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Although ecology and biogeography had common origins in the natural history of the nineteenth
century, they diverged substantially during the early twentieth century as ecology became increas-
ingly hypothesis-driven and experimental. This mechanistic focus narrowed ecology’s purview to
local scales of time and space, and mostly excluded large-scale phenomena and historical explan-
ations. In parallel, biogeography became more analytical with the acceptance of plate tectonics
and the development of phylogenetic systematics, and began to pay more attention to ecological fac-
tors that influence large-scale distributions. This trend towards unification exposed problems with
terms such as ‘community’ and ‘niche,’ in part because ecologists began to view ecological commu-
nities as open systems within the contexts of history and geography. The papers in this issue
represent biogeographic and ecological perspectives and address the general themes of (i) the
niche, (ii) comparative ecology and macroecology, (iii) community assembly, and (iv) diversity.
The integration of ecology and biogeography clearly is a natural undertaking that is based on evo-
lutionary biology, has developed its own momentum, and which promises novel, synthetic
approaches to investigating ecological systems and their variation over the surface of the Earth.
We offer suggestions on future research directions at the intersection of biogeography and ecology.
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1. INTRODUCTION
The speakers in this symposium were paired to con-
trast different perspectives on issues of common
interest. Although ecology and biogeography had a
common origin in nineteenth-century natural history,
these disciplines grew apart with their formalization
and the search for mechanisms to explain patterns
early in the twentieth century [1]. For example, the
experimental tools of genetics and population biology
were useful for studying the adaptations of organisms
and the regulation of populations, but did not readily
apply to global patterns of distribution and diversity.
The schism possibly peaked during the 1970s, soon
after Robert MacArthur [2,3] explicitly excluded his-
tory from the purview of ecology, which the historian
of science Sharon Kingsland [4] referred to as ‘the
eclipse of history.’ Indeed, one could argue that ecolo-
gists further weakened the study of biogeography
through the development of the equilibrium theory
of island biogeography, which was essentially non-
historical [5,6], and with hypotheses to explain variation
in species richness by local, primarily ecological, mech-
anisms [7–9], and, more recently, the promotion of
stochastic mechanisms lacking ecology, including
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mid-domain effects [10,11] and neutral community
theory [12,13].

Only after the general acceptance of plate tectonics
in the 1960s and the development of increasingly
analytical approaches to studying geographical distri-
butions, such as panbiogeography [14], vicariance
biogeography [15], analytical biogeography [16] and
areography [17], did biogeography experience a resur-
gence that eventually commanded the attention of
ecologists [18] including the development of macro-
ecology [19–21]. It is worth noting in this context
that several ecological societies were founded early in
the twentieth century (British Ecological Society,
1913; Ecological Society of America, 1915), whereas
the Journal of Biogeography dates from 1974 and the
International Biogeography Society (IBS) was estab-
lished only in 2000. Despite its slow start, however,
activity in biogeography is rapidly increasing, and the
discipline is converging with organismal ecology, which
is itself becoming more regional in scope [22]. The
common ground of biogeography and ecology has
become a compelling area for exploration, but the terrain
remains poorly mapped. The purpose of our symposium
at the 2011 meeting of the IBS was to promote discus-
sion towards this end by bringing together biologists
with different perspectives on common themes.

The contributions to this symposium appearing in
this issue emphasize the increasing integration of bio-
geography and ecology, as well as lingering differences
This journal is q 2011 The Royal Society
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remaining to be bridged. Beyond this, we offer some
personal observations on the contemporary relationship
between these disciplines, emphasizing the current
trend towards their unification. The common ground
uniting two disciplines is perhaps best understood by
first charting their differences. From the most general
considerations, biogeography and ecology have been dis-
tinguished by their disparate foundations of (i) language
and tradition, (ii) data and experimental/analytical tools,
and (iii) scale and perspective (from the standpoint of
both time and space). Modern ecology addresses mech-
anisms responsible for pattern and relies heavily on
experimental approaches, which limit the spatial and
temporal scale of processes that can be investigated. Bio-
geography has been concerned with large scale, indeed
global, patterns in the distributions of populations and
in the diversity of natural systems. The relevant processes
are also primarily large in scale (species production,
vicariance) or infrequent (long-distance dispersal) and
often historically contingent (major extinction events,
plate tectonics). Naturally, data and methods diverge at
the extremes, as does language. Each discipline has
used a different vocabulary for its unique phenomena
and processes. But different disciplines also use the
same words in different ways; terms such as distribution,
community, dispersal and niche often have different mean-
ings when applied by biogeographers and ecologists. For
example, to many biogeographers ‘dispersal’ applies to
the colonization of a new area, and thus the expansion
of a species’ distribution, but ecologists often think of
dispersal in terms of the movement of individuals
within a population influencing local demography and
genetic differentiation. Of course, the same word also
can mean different things to different people within
the same discipline; ‘community’ and ‘niche’ are good
examples [23–26].
2. LANGUAGE AND USAGE
As Weiher et al. [27] emphasize, we are held hostage by
words as much as we are empowered by them. For
example, the word ‘community’, as it has been used in
ecology, might refer to an entity (for which the existence
of boundaries has been a persistent source of disagree-
ment) or to a concept that embodies the effects of
interactions among species [25]. By attaching the word
‘community’ to an assemblage of species within a
defined study area, one is encouraged to believe that
the local presence and absence of species reflect inter-
actions occurring within the area. In ecology, this way
of thinking has promoted research on the rules of com-
munity assembly based on the ability of species to
coexist locally. Problems with words like ‘community’
partly reflect perspective, for example, characterizing
local assemblages by presence versus abundance of
species. Presence or absence of a species in a location
is a useful indicator of species distributions in regional-
scale studies (e.g. [28,29]), whereas abundance,
reflecting more subtle habitat qualities and species
interactions, might be more appropriate for ecological
studies at local scales. However, while experimental ecol-
ogy has demonstrated the influence of local species
interactions on populations (e.g. [30]), these inter-
actions alone do not determine the presence and
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relative abundance of species locally. ‘Community’ is a
conceptually useful term that can be applied to all eco-
logical systems, but has informed theory primarily in
closed systems (i.e. those that neither receive nor
export organisms), as in the Lotka–Volterra equations
for competition and predation. This community concept
struggles with the more open systems that we confront as
ecology approaches biogeography, requiring that species
interactions be given a spatial context. The word ‘meta-
community’ [31,32] represents an effort to consider
local communities in a regional context and may be
treated as a sample [29] of a regional community [25].
The progression towards more regional perspectives in
community ecology reflects past frustrations with com-
munities perceived as empirical entities that can be
defined spatially [25]. This inadequacy of language is
indicated by ecology’s long interest in measures of
diversity [33] and spatial turnover (beta diversity;
[34]); both attributes address the overlap and similarities
among communities. Even the word ‘assemblage’, often
used in place of ‘community’ [35], conveys a sense of
organization and an underlying set of processes.

Chase & Myers [34] make a similar point about ‘niche’
being one of those terms that defy definition but appear
familiar when seen. Of course, each viewer ‘sees’ niches
with different eyes. As in the case of ‘community’, the
term ‘niche’ is more useful as a concept related to an indi-
vidual’s (Eltonian niche?) or a species’ (Grinellian niche?)
physical place and functional role in the environment
[24]. Hutchinson’s [36] multi-dimensional niche axes
(e.g. prey size, soil pH, temperature, etc.) further empha-
size that ‘niche’ might be more useful as a concept than
a measurable entity, especially when it is measured in a
single, local context but varies among locations within a
species’ range.

The way we talk about niches influences our think-
ing and our science. Species are often shown in
ecology texts as being evenly distributed along niche
axes with a minimum of overlap, representing the
idea of niche partitioning. In neutral theory, however,
species are not distinguished ecologically and niches
overlap completely. Where does nature lie on this con-
tinuum? Should the way we portray species’ niches
vary with geographical or ecological scale? Wiens
[37] points out that we have little basis as yet to con-
sider the concept of the ecological niche at the
spatial and temporal scales of biogeographers. How
different are fundamental and realized niches, and is
there a consistent relationship between them? Biogeog-
raphy needs to better reconcile large-scale patterns
with ecological niche concepts, though it is difficult
to address such basic issues without first letting go of
some of the traditions we have inherited while working
at traditional scales in biogeography (or ecology). In
this way, future careful articulation of concepts and
research at the intersection of both disciplines can
transform each discipline.
3. DATA AND ANALYSES
Progress in science tends to follow paths of least resist-
ance, and those paths meander in time. Particularly at
large dimensions of size and complexity, we are limited
by data and analytical approaches, and we tend to use
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what is available. Chiarucci et al. [33] address the task of
quantifying species diversity and biodiversity and point
out choices between using phylogenetic and functional
diversity, whether to weight species abundance, and
the relevance of species versus landscape diversity. In a
very practical sense, quantifying biodiversity in a way
that is useful for conservation and management depends
on the goals of biodiversity management. We must also
keep goals in sight when we answer more basic questions
concerning the origin and maintenance of patterns of
biodiversity. The growing availability of data and analyt-
ical power in ecology and biogeography has made
possible the global analysis of patterns of mammal
species richness and phylogenetic diversity described
by Davies & Buckley [38]. However, the rush to the
global scale carries the risk of abandoning, to some
degree, local scales where biogeography, ecology and
evolutionary adaptation intersect. Thus, we find it intri-
guing that global analyses (e.g. [38]) point to regions of
particular interest for both basic and applied biodiversity
work in the future. We also note that the emphasis on
global pattern, which is becoming increasingly accessible,
does not necessarily resolve the issue of underlying
process, which becomes more complex as scale increases.

The analysis of the ancestral relationships of species
based on DNA sequences (phylogenetic analysis) has
greatly stimulated analyses in ecology and biogeography
by opening a window on the historical dimension. In
addition, phylogenetic relationship has been adopted
as a proxy for functional relationship (distance in niche
space, perhaps), enabling large-scale analyses of species
sorting and niche partitioning, discussed in §7. Four
papers in this issue represent this general approach,
which will continue to forge an important link between
biogeography and ecology. Davies & Buckley [38] use
phylogeny to interpret the history of diversification of
mammals in different parts of the world, and distinguish
recent rapid radiation of a few groups from the retention
of many ancient diverse lineages. Smith & Lyons [39]
use phylogenetic relationship to distinguish convergent
evolution from common ancestry in the interpretation
of size distributions of mammals. Emerson et al. [40]
employ phylogenetic analysis to explore the contri-
butions of colonization and local diversification to
species assemblages and illustrate how molecular gen-
etics methods have also become essential tools for
quantifying diversity itself in poorly known taxa. As
Poulin et al. [41] point out, interpreting comparative
ecology in a phylogenetic context can be difficult in
host–parasite systems where the two players are linked
to each other, but phylogenetic context is essential to
tease apart patterns and better infer processes.
4. SCALE AND PERSPECTIVE
The most persistent theme in the continuum between
biogeography and ecology is that of scale in time and
space, from the individual organism and its lifetime
activities (local scale) to population distributions
(mesoscales and beyond) to clades that diversify
across geographical regions (global scale; [22]). To
some degree, constructed patterns at small and large
scales can be connected analytically by beta diversity or
distance decay in similarity [34,41–43]. Distance decay
Phil. Trans. R. Soc. B (2011)
reflects underlying processes, among which dispersal
limitation and local adaptation have received attention.
To use distance decay in ecology and biogeography will
require that it be explicitly scale-specific and, ultimately,
that distance decay patterns be compared across spatial
scales. To do so implies organized data collection and
analysis at multiple scales, and comprises a potentially
fruitful and challenging research agenda. Outcomes of
such research may find a common denominator among
diverse scales and thus aim towards strong and valu-
able predictive capacity. Although such commonalities
across scales are possible, it is clear that ecological
processes probably dominate mechanisms at local,
short-term scales, while evolutionary processes domin-
ate at global, long-term scales. This expectation does
not deny that evolution happens in ‘ecological time’
[44] but simply suggests inverse gradients in the signal-
to-noise ratio of ecological and evolutionary processes
across temporal and spatial scales. The intersection of
those gradients at intermediate temporal and spatial
scales represents the regional-scale intersection of
ecology and biogeography.

Community ecology, biogeography and evolution
reflect local-scale outcomes of the properties and
actions of individuals, including genetics and the epi-
genetics of individual development. The link between
evolutionary change in populations and variation in
individual fitness exemplifies this connection between
scales. The expression of natural selection depends,
of course, on the environmental context (that is, pat-
tern at a larger scale), and evolutionary change
overall depends as well on chance. It is not clear, how-
ever, to what extent the expression of natural selection
is rational—that is, comprehensible—at a higher level.
In the case of evolution, we can interpret the outcome
of this unfolding of process into pattern (adaptation)
in the context of our understanding of fitness.
Although we probably would not predict a kangaroo
a priori, we can at least, having become aware of its
existence, understand why it is the way it is in terms
of the mechanics of locomotion. Nonetheless, the
world outside Australia seems to have functioned per-
fectly well without kangaroos (although some rodents
evidently are kangaroo wannabes). Clearly, kangaroo-
ness itself is not predictable from the environmental
context at a larger scale, but can only be rationalized
a posteriori from general principles of adaptation.

The distributions of populations are like the qualities
of kangaroos, unpredictable in most respects but pos-
sibly rationalized after the fact in terms of physiological
and biochemical adaptations to the physical environ-
ment, the distributions of competitors, predators and
pathogens, and other contexts. Kangaroos and popu-
lation distributions obey many laws of nature, but are
historically contingent on past influences. Distributions
of species living in the same environment vary im-
mensely in location, extent and local density. More
over, although probabilities of population persistence
and diversification might represent a fitness criterion in
biogeography, it is nonetheless difficult to rationalize
distributions as qualities of populations. Where distribu-
tions have been analysed in a phylogenetic framework,
‘heritability’ (evolutionary conservatism) of individual
population qualities typically is low [45–47]. As a
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result, we expect that predictive, niche-based models of
species distributions (e.g. [48]) will be all the more inter-
esting when combined with detailed genetic analyses
and common garden experiments to test for heritable
variation in fitness. Also, overlapping combinations of
such models for multiple species may be one means to
bridge the gap between species-specific adaptive re-
gimes and community ecology, consistent with regional
communities [25].
5. BIOGEOGRAPHIC PATTERN
As shown in the contributions to this symposium issue,
patterns do emerge in biological systems. For instance,
ecologists, evolutionists and biogeographers have long
shared a common interest in convergence—similarity
in form and function arising from disparate origins.
For example, convergence explains the similar appear-
ance and functioning of Mediterranean-type vegetation
in distant parts of the world [49–51]. Body-size distribu-
tions of mammals also are similar across zoogeographical
realms, suggesting common constraints on the evolution
of size and perhaps size-dependent packing of species
into available ecological space [39]. Some patterns of
distribution and diversity also exhibit convergence: for
example, the latitudinal gradient of diversity appears to
be independently derived in the Old World and the
New World. Parallelism between regions also suggests
common independent outcomes: the range extents of
disjunct herbaceous plant genera shared between eastern
Asia and eastern North America provide a geographical
example [52]; correlations in species richness (but not
species identity) of plant families between Eastern and
Western Hemisphere forests [46] additionally suggest
parallelism in diversification.

Equally important are cases that lack parallelism or
convergence, which can highlight mechanisms that
apply uniquely in different places. Classic examples
are differences in diversity of forest trees in similar
environments in America and Europe, generally attrib-
uted to selective extinction of European species with
climate cooling and glaciations during the late Tertiary
[53–55]. In this example, the unique geography of
Europe, with the Alps and Mediterranean Sea forming
east–west barriers to southward range shifts, suggests
the precedence of history and large-scale processes
over local ecology in regulating diversity. The greater
species richness of mangrove plants in the Indo-West
Pacific compared with the Western Hemisphere
[56,57] is another example, possibly attributable to a
greater propensity for the evolutionary origin of man-
grove lineages in areas with shallow seas and isolated
islands, characteristic of the early Tertiary Tethys
region and, more recently, the Indo-Malayan region,
but largely lacking from the Western Hemisphere [58].

Biogeography is practised in considering large-scale
patterns like those above, but modern ecology has
been considered ergodic (i.e. invariant and ahistorical;
[1]) and rarely considers such effects, in part because
we study ecological systems within regions and less
often confront pattern at larger scales. As McIntosh
([1], p. 6) wrote ‘The question for ecologists is: Are
there any ergodic properties in ecological phenomena?’
As ecologists begin to invoke historical/biogeographic
Phil. Trans. R. Soc. B (2011)
processes to reconcile different patterns within and
among regions (e.g. [59]), they will hasten the unification
of ecology and biogeography.
6. PHYLOGENETIC THINKING
Phylogenetic reconstruction has opened a window
onto the history of contemporary patterns. As elab-
orated by Emerson et al. [40], phylogeography
portrays the geographical history of genetic diversity
within or among closely related species and can eluci-
date the history and direction of colonization. Species
phylogenies, especially those calibrated with respect to
time, allow certain inferences about the origins of
large-scale patterns, including areas of origin and the
spread of diversity. Based only on taxonomic data,
botanists have understood for decades that plant
clades characteristic of high latitudes are generally
nested within larger clades with primarily tropical dis-
tributions [60]. This pattern is consistent with the
broader distribution of tropical climates during the
Late Cretaceous and Early Tertiary, and suggests
that high-latitude diversity has been constrained by
both time and barriers to adaptation imposed by
stressful conditions [59,61–64]). This evolutionary
inertia, which apparently has prevented so many trop-
ical lineages from leaving home, is commonly referred
to as ‘tropical niche conservatism’ [65–68].

Writing in this issue, Davies & Buckley [38] contrast a
measure of the phylogenetic diversity of mammals,
which takes into account the timing of diversification
and contemporary species richness to elucidate aspects
of the history of diversity. Although Africa holds more
ancient evolutionary lines of mammals—reflecting the
early origins there of most mammal lineages—South
America has undergone more rapid recent radiation,
particularly with the Late-Tertiary introduction of
additional old mammal lineages from North America
(the Great American Interchange) [69–71] and, to a
lesser extent, as in the case of platyrrhine primates
(New World monkeys) [72,73] and caviomorph rodents
[74,75], by overwater dispersal from Africa [76]. A
similar approach has revealed that tropical areas gener-
ally hold more ancient lineages and also support more
rapid diversification in many groups (e.g. [76,77]).

Phylogenetic relationship has also been used to infer
processes involved in the distribution of species within
regions. Two processes have opposite influences. On
the one hand, related species share traits that are adap-
tive to certain parts of the environmental space (e.g.
portions of the spectrum of temperature, precipitation,
soil mineral composition or climate seasonality). In
G. E. Hutchinson’s terms [36], related species tend
to share portions of their fundamental niches, that is,
the range of conditions under which they are able to
persist in the absence of impacts from other species.
Consequently, assuming that close relatives tend to
share traits (evolutionary conservatism), one would
expect to find related species living together. On the
other hand, related species have similar resource
requirements and at a more local scale might exclude
one another through the depressing effect of com-
petition on population growth. In this way, the
realized niches of related species within their shared
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fundamental niche space would overlap less than
expected at random [78,79]. In a phylogenetic analy-
sis, one would expect fewer close relatives living
together at small spatial scales, but more than the
random expectation at large spatial scales, and this is
a common result of phylogenetic community analyses
(e.g. [80,81]). This tension between phylogenetic
trait similarity (clumping) at large spatial scales and
differentiation (overdispersion) at small scales is a
theme discussed in this issue by Emerson et al. [40],
Wiens [37], Weiher et al. [27] and Chase & Myers
[34] illustrating the current and broad-based focus
on evolutionary/phylogenetic information in judging
the balance between local and regional processes.
Though we expect this general approach will evolve
in method, phylogenetic thinking is fast becoming
the norm in research conducted at regional and
local scales and will continue to be important at the
biogeography–ecology intersection.
7. SPECIES SORTING AND NICHE PARTITIONING
Ecological species sorting at large scales and community
assembly at small scales potentially provide rules gov-
erning some of the distribution and diversity patterns
observed in nature. In this case, the production of
species through large-scale processes, which forms the
regional species pool, is balanced by processes at two
levels: adaptation to different parts of the environment
(species sorting) and interactions between species
(niche partitioning). Much of classical community ecol-
ogy has addressed niche partitioning and community
assembly (see [27,34]), but the interplay between
species interactions and local diversity needs further
consideration. Weiher et al. [27] emphasize the value
of focusing on species functional traits as a way to
bring greater clarity to community assembly, in contrast
to community assembly research that has focused on
species composition. Species traits and phylogenetic
signal (e.g. [82]) will become an increasingly valuable
approach to reveal species sorting and niche partitioning
in community assembly at regional scales.

Community assembly emphasizes ecological (habitat)
filtering, species interactions and random processes; the
first two are niche oriented, that is, referring to the
species fundamental niche (phylogenetic clumping) in
contrast to the realized niche resulting from partitioning
ecological space (phylogenetic overdispersion) [83–86].
Emerson et al. [40] place ecological neutrality, represent-
ing processes that create pattern in the absence of
ecological distinctions between species [12] in a central
position between ecological species sorting and niche
partitioning, on the one hand, and history and geogra-
phy, on the other. Weiher et al. [27] also place neutral
processes and outcomes between species sorting and
niche partitioning. It is interesting to consider, in this
sense, whether the appearance of neutrality in many situ-
ations reflects the absence of ecology (i.e. neutrality per
se) or a balance between the opposing ecological forces
of ecological sorting and competitive exclusion at inter-
mediate spatial scales. Presumably, neutrality would
be indicated when the degree of phylogenetic relation-
ship among species sampled locally would not differ
significantly from a random draw from the regional
Phil. Trans. R. Soc. B (2011)
species pool, potentially leading one to conclude that
species are distributed independently with a region.
This emphasizes the importance of examining relation-
ships across scales, but begs the question of what
proportion of the variation in species distributions can
be attributed to associative or dissociative influences,
and at what spatial scales. This question also may help
direct a greater role for ecological niche concepts in bio-
geography, given that those concepts have not been fully
incorporated yet [37].
8. SATURATION OF ECOLOGICAL SPACE
Ecologists have not resolved whether ecological space is
filled by species to capacity (i.e. saturated, or not). Fifty
years ago, many ecologists assumed dispersal was not
limiting, and thus communities were saturated (e.g.
[5,87]). Community saturation was a prerequisite for
the hypothesis that patterns of diversity reflect the influ-
ence of the local physical environment on limits to
species coexistence [88], and the foundation for analyses
relating diversity to physical variation in the environ-
ment [89–93]. Observations of density compensation
on islands and the effects of species removal experiments
[94,95] show the power of interspecific competition.
However, only species addition experiments can dem-
onstrate whether ecological assemblages are filled
with species, and such experiments are difficult from a
logistical standpoint. Seeding experiments on North
Americangrasslands [96,97] demonstrated that addition-
al species could be packed into small areas, suggesting
that local diversity is dispersal limited in the sense that
the added species were regional natives. Similar con-
clusions derive from: (i) colonization experiments, in
which habitats naturally colonized from a regional species
pool vary in assemblage composition (e.g. [98,99]);
(ii) analyses of multiple habitats (e.g. [28,29,100]), and
(iii) exotic species invasions of undisturbed native assem-
blages without consistent competitive displacement of
natives [101–104].

Increasingly, ecologists accept that local assem-
blages are not saturated with species, or at least that
the degree of saturation is graded and without a firm
upper limit. Evidence that exotic species often invade
undisturbed native communities also leads one to
question whether species with a long local evolutionary
history necessarily are better adapted to local con-
ditions than species that are introduced or colonize
from elsewhere. Moreover, the number of exotic
species tends to parallel that of native species, when
viewed at coarse spatial scales, suggesting common
suitability to all species of particular environments
rather than repulsion of species from diverse assem-
blages; this is often referred to as the invasion
paradox. Based on phylogenetic and biogeographic
distributions of major clades of anuran amphibians,
Wiens [37] suggests that abiotic tolerances are more
important in biogeography than biotic interactions
(competition and predation). This is consistent with
the observation that recent avian colonists in the
West Indies are generally more widespread and
abundant than long-established endemics [105,106].

The transition from saturation-thinking to the idea
of dispersal limitation occurred when modern ecology



Review. Integration of biogeography and ecology R. E. Ricklefs & D. G. Jenkins 2443
finally returned to the ideas of H. A. Gleason [107]
and R. H. Whittaker [108], namely that local habitats
exist in a regional context, and so began reconsidering
local habitats as open systems with a history [109–
111]. As a result of this process, ecology began to con-
verge towards biogeography, among whose basic tenets
are that dispersal can be limiting and that history mat-
ters [112]. The continued recognition that dispersal
limitation and historical conditions can affect species
composition of local habitats will do much to bridge
differences between ecology and biogeography. A
major research question is to understand the spatial
and temporal scales at which dispersal limitation mat-
ters, and conversely where and when it does not matter
to local and regional communities. Besides being
important for biogeography and ecology, this direction
is essential to problems in applied ecology, in which
conservation and restoration each depend on managing
dispersal limitation (reducing limits for threatened
species, increasing limits for invasive species) and
historically informed resource management decisions
(e.g. [113]).
9. DIVERSIFICATION AND THE DEVELOPMENT
OF REGIONAL BIOTAS
With respect to the species saturation of communities,
Wiens [37] makes the important point that assem-
blages of species from an older lineage are open to
further invasion by more recent lineages. One pre-
sumes that any particular biota builds over time
through evolutionary diversification and colonization.
This impression is reinforced by phylogenetic analyses,
which portray the relationships of contemporary
species as coalescing back through time to a single
common ancestor. What phylogenetic analysis fails to
show, however, are the extinct lineages. In the case
of large mammals that have a relatively well-resolved
fossil record, species richness and phylogenetic
diversity in South America (see [38]) increased
substantially following the introduction of North
American lineages in ‘The Great American Inter-
change,’ although many South American lineages
dropped out. This approach is less satisfactory for
taxa with weaker fossil records. For example, the
fossil record for birds is poor, but South American avi-
faunas include large late-comer radiations of birds
from North American stem lineages (e.g. wrens Trog-
lodytidae, and tanagers Thraupidae). The wrens are
intercalated morphologically and ecologically among
the South American antbirds (Thamnophilidae), but
the tanagers have the canopy fruit-eating niche practic-
ally to themselves [114]. Without a fossil record, one
cannot determine whether tanagers drove endemic
South American tanager-like lineages to extinction,
or North American tanagers entered a conveniently
empty niche.

Although lineage-through-time plots derived from
phylogenetic reconstruction allow estimates of speci-
ation and extinction rates [115–120], the critical
assumption of rate constancy over time is rarely met.
Instead diversification would appear to vary dramat-
ically in response to mass extinctions and with
changes in the environment (e.g. mammals [121],
Phil. Trans. R. Soc. B (2011)
whales [122]). Nonetheless, the fossil records of many
taxa display relative constancy through long periods,
including the whole of the Tertiary: tropical forest
trees [123]; North American mammals [124]; diatoms
[125] and marine invertebrates [126]. Evidence that
the species richness of evolutionary clades is largely
independent of age [127] suggests that the rate of diver-
sification might be diversity dependent, and diversity
might ultimately be limited by some regional carrying
capacity for species [128–130]. Other studies, often at
larger scales, support instead relatively constant rates
of diversification over long periods [131,132], but this
does not contradict a regional carrying capacity with
constant turnover of species.

Although larger regions support larger clades
[132,133] and augment local diversity [134–136],
the mechanisms by which diversity feeds back on
diversification are unclear. Steady-state diversity
implies either that regions are fully packed ecologic-
ally, or that particular geographical configurations
influence the position of the steady state, as argued
by Qian & Ricklefs [137] for the greater plant diversity
of temperate eastern Asia compared with eastern
North America. Such diversity anomalies emphasize
the contribution of regional processes to regional and
local diversification. For example, modern lineages of
mangrove plants have arisen, judging from first
appearances in the fossil record, at a steady rate of
one every four-to-five million years, but the transition
between terrestrial ancestors and mangrove descend-
ants has occurred almost entirely in the Old World,
creating a substantial diversity anomaly between the
hemispheres [58].
10. CONCLUSIONS
Recent progress in portraying the geography and his-
tory of life on Earth has been exhilarating! With the
growing volume of data and sophistication of analysis,
it is equally encouraging that ecologists and biogeog-
raphers are finding more common ground and are
willing to entertain a wider range of explanations for
perceived patterns. Recognizing that life occurs on a
continuum, ranging from the activities of the indi-
vidual over its lifetime to the global distribution of
evolutionary lineages down through the history of the
Earth adds complexity to an already difficult exercise,
but also brings new possibilities for resolution. To
some extent, the wealth of new data and analyses has
merely substantiated older observations. For example,
phylogenetic analyses of species sorting and niche par-
titioning have substantiated previous analyses based on
taxonomic distinctions, including species-to-genus
ratios [79]. Taxonomy was also sufficient to distinguish
ancestry from convergence in many comparative studies
of form and function across biogeographic realms [49].

New data and analyses have also added to the com-
plexity of nature as we perceive it. Phylogenetic
reconstructions have failed to provide a simple model
of historical diversification, but have reinforced some
old insights, such as diversity-dependent diversifica-
tion [138,139], that require explanation. One of us
(R.R.) has been much enamoured with the potential
roles of pathogens in structuring ecological and
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biogeographic patterns [47,140,141]. For example,
whereas phylogenetic overdispersion has been attribu-
ted to competition and niche partitioning, pathogens
might accomplish the same type of spatial segrega-
tion through apparent competition [142,143] being
most intense among related hosts. Indeed, pathogen
influence provides an alternative to the distinction of
abiotic factors (species sorting) and biotic factors
(niche partitioning), because host species carry their
parasites with them. To the extent that parasites are
specialized to their hosts [144], they add dimensions
to the multi-dimensional niche space and promote
coexistence because: (i) host–pathogen interactions
evolve readily and thus can explain why most of
the variance in distribution and abundance occurs
between closely related species; (ii) pathogens might
influence diversification by creating disease incompati-
bilities between isolated populations, on the one
hand, and preventing secondary sympatry, on the
other [145]; and (iii) to the extent that pathogens
diversify with their hosts, they could support con-
tinued diversification of host lineages [141]. We raise
the issue of pathogens because it exemplifies the
broad range of possibilities that lie before us. We
might never fully understand the distribution of biodi-
versity over the surface of the Earth, but exploration of
the broad landscape of possibilities should continue to
satisfy our curiosity about the world around us, motiv-
ate scientific inquiry, and contribute to a scientific
basis for conservation of biodiversity.
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