thus, graphical predator–prey theory was 
evaluated using graphical outcomes to explore the extension of 

http://www.aau.at/blog/global-hanpp-2000
http://www.aau.at/blog/global-hanpp-2000
://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
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locally based ecological theory to global scales. Other regression 
models may be justified after this work and to provide model pa-
rameters not provided by loess fits. Loess regressions use a single 
predictor (here B). To help understand results, we included mean 
ecoregion latitude and ecoregion size (number of grid cells) in 
plots. An optimal span = 0.75 for local estimation was identified 
by information theoretic model selection, based on the corrected 
Akaike information criterion (AICc) and using code at http://grokb​
ase.com/t/r/r-help/05bhm​pgce5​/r-loess​-choos​e-span-to-minim​
ize-aic.

We evaluated nonlinearity of NPP allometric scaling (in 
log-log space) by AICc model selection among linear (i.e., 
log10NPP  ~  a  +  b(log10B)), quadratic (i.e., log10NPP  ~  a  +  
b(log10B) − c(log10B)2) and null (i.e., log10NPPP ~ 1) models. To be 
clear, this analysis only evaluated evidence that NPP scaling is 
linear (per metabolic theory) or nonlinear (per adaptive life his-
tory strategies theory). This goal was secondary to the main goals, 
which were based on loess regression of NPP and HANPP scaling 
(described above).

The portion of NPPpot appropriated by humans was estimated by 
comparing total NPPpot scaling to total HANPP scaling. Totals under 
each curve were estimated by integration of the loess curves, where 
definite integrals of the loess models were calculated and summed 
over 10,000 intervals. Specifically, the area under each curve seg-
ment was estimated as a power function (e.g., NPP = cBm) between 
two B values (i.e., B0 and B1):

where c is a constant and m is a coefficient related to rate of  
increase. Importantly, this integration operated on original (i.e., lin-
ear) scales for curves based on log-log axes. Total values of NPP 
and HANPP scaling curves provided by the integrals were then 
compared.

As an alternative approach, the log-log NPPpot scaling curve 
(from above) was compared to the matching curve for NPPact (i.e., 
log10 NPPact  ~  log10 actual B) where the difference potentially 
gauges human effects on NPP scaling related to land use. In that 
analysis, we also expressed each ecoregion’s change from NPPpot 
to NPPact as a vector, where vector length represented displace-
ment in the NPP scaling space. Vector angles informed tipping 
point estimation, which was conducted with segmented regres-
sion (Muggeo, 2008).

Biomass turnover rate (T) was estimated as the NPP/B ratio 
for both potential and actual conditions. To be consistent with 
log-log scaling (above), T was calculated as log10(NPP) –  log10(B), 
equivalent to log10(NPP/B). Mean values among ecoregions were 
back-transformed to estimate mean potential (Tpot) and actual (Tact) 
conditions. To help understand variation in T, we also computed 
regressions for Tpot and Tact scaling. Variables to predict potential 
T included Bpot, latitude, climate and a quadratic effect of climate 
(based on initial plots). Climate was represented by the first axis 

scores of a principal components analysis (PCA) using annual 
means and standard deviations of temperature and precipitation 
per ecoregion, obtained from WorldClim (http://world​clim.org/
bioclim) and matched to grid resolution as above. The PCA axis 
1 was loaded by only standard deviation of annual temperature 
(loading = −0.58) and annual mean precipitation (loading = 0.81), 
and represented 80.9% of variation in climate variables. Alternative 
models (Bpot, climate or both) as predictors of Tpot were evaluated 
by AICc weight (wi), as above.

The full model for Tact was similar to that for Tpot, but used 
Bact instead of Bpot and included log10(human population size) and 
log10(HANPP) as additional predictors. Alternative models were 
again compared by AICc wi. Human population data (Center for 
International Earth Science Information Network, 2018) were 
matched to NPP data in resolution and projection and predict well 
economy and resource consumption (Zhang & Yu, 2010).

2.3 | Projections

Recent (2019) and future (2050) HANPP were projected as % of 
NPP, based on medium-variant population projections (UN DESA, 
2017) and estimates of global per capita HANPP, which declined 
from 1910 to 2005 (Krausmann et al., 2013). Two scenarios were 
modelled for per capita HANPP trends. First, per capita HANPP 
trend data for 1910–2005 (Krausmann et al., 2013) were statisti-
cally modelled, which assumes conditions driving global HANPP 
were consistent throughout the 20th century. Second, 1950–2005 
data were modelled because the decline in per capita HANPP 
started c.  1950, roughly coinciding with global changes in agri-
culture and economic development post-WWII (Mann, 2018). 
This second scenario assumes conditions driving global HANPP 
shifted substantially after WWII (Mann, 2018). Projection from ei-
ther scenario ignores potential effects of other future processes 
(e.g., climate change, soil erosion, migration, etc.) and assumes that 
global potential NPP scaling on land is unchanged (Running, 2012). 
Projections here differ from those of Krausmann et al. (2013)  
because: (a) we used statistical model selection to fit two alterna-
tive regressions, whereas they applied an exponential model, and  
(b) their scenarios focused on bioenergy production, whereas ours 
are more general.

For each per capita HANPP scenario, alternative models (null, 
linear, quadratic and sigmoidal) were compared by AICc weights, and 
the most plausible model selected. The sigmoidal function used a 
four-parameter cumulative Weibull function in the drc package of R 
(Ritz, Baty, Streibig, & Gerhard, 2015). Each scenario’s most-plausi-
ble model was then used to calculate the percent change in per cap-
ita HANPP from year 2000, and to project to 2019 and 2050 using 
the product of per capita HANPP and estimated global population. 
If per capita HANPP stabilizes (pessimistic scenario), then HANPP/
NPP will be driven by population growth. However, decreasing per 
capita HANPP (optimistic scenario) will mitigate population growth 
effects on HANPP.

(1)∫
B

B0

d(NPPorHANPP)

dB
dB =

c∗B
m

0

m+1
∗

[

B1 ∗

(

B1

B0

)m

−B0

]

http://grokbase.com/t/r/r-help/05bhmpgce5/r-loess-choose-span-to-minimize-aic
http://grokbase.com/t/r/r-help/05bhmpgce5/r-loess-choose-span-to-minimize-aic
http://grokbase.com/t/r/r-help/05bhmpgce5/r-loess-choose-span-to-minimize-aic
http://worldclim.org/bioclim
http://worldclim.org/bioclim
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3  | RESULTS

3.1 | Human appropriation of net primary 
production

Global HANPP scaling was well described by the loess model 
(Figure  2), as evidenced by the narrow confidence intervals and 
plot of residuals (see Supporting Information Figure S2). The loca-
tion of ecoregions in the trend was influenced by latitude (Figure 2), 
with a decline at highest B representing as-yet unharvested tropi-
cal forests. Isopleths for data density in Figure  2 show that many 
ecoregions with relatively high B (~104 gC/m2) have relatively high 
HANPP (~102 g C/m2/year), though that ratio varies by about one 
order of magnitude. The shape of HANPP scaling is similar to a Type I 
predator functional response in log-log allometric space (Figure 2), or 
roughly a Type II curve in linear space. Thus, human “consumption” 
increases proportionally with the amount of plant B in an ecoregion. 
This result is consistent with the finding (below) that humans are a 
driver of global terrestrial plant biomass turnover rate T.

3.2 | NPP scaling

The loess models for potential and actual NPP scaling (Figure 3a,b, 
respectively) indicated curvature, contrary to expectations of 
metabolic theory but in support of adaptive life histories strategy. 
Consistent with a curved scaling pattern, segmented regression 

detected a break point for NPPpot at log10(Bpot) = 3.16 Bpot ± 0.07 
(95% confidence interval), with a greater slope (1.19 ± 0.17) on the 
left of the break point than on the right (0.51  ±  0.03; Figure  3b). 
The tipping point for NPPact (2.94 Bact  ±  0.05) was slightly lower 
than that for NPPpot with slightly greater slopes (left; 1.68 ± 0.27: 
right; 0.60 ± 0.03; Figure 3b). Plant biomass was changed more than 
NPP between potential and actual (year 2000) conditions, espe-
cially in ecoregions with greater B, as shown by vectors of change 

F I G U R E  2   Allometric scaling of human appropriation of net 
primary production (HANPP) as a function of potential plant 
biomass (B), using logarithmic scales. Line represents local 
estimation of ecoregion means; isopleths represent data density. 
N = 819

F I G U R E  3   Terrestrial net primary production (NPP) scaling.  
(a) Allometric scaling of potential NPP (i.e., NPPpot) as a function of 
potential biomass (Bpot), using logarithmic scales. Line represents 
local estimation of ecoregion means; isopleths represent data 
density. (b) NPPpot and actual NPP (NPPact) as function of current 
actual biomass (Bact), where change in each ecoregion is depicted 
with a vector (arrows). Rosette plots (top) depict angles of vectors 
within marked zones, and triangles (bottom) show tipping points 
for each scaling function. N = 819
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(Figure 3b). These changes drove the NPPact curve primarily to the 
left of the NPPpot curve, while maintaining a similar shape within the 
general trajectory.

Nonlinear global NPPpot and NPPact scaling was confirmed sta-
tistically, where a quadratic model was more plausible than a linear 
model in both cases (AICc wi  =  1.0); wi  <  .001 for a linear model 

in log-log space, as predicted by metabolic theory. Also, residuals 
of logarithmic scaling relationships (see Supporting Information  
Figure S2) fit statistical assumptions better than linear scaling mod-
els (as expected). To be clear, the quadratic model was used only 
to statistically evaluate NPP scaling curvature and was not used in 
figures here.

F I G U R E  4   Potential and actual biomass turnover rate (T) scaling as a function of plant biomass (B) and as a function of climate.  
(a) Potential T ~ potential B. (b) Potential T is predicted well by climate [i.e., principal components axis 1 (PCA 1), representing annual mean 
temperature and annual mean precipitation standard deviations; 80% of variation in global climate variables]. (c) Actual T (year 2000) is 
less predictably a function of actual B than in (a). (d) Actual T is less predictably a function of the same climate conditions as in (b). Human 
appropriation of net primary production (HANPP) is also required in the local estimation regression model to match the fit of (b) above 
(please see text for regression details). N = 819
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3.3 | HANPP as a portion of NPP

Comparison of definite integrals for the HANPP and NPPpot scaling 
models (Figures 2 and 3a) represented a “predator–prey” compari-
son that estimated global total HANPP in the year 2000 was about 
16.4% of global terrestrial NPPpot. This regression-based value was 
slightly less than an estimate (22.1%) based on summed HANPP and 
NPPpot across ecoregions and made similar to prior empirical esti-
mates of gridded data. Like any regression, results here do not fully 
represent all variation among ecoregions (see scatter in Figures  2 
and 3a), suggesting scatter in the regressions of ecoregion means 
(Figures 2 and 3a) accounted for the 6% underestimate. We refer to 
both the 16 and 22% estimates for projections to current and future 
conditions, below.

3.4 | Biomass turnover rate (T)

Greater change in B (i.e., Bpot – Bact) than in NPP (i.e., NPPpot – NPPact) 
is consistent with accelerated biomass turnover rates (T). In the 
year 2000, geometric mean Tact = 0.191/year, which was 2.25-fold 
Tpot (0.084/year). This change was statistically significant by t test 
(p <  .001). Scaling relationships (i.e., T ~ B) were predictive and in-
formative. For potential (i.e., natural) conditions, greater Tpot oc-
curred in low-B ecoregions at higher seasonal latitudes (Figure 4a,b). 
As a result, log10(Tpot) was predicted most plausibly (AICc wi = 1.0, 
next ΔAICc = 61.4) by B and climate [log10 Tpot = 1.164 – 0.594 * 
log10(Bpot)  +  0.080 * climate  –  0.011 climate2; adjusted R2  =  .73; 
residual standard error (RSE)  =  0.123, df  =  800]. Thus, Tpot in for-
mer, natural conditions was largely a function of plant biomass and 
climate.

In the year 2000, comparably predictive modelling of biomass 
turnover (Tact) requires human population and HANPP. Compared to 
Tpot scaling, Tact scaling was relatively elevated but less clearly linear 
(compare Figure 4a,c), and less clearly a function of climate (com-
pare Figure 4b,d). Adjusted R2 was only .51 for Tact = Bact + climate 
(i.e., same structure as the Tpot model above). However, including 
human population size and HANPP as predictors greatly improved 
the model again and made it far more plausible (AICc wi = 1.0, next 
ΔAICc = 31.4). The model [Tact = 0.557 – 0.537* log10(Bact) + 0.021 *  
climate  –  0.009 * climate2  –  0.036 * log10(population)  +  0.309 * 
log10(HANPP)] was about as predictive as the Tpot model (adjusted 
R2 =  .72, RSE = 0.100, df = 798). Based on this model, an increase 
in population size slightly reduces Tact, but an increase in HANPP 
increases Tact.

3.5 | Projections

Two scenarios were projected for current and future HANPP relative 
to NPP. For the pessimistic scenario, 1910–2005 per capita HANPP 
was most plausibly modelled (AICc wi  =  .95, next ΔAICc  =  6.4) 
by a sigmoidal function that approaches a lower asymptote (i.e., 

stagnating efficiency): per capita HANPP = 2.014 + (3.364 – 2.014) *  
exp(−exp(86.212*(log(year)–log(1976.7)))); RSE  =  0.056, 5 df, all 
terms p <  .005. This model predicted per capita HANPP stabilized 
to a lower asymptote (43.5% reduction in both 2019 and 2050). By 
this scenario, the c. 7.6 billion people inhabiting this planet in 2019 
have increased HANPP scaling from 16–22% in the year 2000 to 
20–28% of potential NPP in the year 2019. By the same scenario, 
human population growth (9.7 billion by 2050) will push HANPP to 
25–35% of potential NPP by mid-century.

For the optimistic scenario, post-WWII per capita HANPP 
was most plausibly fit by a quadratic model that declined 
at a slowing rate through time: per capita HANPP  =  53.9–
0.5351*(year) + 0.0001296*(year^2); AICc wi = .72, next ΔAICc = 2.8, 
RSE = 0.028, 4 df, adjusted R2 = .996, all terms p ≤ .025. Extrapolating 
this model to 2019 and 2050 predicts that per capita HANPP con-
tinues to become more efficient (48 and 55% reductions from 1910, 
respectively). Using the same population projections as above, this 
second scenario predicts that 2019 HANPP = 18–24% of potential 
NPP, and that in 2050 HANPP will be 20–26% of potential NPP. If 
continued, decreasing per capita HANPP (i.e., increasing per capita 
HANPP efficiency) since 1950 will greatly mitigate effects of pro-
jected global human population growth, represented as HANPP.

4  | DISCUSSION

Global human impacts on natural systems have been considered  
for decades, with a prominent quantitative estimate being  
HANPP. We found that ecological theory helps to understand global 
relationships between HANPP, terrestrial plant growth (NPP) and 
biomass (B). Empirically based knowledge that human population 
growth and resource use efficiency are globally important is now 
backed by evidence gathered in the context of ecological theory. 
Results here also indicate that global carbon budgets need to include 
both top–down and bottom–up regulators to be more accurate.

In principle, ecological theory should help inform sustainabil-
ity science's efforts to understand and mitigate human impacts. In 
practice, this linkage occurs rarely, perhaps related to challenges 
in scaling up expectations derived from local ecology. Here we 
linked three otherwise disparate ecological theories to estimates 
of global human impacts on terrestrial plants. Until this work, 
graphical predator–prey theory (i.e., theory based on May, 1977; 
Noy-Meir, 1975) had not been related to allometric scaling used 
in macroecology, though it was recently anticipated (Jenkins & 
Pierce, 2017). A foundation existed as NPP scaling (e.g., Enquist, 
West, & Brown, 2009; Jenkins, 2015; West, Enquist, & Brown, 
2009), which represents the prey half of predator–prey scaling. The 
other half (HANPP scaling) was novel here, as was its comparison 
to NPP scaling. Global HANPP and NPP scaling demonstrated the 
general predictive capability of macroecological allometric scaling 
at the greatest possible extent. The shape of scaling curves was 
also linked to theory, where adaptive life history strategies theory 
(Grime & Pierce, 2012) was supported as a driver of global NPP 
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scaling, consistent with other results for ecosystems (Jenkins & 
Pierce, 2017), and instead of metabolic theory (Brown et al., 2004; 
Enquist et al., 1998; West et al., 1999). Results for NPP scaling of 
107 ecosystems gleaned from the literature (in Jenkins & Pierce, 
2017) and 819 ecoregions here greatly overlapped, with similar 
extents in both axes. Much like results for ecosystems reported by 
Jenkins and Pierce (2017), NPP scaling for ecoregions here repre-
sented but a segment of a broader possible curve. Data for subsets 
of ecosystems (i.e., populations and assemblages; Jenkins & Pierce, 
2017) may be needed to contribute to the lower tail of a sigmoidal 
NPP scaling curve (i.e., low B and low NPP) because integrative 
data at greater spatial scales for ecosystems and ecoregions do not 
approach those lower values. This result indicates that metabolic 
theory is scale-dependent; it can work well for local scales (e.g., 
individual plants, plots, forest stands), but widely different adap-
tive life history strategies must also be considered across greater 
scales (Grime & Pierce, 2012; Jenkins & Pierce, 2017).

Analyses here estimate global human “predation” on plants in 
three ways: HANPP scaling as a portion of NPP scaling, changes in 
NPP scaling, and biomass turnover rate T. HANPP scaling as a por-
tion of NPP scaling and T were more sensitive measures of human 
impact than was comparison of potential and actual NPP scaling. 
This occurred because B was more strongly affected by land use 
than NPP, consistent with Erb et al. (2016). As a result, T scaling in 
the year 2000 was less a function of climate (as in natural conditions) 
and more a function of human impacts.

The predator–prey approach used here supports prior work 
(Haberl et al., 2007) but does not replace those detailed estimates, 
which more directly relate to global C budgets. Instead, it serves as a 
basis for future statistical models to better represent residual varia-
tion and perhaps more closely approach empirical estimates. Scaling 
models for HANPP, NPP and T do not perfectly represent the bivari-
ate patterns, and scatter around the regression models represents a 
potentially rich direction for future research. For example, HANPP is 
affected by socioeconomic phenomena, which should alter allometric 
relationships expected based on natural laws alone (Marques et al., 
2019). Also, wide variation in HANPP scaling at high B (> 104 g/m2;  
Figure 2) may represent historical legacies and recent human land 
use on tropical deforestation (Sponsel et al., 1996). Going for-
ward, this variation may collapse without rapid implementation of 
better strategies for sustainable land use in the tropics (DeFries & 
Rosenzweig, 2010). If so, then ongoing destruction of tropical forests 
will more closely conform with the linear (unsatiated) HANPP scaling 
at B < 104  g/m2, which would represent vast and deep human ef-
fects on this global C component and its biodiversity. Thus, changes 
in HANPP scaling variance may be a sensitive summary measure of 
future land use impacts in a globalized economy.

For regional human populations, NPP and HANPP scaling alone 
represent but one potential limit to population growth, and ongo-
ing changes may raise or reduce those limits (d'Amour et al., 2017; 
Lobell, Schlenker, & Costa-Roberts, 2011). Given its apparent sen-
sitivity to human land use, biomass turnover rate (T) or its inverse 
(Erb et al., 2016) should be more prominent in further analyses and 

projections of human impacts and reciprocal effects of natural re-
source limits on sustainable human population size.

Going forward, the two scenarios projected here represent  
“optimistic” and “pessimistic” levels of HANPP scaling, where a 59% 
increase in human population from 2000 to 2050 (UN DESA 2017) 
would cause HANPP to increase either 20–28 or 25–35%. A choice 
between the two scenarios hinges on global conditions before 
and after WWII. The optimistic (“wizardly”; Mann, 2018) scenario 
was based on conditions after WWII, when per capita HANPP de-
creased during the “green revolution” (Borlaug, 2007; Khush, 1999). 
Continuation of this trend essentially expects that advancing tech-
nologies will partially continue to improve HANPP efficiency and 
reduce counterproductive side effects (e.g., Appels et al., 2018; 
Van Deynze et al., 2018). Alternatively, the pessimistic (“prophetic”; 
Mann, 2018) projection here used pre- and post-WWII per capita 
HANPP data (Krausmann et al., 2013), and indicated that per capita 
HANPP efficiency has stagnated. In this case, global HANPP will in-
crease proportionally with human population size and is consistent 
with decades of forewarnings (e.g., Brown et al., 2014; Ehrlich, 1968; 
Ehrlich & Ehrlich, 1990, 2012, 2013; Foley et al., 2005). We conclude 
that substantial, rapid gains in HANPP efficiency are needed to 
stabilize HANPP and conserve natural vegetation during expected 
human population growth (Wilson, 2017). For example, agricultural 
yields could be increased in regions yielding less than their poten-
tial (Tilman et al., 2011), though regional effects (e.g., downstream  
eutrophication) must also be mitigated (Mueller et al., 2012). So 
far, agricultural yields are not increasing fast enough (Ray, Mueller, 
West, & Foley, 2013). Other opportunities to increase both over-
all HANPP efficiency and C uptake exist in forest conservation and 
management, especially in tropical forests where high NPP and B 
coincide and where much biodiversity exists (Bastin et al., 2019; Erb 
et al., 2018; Marques et al., 2019).

Unfortunately, global T (via harvest, burning, etc.) is now twice 
its potential natural value and likely to accelerate with human 
population growth and resource use. Thus, greater NPP alone 
cannot provide sufficient C sink because grown biomass is also 
increasingly depleted, and efforts to predict or understand T with-
out accounting for human effects (e.g., Carvalhais et al., 2014) 
remain incomplete. This is especially so in tropical regions where 
Tact has increased relative to potential natural conditions (com-
pare Figure 4b,d). Large-scale, coordinated efforts in two related 
themes are essential to the near-term human future: (a) to gener-
ally improve HANPP efficiency in agriculture, food supply, timber, 
construction engineering and urban planning (e.g., Dahlbo et al., 
2015; Hunter, Smith, Schipanski, Atwood, & Mortensen, 2017; 
Kummu et al., 2012; Marques et al., 2019; Sikkema, Dallemand, 
Matos, Velde, & San-Miguel-Ayanz, 2017); and (b) to educate peo-
ple about this broad subject, including greater access by women to 
education and family planning (Lutz & Samir, 2011). As a quanti-
tative measure of our collective impact, HANPP and T emphasize 
that plants are fundamental for all human populations, more so 
than mined resources sometimes used to evaluate limits to human 
population growth (Brown et al., 2014; Meadows et al., 1972; 
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Sabin, 2013). Human impacts on vegetation should be included in 
projections of resource shortages in coming decades (e.g., United 
Nations World Water Assessment Programme, 2018), recom-
mendations of the Intergovernmental Science-Policy Platform on 
Biodiversity and Ecosystem Services (http://www.ipbes.net) and 
others (e.g., Ehrlich & Ehrlich, 2012, 2013), and actions to address 
those challenges, such as the UN Sustainable Development Goals 
(http://www.un.org/susta​inabl​edeve​lopment).

5  | CONCLUSIONS

The confluence of graphical predator–prey theory, macroecologi-
cal allometric scaling, and adaptive strategies theory applied here 
to HANPP, NPP and B broadly supported empirical estimates and 
enabled novel insights. Graphical predator–prey theory is updated 
and extended to work globally here using logarithmic scaling of 
HANPP and NPP as functions of plant B. Adaptive strategies the-
ory (rather than metabolic theory) is supported by the NPP scal-
ing curve. Plant biomass is more sensitive to human land use than 
is NPP, and human effects are now required to adequately pre-
dict biomass turnover rate (T). Human population growth and per 
capita HANPP efficiency strongly affect terrestrial plant NPP and 
B, and thus global biodiversity and carbon budgets. Scientific esti-
mates of global biodiversity and carbon budgets may be improved 
by including human population growth and per capita HANPP ef-
ficiency. Science-based policies are fully justified where aimed to 
humanely slow human population growth (e.g., greater access by 
women to education and family planning) and enhance HANPP ef-
ficiency (e.g., more solar and wind energy rather than wood fuels, 
engineered building materials and packaging to reduce lumber and 
fibre use, reduced food waste, sustainably increased agricultural 
intensity).
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