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Abstract
Elevation gradients generate different environmental conditions. This environmental differentiation can influence morpho-
logical adaptation, habitat isolation, reproductive isolation, and pollinator limitation in plants. Habitat differentiation and 
isolation often act first on phenotypic traits and then on genotype variation, causing genetic divergences between populations. 
We evaluated the effect of elevation on morphological traits, reproductive isolation, and pollinator limitation in Croton aff. 
wagneri in dry shrublands of inter-Andean valleys in Ecuador. We measured morphological traits of Croton at three eleva-
tions and carried out experimental pollination crosses between and within each population at different elevations to assess 
the degree of reproductive isolation and pollinator limitation. Morphological traits such as leaf thickness, plant volume, 
inflorescence length and inflorescence number were dissimilar between plants in different elevations. There was evidence 
of incipient reproductive isolation between plants in populations at the highest and the lowest studied elevations. Pollination 
experiments within each elevation showed a limitation of pollinators in Croton in the highest elevation. Intrinsic barriers to 
pollen dispersal and ecological divergence can produce reproductive incompatibilities between individuals with different 
traits along the Croton elevation gradient.

Keywords  Croton · Elevation gradient · Inter-andean shrubland · Morphological divergence · Pollen limitation · 
Reproductive isolation

Introduction

Speciation involves the evolution of reproductive isolation 
barriers. Reproductive isolation entails interruption of gene 
flow between populations of a species (Alix et al., 2017; 
White et al., 2020). Evolution of reproductive isolation bar-
riers in plants originate by processes such as sexual and 
pollinator isolation (McKinnon et al., 2004; Rundle et al., 

2005), gametic isolation (McCartney & Lessios, 2004; Ram-
sey et al., 2003) and habitat isolation (Matute et al., 2009; 
Rojo et al., 2020). Habitat isolation dissociates populations 
exposing them to novel environments in which they must 
adapt to persist (Noble et al., 2019). The direction of adap-
tive change depends on the phenotypic and genetic varia-
tion that is exposed to natural selection (Noble et al., 2019). 
Because selection acts on phenotypes, not directly on geno-
types or genes, new traits can originate by environmental 
induction, as well as mutation, and then undergo selection 
and genetic accommodation (Levis & Pfennig, 2020). These 
processes enhance morphological variation and genetic 
structuring between populations because of new genetic 
rearrangements that can cause reproductive incompatibility 
(Draghi & Whitlock, 2012; Radersma et al., 2020). As an 
example, in the Galapagos the cyclical phenomenon of "El 
Niño" causes intense rains followed by periods of drought 
(Snell & Rea, 1999). These cyclical phenomena cause a pro-
longed change in habitat and in seed size (Grant & Grant, 
1996). Variation in seed size is associated with the bimodal 
size of beaks of "El Garrapatero" (Geospiza fortis; Huber 
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et al., 2007). The G. fortis population has large-beaked indi-
viduals that prefer large seeds and small-beaked individuals 
that prefer small seeds (Grant & Grant, 1996). This mor-
phological divergence of beak size in G. fortis reveals both 
restrictions in gene flow between two morphs as well as 
two distinct gene pools showing a widely accepted specia-
tion pattern in many taxa (Grant, 1999; Huber et al., 2007; 
Schluter, 2000). Such phenotypic plasticity could facilitate 
speciation through morphological divergence between popu-
lations (Gomez-Mestre & Buchholz, 2006; Jiang et al., 2019; 
Rundle & Nosil, 2005).

Environmental changes often trigger gene flow restric-
tion, phenotypic and population divergence (Minelli, 2016; 
Pfennig & McGee, 2010; Shaw & Mullen, 2011). Pheno-
typic divergence produced through selection and reproduc-
tive isolation can generate ecologically differentiated adap-
tive populations that could result in the generation of new 
species (Adams & Huntingford, 2004; Mallet, 2008). Once 
a phenotype is expressed in a population, to support local 
environmental changes through physiological tolerance 
(phenotypic plasticity), selection can favor the expression 
of these traits through genetic adaptation (Chevin et al., 
2010; Pfennig et al., 2010; Sun et al., 2020). Several stud-
ies of adaptive traits in plants suggest that genetic adapta-
tion is omnipresent due to clinal variation in phenotypes 
and genotypes between populations (Depardieu et al 2021; 
Kremer et al., 2014; Pais et al., 2017). In Vitis vinifera, 
the variation of adaptive traits of their leaves (plants with 
large leaves inhabit hot and humid climates, and plants with 
small leaves inhabit cold and dry climates) showed high 
heritability (Chitwood et al., 2014). Divergent populations 
of Cornus florida showed evidence of local genetic adap-
tation at various loci under selection that express traits of 
foliar osmotic potential for adaptation to drought (Pais et al., 
2017). These studies suggest that plasticity is an evolution-
ary source for plant populations to adapt to environmental 
change (Radersma et al., 2020). Adaptations of populations 
to new environmental conditions can be become genetically 
fixed (Corl et al., 2010; Levis & Pfennig, 2020). This pro-
cess can accumulate genetic differences between populations 
and contribute to reproductive isolation (Alix et al., 2017; 
Cardona et al., 2020; Pfennig et al., 2010). It is necessary 
to understand how processes that generate phenotypic vari-
ation interact with natural selection to explain and predict 
evolutionary paths (Uller et al., 2020).

Variation in reproductive morphology and pollinators 
plays an important role in plant species isolation with ele-
vation. Two Andean species of Polylepis decreased their 
number of inflorescences in an elevation gradient between 
3500 to 4100 m above sea level (m a.s.l.; Cierjacks et al., 
2008). In the Helan Mountain Range, China, inflorescence 
size increased with elevation in insect-pollinated plants 
on a gradient between 1300 to 3100 m a.s.l. (Zhu et al., 

2009). Inflorescence size is key to pollination of flowers 
that exhibit differences in their sexual expression (Harder 
& Prusinkiewicz, 2013). Increased number of open flowers 
in an inflorescence can promote more pollinator visits and 
greater reproductive success (Gurung et al., 2019; Harder & 
Prusinkiewicz, 2013).

Several studies have demonstrated the effect of elevation 
over pollination interactions (Gugerli, 1998; Ramos-Jiliberto 
et al., 2010; Zhao & Wang, 2015). Often, pollinator avail-
ability is low at higher altitudes, so populations at these ele-
vations tend to develop self-compatibility (Alonso, 2005; 
Arroyo et al., 2017; Gugerli, 1998). An understanding of 
the influence of environmental heterogeneity on phenotypic 
and genotypic adaptation, pollination systems and sexual 
expression is essential to comprehend isolation and specia-
tion processes (Matesanz et al., 2020; Minelli, 2016; Olito 
et al., 2018; Pélabon et al., 2011).

In tropical mountainous regions temperature and humid-
ity vary according to elevation gradients (Apaza-Quevedo 
et  al., 2015). Elevation generates morphological varia-
tions in plants allowing them to adapt locally (Scheepens 
et al., 2010). Some of the adaptations that plants develop in 
response to changes in temperature and moisture in elevation 
gradients are specific leaf area (SLA; Cruz-Nicolás et al., 
2020; Jian et al., 2009), leaf thickness (LT; Scheepens et al., 
2010), plant size (Badr et al., 2017), inflorescence length 
(Wang et al., 2019; Wu et al., 2016) and number of inflo-
rescences (Quilot-Turion et al., 2013). In the Jura region 
and the Alps, populations of Campanula thyrsoides showed 
phenotypic plasticity in both SLA and LT, and large genetic 
variation across an elevation gradient between 1600 to 2200 
ma.s.l. (Scheepens et al., 2010). In Egypt, populations of 
Achillea fragrantissima growing at high altitudes had larger 
plant size and greater number of total and polymorphic ISSR 
markers compared to populations growing at low elevations 
in more arid sites (Badr et al., 2017). In Glycine max (soy-
bean) and Penstemon centranthifolius inflorescence length 
was determined as a hereditary trait (Mitchell & Shaw, 1993; 
Wang et al., 2019). These environment-induced phenotypic 
variations could also be influenced by genetic effects due 
to local adaptation or genetic drift (Scheepens et al., 2010).

In mountainous regions in the Andes, the Alps and 
Tibet, there has been evidence of pollinator limitation at 
high elevations (e.g., Alonso, 2005; Arroyo et al., 2017; 
Ramos-Jiliberto et al., 2010; Zhao & Wang, 2015). However, 
there is a paucity of studies evaluating the effect of eleva-
tion gradients on pollen limitation (Levis & Pfennig, 2020). 
These processes are essential to understand selection forces 
favoring plant speciation along elevation gradients (Cardona 
et al., 2020; Matesanz et al., 2020; Sun et al., 2020).

We evaluated morphological divergence and reproductive 
isolation on Croton aff. wagneri populations at an elevation 
gradient in the Andes of Loja, Ecuador. Croton aff. wagneri 
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is a dominant member of plant communities occurring in 
inter-Andean regions of Ecuador (León-Yánez et al., 2011). 
Our study occurred in the lowest zone of the Andes called 
the Andean Depression (Richter et al., 2009). In this zone, 
elevation gradients cause abrupt changes in moisture and 
temperature, generating different microenvironments (Quin-
tana et al., 2017; Richter & Moreira-Muñoz, 2005). Our 
study comprised a narrow elevation range of 300 m (Vélez-
Mora et al., 2020). We hypothesize that the variation of 
moisture and temperature throughout this elevation gradi-
ent influence plant morphological traits (specific leaf area 
and leaf thickness) and reproductive isolation between Cro-
ton aff. wagneri populations located at different elevations. 
Our research objectives were: (1) Determine morphological 
divergence of Croton aff. wagneri at different elevations; 
(2) Evaluate reproductive isolation of Croton aff. wagneri 
at different elevations, and (3) Assess pollen limitation 
at each elevation. We refer to pollen limitation as limited 
pollen receipt resulting from insufficient visits by pollen-
bearing animals (Willmer, 2011). We measured vegetative 
and reproductive trait variation among populations at three 
different elevations and performed experimental pollination 
crosses among and within elevations. We measured fitness 
components such as fruit set, and seed set associated with 

the different crosses as indicators of reproductive isolation 
and pollinator limitation.

Methods

Study Species

Croton aff. wagneri (Euphorbiaceae, hereafter Croton) is 
a 0.5—1.5 m tall monoecious shrub (Ulloa & Jørgensen, 
1995; Fig. 1B). Croton has axillary or terminal inflores-
cences with small unisexual flowers (Ulloa & Jørgensen, 
1995). It has pubescent female flowers located at the base of 
the inflorescence and male flowers at the top (Ulloa & Jør-
gensen, 1995; Fig. 1C and D). Male Croton flowers alternate 
occasionally in the middle with a few female flowers (Ulloa 
& Jørgensen, 1995; Webster, 1993). Number of flowers per 
inflorescence can vary between 10 and 60 male flowers and 
between 4 and 16 female flowers (Vélez-Mora unpublished 
data). Female Croton flowers are sessile or united with short 
pedicels (Ulloa & Jørgensen, 1995). The female flower calyx 
has five segments attached at the base with petals and glands 
generally absent (Ulloa & Jørgensen, 1995). The gynoecium 
consists of a compound pistil (van Ee et al., 2011). The 

Fig. 1   A: Map of Ecuador showing the locations of studied sites colored red at each elevation. B: Study species. C: A species of wasp visiting 
female Croton flowers. D: A bee visiting male Croton flowers
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ovary has three locules with one seminal primordium per 
locule (Ulloa & Jørgensen, 1995; van Ee et al., 2011). Styles 
are bifid and are 3 to 6 mm long (Ulloa & Jørgensen, 1995; 
Webster, 1993; personal observation). There may be two to 
three male flowers that are supported by a bract with five 
sepals attached at the base and five reduced petals (Ulloa & 
Jørgensen, 1995). Number of stamens varies from 10 to 20 
and the filaments are free (Ulloa & Jørgensen, 1995; Web-
ster, 1993). Stamens are 3 to 6 mm long (personal obser-
vation). Croton is likely pollinated by a variety of nectar-
seeking pollinator species, particularly those belonging to 
the Hymenoptera and Diptera insect orders (Webster, 2014). 
Average number of fruits per inflorescence is 4.85 + SE 0.04 
(Vélez-Mora unpublished data). Most seed dispersal occurs 
within a few meters (Espinosa et al., 2019; Jara-Guerrero 
et al., 2015). The female flowers bloom before the male flow-
ers, possessing a well-established dichogamy avoiding geito-
nogamy in the same inflorescence (Domínguez & Bullock, 
1989; Webster, 2014). However, pollination between male 
and female flowers from different inflorescences in the same 
plant can occur (c.f. Domínguez & Bullock, 1989).

Study Site

Our study was performed at an inter-Andean valley at Cata-
mayo, Loja Province, Ecuador. This valley extends into the 
basin of the Río Catamayo from the riverbed at 1100 m a.s.l. 
to approximately 2700 m a.s.l. at the local highest point. 
In this valley Croton is distributed continuously between 
1100 and 2080 m of elevation (Leal, 2015; personal obser-
vation). Croton shrubs are conspicuous elements in a sparse 
xerophytic and spiny vegetation (Fig. 1B). Plant species 
surrounding Croton are perennials such as Lantana cane-
scens Kunth, Vachellia macracantha (Humb. & Bonpl. ex. 
Willd.) Seigler & Ebinger, Bursera graveolens (Kunth) 
Triana y Planch., Colicodendron scabridum (Kunth) Seem. 
and Opuntia quitensis F.A.C. Weber (Espinosa et al., 2013, 
2019; Sierra, 1999; Ulloa & Jørgensen, 1995). The topogra-
phy is rugged with moderately steep slopes (Fig. 1A). Ungu-
lates (donkeys, cows, goats) wander on the property (Espi-
nosa et al., 2013). We have not seen these animals browsing 
on Croton, and local herders confirmed that these animals 
seldom feed on it, but we have observed livestock trample 
seedlings and small plants and damaging plant branches. 
This ecosystem experiences hot (24.8 °C mean annual tem-
perature) and dry weather, with an extended dry season 
(317 mm mean annual precipitation, 57% of it occurring 
between February and May) (Espinosa et al., 2019; Figure 
S1A). Water deficit is prevalent 10 months a year (Espinosa 
et al., 2019; Figure S1A).

We selected six sites, two per elevation, at three eleva-
tions within the Hacienda Alamala: 1700 m a.s.l. identi-
fied as High Elevation (3° 58′ 07.90″ S, 79° 25′ 19.71″ W), 

1550 m a.s.l. identified as Medium Elevation (3° 59′ 20.09″ 
S, 79° 25′ 28.64″ W) and 1400 m a.s.l. identified as Low 
Elevation (3° 59′ 40.15″ S, 79° 26′ 31.29″ W; Fig. 1A). Dis-
tances among sites in different elevations were greater than 
2.5 km (but less than 6 km) while sites within the same ele-
vation were at least 100 m apart (but less than 300 m apart).

Morphological Traits of Croton Plants Between 
Elevations

To evaluate morphological traits of Croton we selected hap-
hazardly breeding plants at two sites at each elevation. We 
selected eight plants per site for a total of 48 plants. We 
randomly collected four leaves per plant (n = 192 leaves). 
To measure leaf area, we used a CI-202 Portable Laser 
Area Meter (CID Bio-Science Inc, Camas, Washington, 
USA). Fresh weight of these leaves was obtained 1 h after 
collection. Leaves were dried for 42 h in a forced air oven 
(DFO-36, MRC ltd., United Kingdom). Fresh weight and 
dry weight of leaves were measured on an analytical scale 
(OHAUS PA84C, Analytical Pioneer, China). Specific leaf 
area (SLA; cm2 g−1), leaf dry matter content (LDMC; mg 
g−1) and leaf thickness (LT; µm) were calculated with the 
following equations (Vile et al., 2005):

where LA is leaf area (cm2), LD is leaf dry mass (g) and 
LW is leaf water content (g). We characterized each plant 
by their volume (see Vélez-Mora et al., 2020), number of 
inflorescences and average inflorescence length. We evalu-
ated plant volume as a measure of resource availability 
(Shivanna & Tandon, 2014) and number of inflorescences 
and average inflorescence length as a measure of reproduc-
tive effort (Harper & Ogden, 1970). When plants had ~ 100 
inflorescences, we counted all inflorescences on the plant. 
In some individuals the number of inflorescences was esti-
mated because they were too numerous (from January to 
March; Vélez-Mora 2019, unpublished data). We divided 
plant canopy into four quadrants, selected one at random, 
counted the number of inflorescences and multiplied it by 
four. For inflorescence length, we measured five inflores-
cences randomly per plant.

We used generalized linear mixed effect models (using 
R package nlme; Pinheiro et  al., 2020) to evaluate leaf 
thickness variation as a function of specific leaf area 

SLA =
LA

LD

LDMC =
LD

1 − (LW)

LT =
1

(SLA × LDMC)
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(Supplementary Information Table S1) and elevation (ele-
vation and specific leaf area as fixed factors and sites and 
plants as random factors). We evaluated variation on number 
of inflorescences (transformed with logarithms) and inflo-
rescence length as a function of plant volume (transformed 
with logarithms) and elevation (plant volume and elevation 
as fixed factors and sites and plants as a random factor). 
Hierarchically, we evaluated the random effects of plants 
within sites and sites within elevations. The inclusion of 
plant volume and specific leaf area as state variables allowed 
us to account for the effect of variation in plant and leaf size 
among individuals. We identified the most likely model for 
each set using small sample Akaike criteria (AICc; Burnham 
& Anderson, 2002; see Supplementary Information Tables 
S1-S9). For inflorescence length, there were no clear differ-
ences between the two most likely models. We choose the 
model with the effects of elevation and volume because it 
had the highest r-squared among the set and it was consistent 
with previous findings (Supplementary Information Tables 
S7). All analyses were performed in version 3.6.2 of R soft-
ware (R Core Team, 2019).

Study Site Micro‑Climate

During our field season between 1 and 28 Feb. 2019, we 
monitored at each elevation air temperature and humidity, 
soil temperature and moisture at a depth of 10 cm, and pho-
tosynthetic light, all with a sampling interval of five minutes, 
using HOBO data loggers S-TMB-M006, S-SMC-M005, 
and S-LIA-M003 (Onset, Bourne, Massachusetts, USA). 
We built an ordination regularized discriminant analysis 
(RDA; rda function in package vegan of R Core Team, 2019; 
Oksanen et al., 2019) to describe the combined association 
of these variables with elevation in our sites. Regularized 
discriminant analysis ordination included the mean and the 
standard deviation of daily air temperature, daily soil tem-
perature, relative air humidity, photosynthetic active radia-
tion, soil moisture and dew point (Supplementary Informa-
tion Fig. S1 and Fig. S2). We measured with Spearman 
correlations (cor function; stats package of R Core Team, 
2019) the association of these scores with the studied leaf 
attributes to identify possible different selection pressures 
across elevations.

Reciprocal Pollinations Between Elevations 
to Assess Reproductive Isolation

We performed reciprocal hand pollinations between the 
High, Medium, and Low elevations. Pollinations began on 
7 Feb. 2019, during the species’ peak bloom. Two sites were 
selected per elevation and eight breeding plants were chosen 
at each site (total 48 plants). One day before the first pol-
lination, inflorescences with pre-anthesis female buds were 

bagged to ensure that they were not pollinated. Reciprocal 
pollinations consisted of hand pollinations between eleva-
tions and bagging of the inflorescences after being polli-
nated. Reciprocal pollinations were contrasted with cross 
pollination within each elevation. This treatment consisted 
of bagging and hand pollination with pollen from other 
plants of the same population. In the first attempt, one day 
after bagging, two trials of hand pollination were carried out 
per plant and inflorescence: one in the morning (between 
700 and 1100 h) and another in the afternoon (between 1400 
and 1800 h) in the same inflorescence. Additional pollina-
tions were attempted on the fourth day for those flowers 
that were not in anthesis before. A third and last pollination 
was repeated after 15 days for remaining flowers that did 
not open before. No female flowers remained available in 
the chosen inflorescences after this final attempt. A total of 
144 pollination trials were carried out (eight plants × two 
sites ×  three elevations ×  two pollen provenances from 
respective elevation + crosses within elevation). The experi-
mental unit was the inflorescence for each treatment.

For hand pollination, fresh inflorescences with male flow-
ers at each site were collected one hour before each pollina-
tion attempt. Inflorescences were kept in a cooler in plastic 
bags. Three male flowers with pollen available from differ-
ent donor plants were used. To check availability of pollen, 
anthers were rubbed against a clean piece of black cloth. 
Anthers of each male flower were gently rubbed one by one 
over stigmas of all open female flowers (Supplementary 
Information Fig. S3). After 36 days we collected the fruits 
of the reciprocal pollinations. Not all the fruits reached full 
maturity because we had to collect them before livestock 
could damage the bags from the treatments. We counted 
number of aborted fruits, number of fruits developed and 
number of seeds for each fruit. We consider as aborted fruits 
scars left on the inflorescences by female reproductive struc-
tures that fell before developing (see Domínguez & Bullock, 
1989). Total fruits were the sum of aborted fruits and devel-
oped fruits in the inflorescence. Fruit set of each treatment 
was calculated as proportion of fruits developed throughout 
the inflorescence. Seed set for each treatment was calcu-
lated as proportion of seeds developed in all fruits of the 
entire inflorescence. We calculated the reference potential 
number of seeds assuming three seeds per fruit. Reproduc-
tive isolation (RI) was calculated following Sobel and Chen 
(2014). The reproductive isolation for fruit set and seed set 
was calculated as:

where XCBE is the value of fruit and seed set of the reciprocal 
crosses between elevations and XCWE is the value of fruit and 
seed set of the crosses within each elevation. Reproductive 

RI = 1 − 2 ×

(

X
CBE

X
CWE

+ X
CBE

)
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isolation values range from 1 (complete isolation) to -1 
(complete disassortative mating). RI = 0 indicates random 
mating (Sobel & Chen, 2014; Ramírez‐Aguirre et al., 2019). 
We considered for the analysis of reproductive isolation only 
plants greater than 400,000 cm3 (41 large plants of a total of 
48) because we observed that smaller plants have reduced 
fertility (mean of large plant fruits 5.1 ± 0.66 SE and small 
plants 2.9 ± 0.98 SE; Espinosa et al., 2019; see Supplemen-
tary Information Fig. S4). We calculated the mean RI (and 
its 95% confidence interval) for each of the pairs of crosses 
per elevation. We considered clear evidence of reproductive 
isolation when crosses with the reproductive isolation index 
(RI) had a positive value and its confidence interval bar did 
not overlap zero.

Pollen Limitation Within Each Elevation

We carried out four pollination treatments to estimate pollen 
limitation: (1) Crosses within elevation (also incorporated 
in reproductive isolation analysis); (2) Hand-geitonogamous 
pollination: bagging and manual pollination with pollen of 
the same plant; (3) Open pollination: not bagging and no 
manual pollination, and (4) Control: bagged flowers to elim-
inate access of animal pollinators. These treatments were 
carried out in parallel with reciprocal pollination between 
elevations for reproductive isolation, so they were carried 
out under the same protocol. Inflorescences of open polli-
nation treatment were bagged six days after last pollination 

to protect developing fruits. A total of 144 trials were con-
ducted excluding treatment of crosses within elevation (eight 
plants × two sites × three elevations × three treatments). 
The experimental unit was the inflorescence for each treat-
ment. Plants for the pollination treatments were different 
from the plants used in the measurement of leaves so as 
not to influence their reproductive investment. For the treat-
ments that involved bagging, 4 × 6" pollination bags of non-
woven transparent polypropylene fabric were used (Carolina 
Biological Supply Company, Burlington, North Carolina). 
We also only considered plants larger than 400,000 cm3 to 
analyze pollen limitation. We compared the four pollination 
treatments using a non-parametric paired Wilcoxon test.

Results

Morphological Traits of Croton Plants Between 
Elevations

Leaf thickness decreased with specific leaf area (Fig. 2A). 
Leaf thickness was higher in the High Elevation compared to 
the other two elevations (Fig. 2A, Supplementary Informa-
tion Table S3). Number of inflorescences and inflorescence 
length increased with plant volume (Fig. 2B and C). Number 
of inflorescences was different between elevations and was 
higher in High Elevation (Fig. 2B). Inflorescence length was 
greater in the Low Elevation compared to the High Elevation 

Fig. 2   Variation of morphological traits of Croton according to ele-
vation. A: Leaf thickness increased according to specific leaf area 
and was higher in the High Elevation. B: Number of inflorescences 

increased according to plant volume and was higher in the High Ele-
vation. C: Average inflorescence length increased according to plant 
volume and was higher in the Low Elevation



Evolutionary Biology	

1 3

(Fig. 2C). We did not observe differences in inflorescence 
length between Medium Elevation and High Elevation or 
between Medium Elevation and Low Elevation.

Climate

The regularized discriminant analysis differentiated the 
elevations with the climate variables studied. The percent-
age of the variance explained by the first axis (PC1) was 
93% and the percentage explained by the second axis (PC2) 
was 7%. The first axis (PC1—Fig. 3) clearly separated the 
three elevations while the second axis (PC2) clearly sepa-
rated the Low Elevation from the Medium Elevation and 
the High Elevation that were like each other in this axis. 
In the first axis, the High Elevation had the lowest scores 
associated with high average soil and air humidity and high 
soil water content variation but low values for all the other 
environmental variables. In the first axis, the Low Elevation 
had intermediate scores and the Medium Elevation the high 
scores. In the second axis, the Low Elevation had the highest 
scores, while the High Elevation and Medium Elevation had 
lower scores. High scores in the second axis were associated 
with more variable air and soil humidity, higher tempera-
tures, and higher dew points. Change in leaf thickness with 
elevation, adjusted by leaf area (coefficients for elevation in 

Supplementary Information Table S1) was associated with 
the first axis of the environmental regularized discriminant 
analysis (Spearman correlation = -1).

Reciprocal Pollinations Between Elevations 
to Assess Reproductive Isolation

We used fruit and seed set variation of reciprocal pollina-
tions between elevations contrasted with cross pollinations 
within each elevation to calculate reproductive isolation 
(RI). Using fruit set we recognized reproductive isolation 
between Low Elevation (as pollen donors) and High Ele-
vation plants (as pollen receptors) and between Medium 
Elevation (as pollen donors) and High Elevation plants (as 
pollen receptors; Fig. 4). Using seed set, the results were 
consistent with those of fruit set but less clear (Fig. 4). 
We did not find clear evidence of reproductive isolation or 
disassortative mating of plants in any other cross between 
populations.

Pollen Limitation Within Each Elevation

Fruit and seed set with open pollination were clearly 
higher at Low Elevation compared to the other two eleva-
tions and treatments (Fig. 5). Fruit and seed set with open 
pollination were higher compared to control treatment 

Fig. 3   The regularized discri-
minant analysis differentiated 
the elevations with the climate 
variables studied. The first axis 
(PC1 explained 93% of the vari-
ance) clearly separated the three 
elevations while the second axis 
(PC2 explained 7% of the vari-
ance) clearly separated the Low 
Elevation from the Medium 
Elevation and the High Eleva-
tion that were like each other in 
this axis
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at Low and Medium elevations (Fig. 5). Fruit and seed 
set were clearly higher with crosses within and hand-
geitonogamy compared to control treatment at Medium 

Elevation (Fig. 5). Fruit and seed set did not differ between 
the treatments at High Elevation, except between the treat-
ments within and control by seed set (Fig. 5).

Fig. 4   Reciprocal crosses 
between elevations to determine 
reproductive isolation (RI) by 
fruit and seed set of Croton. 
The mean and the confidence 
intervals indicated reproductive 
isolation between Low Eleva-
tion plants and High Elevation 
plants according to fruit set

Fig. 5   Fruit and seed set by treatment within each elevation. We com-
pared differences among the four pollination treatments using a non-
parametric paired Wilcoxon test after an analysis of variance. Fruit 
and seed set with open pollination were higher at Low Elevation com-

pared to the other two elevations and treatments. Fruit and seed set 
was marginally different between within crosses and open bag treat-
ment at High Elevation
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Discussion

Our data contribute to a better understanding of the inter-
action between elevation, morphological trait variation, 
reproductive isolation, and pollinator limitation among 
Croton in the southern Ecuadorian Andes. Individual mor-
phological trait variation of Croton plants was concordant 
with reproductive isolation between individuals of popula-
tions at different elevations.

Morphological Traits of Croton Plants Between 
Elevations

Our results evidenced morphological divergences between 
Croton populations at different elevations. The plants at 
the High Elevation produced a greater number of inflo-
rescences. Their leaves were thicker and with a greater 
specific leaf area. However, plants at the High Elevation 
had less volume, and the inflorescence length was shorter. 
Higher inflorescence production suggests that plants 
possess sufficient resources to invest in flower and seed 
production and prioritize reproduction instead of growth 
(Fabbro & Körner, 2004). Allocation of resources to repro-
ductive structures in alpine plant species was three times 
greater at high elevations than at low elevations (Fabbro 
& Körner, 2004). High number of Croton flowers at the 
High Elevation could be associated with a higher avail-
ability of nitrogen and organic matter existing at this 
elevation (Wright et al., 2004; Supplementary Informa-
tion Fig. S5). In addition, in the High Elevation resources 
for the reproductive function are in greater proportion for 
production of male Croton flowers, the most economical 
reproductive function (Velez-Mora et al., 2020). In the 
high tropical mountains, climate is cold and dry, and air 
and soil temperatures decrease with increasing elevation 
(Domic & Capriles, 2009). Under these conditions, plants 
produce thick leaves to counteract drought and mechani-
cal stress caused by the wind (Pérez et al., 2020; Vogel, 
2009). Several studies indicate reduction of specific leaf 
area with increasing elevation to withstand unfavorable 
environmental conditions (Apaza-Quevedo et al., 2015; 
Jian et  al., 2009; Scheepens et  al., 2010). Our results 
showed an opposite relationship in Croton, with a lower 
specific leaf area at Low Elevation probably due to higher 
soil water stress. In Viola maculata in the Central Andes of 
Chile, for example, the specific leaf area and stomatal con-
ductance increased with elevation, reducing water stress 
(Seguí et al., 2018). This relationship is consistent with 
specific leaf area and soil moisture content data in Croton 
(Supplementary Information Fig. S1). This relationship 
suggests that Croton can develop differential responses 

to the environment at relatively short distances, either by 
phenotypic plasticity or by genetic adaptations.

Leaf thickness and specific leaf area generally tend to 
evolve separately from plant size (Pérez et al., 2020). Reduc-
tion in plant size at high elevations serves as self-shading 
where plants adhere to the ground to decouple their climate 
from the surrounding environment, prevent desiccation, and 
accumulate heat in the plant canopy (Hallik et al., 2009). 
Inflorescence length also shortens with increasing elevation 
in alpine environments (Fabbro & Körner, 2004). Shortening 
of inflorescences at high elevations creates a warm environ-
ment that could substitute for the advantage of large plants 
to attract the most pollinators (Donnelly et al., 1998). These 
strategies can increase seed set and attractiveness to pollina-
tors (Fabbro & Körner, 2004).

Reciprocal Pollinations Between Elevations 
to Assess Reproductive Isolation

Our results indicated an incipient reproductive isolation 
between Croton populations at the most extreme studied 
elevations in this relatively short gradient. Environmental 
heterogeneity generated by elevation can lead to local adap-
tation in plants (Chapman et al., 2016; Cordell et al., 1998). 
Recent studies have suggested that phenotypic plasticity may 
signal genetic divergence between populations (Caetano 
et al., 2020; Walter et al., 2020). The Achillea fragrantis-
sima populations that grew at high altitudes differed from 
the rest by being larger and presenting a greater number of 
ISSR markers in Egypt (elevation range between 132 and 
1154 m; Badr et al., 2017). A genetic study on Croton popu-
lations in the same geographic area as ours but at different 
elevations and using AFLP markers provided evidence of 
clear genetic differentiation between high and low elevation 
populations (Leal, 2015). Croton populations of each eleva-
tion still maintained a partial compatibility with each other 
in agreement with our results.

Pollen Limitation Within Each Elevation

Open pollination produced higher fruit and seed set at Low 
Elevation and similar values as other treatments (except 
bagged flowers) in Medium Elevation. This did not occur 
at High Elevation where fruit and seed set were higher with 
hand pollination with pollen from neighboring plants com-
pared to the other treatments, including open pollination. 
The lower fruit and seed set at High Elevation in open polli-
nation offers us indirect evidence of limitation of pollinators 
in Croton. Our study did not evaluate diversity of pollina-
tors associated with Croton pollination. However, several 
studies have shown decreases in abundance and diversity of 
pollinators as elevation increases consistent with our pre-
liminary observations in this region (Arroyo et al., 2006; 
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Ramos-Jiliberto et al., 2010; Torres-Díaz et al., 2011). In 
two subspecies of Campanula spatulata, insect visitation 
rate decreased with elevation on Mount Olympos (eleva-
tion range 400—2200 m.a.s.l; Blionis & Vokou, 2002). 
In the same study, plant size, flower size and number of 
flowers differed between elevations indicating reproductive 
isolation and morphological divergence in these subspecies 
(Blionis & Vokou, 2002). Low visit rates of pollinators at 
high elevation were consistent with low output of fruit and 
seed of Croton at this elevation. Scarcity or ineffectiveness 
of pollinators to ensure pollen dispersal at high elevations 
and limited dispersal of Croton seeds (Espinosa et al., 2019) 
could restrict gene exchange between populations at different 
elevations (Cardona et al., 2020; van der Niet et al., 2014).

Intrinsic barriers to gene flow and ecological divergence 
produce reproductive incompatibilities between ecotypes 
(Schliewen et al., 2001; Walter et al., 2018, 2020). There 
were clear differences in temperature and moisture between 
high and low elevation in our study site. These climatic con-
ditions could generate a strong selection for both plants and 
pollinators (Cardona et al., 2020; Halbritter et al., 2018). 
Several studies show how insect composition and environ-
mental conditions change along elevation in narrow geo-
graphic spaces in the Andes (Arroyo et al., 2017; Hall, 2005; 
Medina et al., 2002; Pyrcz, 2004; Ramos-Jiliberto et al., 
2010). Change in composition of insects could generate a 
restriction of gene flow between elevations and strengthen 
local adaptation of Croton at each elevation (Peakall & 
Whitehead, 2014; van der Niet et al., 2014). Local adapta-
tion could help Croton plants to adjust in response to their 
habitat and pollination environments (Dai et al., 2017). Our 
findings are consistent with other studies where ecological 
adaptations (SLA for example according to Scheepens et al., 
2010) in combination with reproductive isolation could lead 
to a divergence of Croton populations in parapatry (Itino & 
Hirao, 2016; Nosil, 2012; Walter et al., 2020). Low gene 
flow through reduced dispersal of pollen and seeds (Espi-
nosa et al., 2019) could be causing reproductive isolation 
between populations of Croton at high and low elevations. 
Abrupt changes in temperature and humidity along eleva-
tion gradient could be selective forces that disrupt pollinator 
movement between elevations (Bridle & Vines, 2007; Hal-
britter et al., 2018; Lenormand, 2002). This could reinforce 
genetic isolation barriers for Croton in High Elevation popu-
lations probably leading to divergence and local adaptation 
at each elevation (White et al., 2020). Elevation gradients 
offer an interesting opportunity to study adaptive traits under 
strong selection pressure and homogenizing effect of gene 
flow (Gonzalo-Turpin & Hazard, 2009; Halbritter et al., 
2018; Sexton et al., 2011). In these regions of the Andes 
there is a great diversity of species, many of them endemic 
with restricted elevation which will benefit from a better 
understanding of their population ecology and evolution (c.f. 

Herzog et al., 2011; Homeier et al., 2010; Josse et al., 2009; 
Quintana et al., 2017).

Limitations

In this study, it was not possible to determine differences 
in other fitness components between pollination treat-
ments and elevations since fruits were collected before 
their complete development to prevent cows and goats 
in the study site from damaging the experimental bags. 
However, independent information indicated that Low 
Elevation seeds (0.0090 ± SE = 0.00013 g; n = 716) were 
larger and heavier compared to Medium Elevation seeds 
(0.0066 ± SE = 0.00032  g; n = 111) and High Elevation 
(0.0064 ± SE = 0.00019 g; n = 330; unpublished data from 
Vélez-Mora). Future work should directly evaluate composi-
tion and visitation rates of pollinators in this elevation gradi-
ent. Likewise, experiments based on reciprocal transplants of 
plants or experiments in common garden conditions should 
be carried out to evaluate genotypic and phenotypic differ-
ences between populations to reaffirm our interpretations.

Conclusion

Our study provides observational and experimental evidence 
for simultaneous variation of plant morphological traits and 
incipient reproductive isolation of Croton in a narrow eleva-
tion gradient with contrasting climatic conditions. Lower 
number of fruits and seeds of the High Elevation population 
compared to the Low Elevation population and pollination 
experiments within each elevation evidenced a limitation 
of pollinators in Croton in the High elevation population. 
Intrinsic barriers to pollen and seed dispersal, and ecologi-
cal divergence may produce reproductive incompatibilities 
between individuals with different traits along the Croton 
elevation gradient.
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