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 P values are only an index to evidence: 20th- vs. 21st-century
 statistical science

 K. P. Burnham1 and D. R. Anderson

 Colorado Cooperative Fish and Wildlife Research Unit, Colorado State University, Fort Collins, Colorado 80523 USA

 Overview Comments

 We were surprised to see a paper defending P values
 and significance testing at this time in history. We
 respectfully disagree with most of what Murtaugh (2014)
 states. The subject of P values and null hypothesis
 significance tests is an old one and criticisms by
 statisticians began in the late 1930s and have been
 relentless (see Commentaries on Significance Testing for
 a partial impression of the large literature on the subject
 [available online ]).2 Oakes (1986) summed it up over 25
 years ago, "It is extraordinarily difficult to find a
 statistician who argues explicitly in favor of the
 retention of significance tests ..."

 For the most part, we do not comment point by point,
 instead we briefly contrast several historical and
 contemporary aspects of statistical science. The empha-
 sis is on the information- theoretic (IT) approaches that
 permit computing several post-data quantities that are
 evidential, avoid conditioning on the null hypothesis,
 avoid P values, provide model likelihoods and evidence
 ratios, and allow formal inferences to be made based on
 all the models in an a priori set (multimodel inference).

 Historical Statistics

 Murtaugh (2014) reviews several of the historical
 methods for data analysis in simple situations; these
 methods focus on "testing" a null hypothesis by
 computing a "test statistic," assuming its asymptotic
 distribution, setting an arbitrary a level, and computing
 a P value. The P value usually leads to an arbitrary
 simplistic binary decision as to whether the result is
 "statistically significant" or not. In other cases, the P
 value is stated and interpreted as if it were evidential.
 The P value is defined as the pre-data probability:
 Prob{¿7 test statistic as large as, or larger, than that
 observed, given the null}. That is, the anticipated data are
 being thought of as random variables.

 Manuscript received 6 June 2013; accepted 9 July 2013;
 final version received 17 July 2013. Corresponding Editor:
 A. M. Ellison. For reprints of this Forum, see footnote 1, p.
 609.

 1 E-mail: kenb@colostate.edu
 2 http://www.indiana.edu/~stigtsts

 Theory underlying these methods for statistical
 inference is thus based on pre-data probability state-
 ments, rather than on the exact achieved data, and
 reflects early approaches (e.g., Student's influential
 paper [Student 1908]). In general, these early methods
 are not useful for non-nested models, observational
 data, and large data sets involving dozens of models and
 unknown parameters. Step-up, step-down, and step-wise
 regression analyses represent perhaps the worst of these
 historical methods due partially to their reliance on a
 sequence of P values. There is a very large literature on
 problems and limitations of null hypothesis significance
 testing and it is not confined to ecology or biology.

 At a deeper level, P values are not proper evidence as
 they violate the likelihood principle (Royall 1997).
 Another way to understand this is the "irrelevance of
 the sample space principle" where P values include
 probabilities of data never observed (Royall 1997).
 Royall (1997) gives a readable account of the logic and
 examples of why P values are flawed and not acceptable
 as properly quantifying evidence. P values are condi-
 tional on the null hypothesis being true when one would
 much prefer conditioning on the data. Virtually
 everyone uses P values as if they were evidential: they
 are not. P values are not an appropriate measure of
 strength of evidence (Royall 1997). Among other flaws,
 P values substantially exaggerate the "evidence" against
 the null hypothesis (Hubbard and Lindsay 2008); this
 can often be a serious problem. In controversial settings,
 such as many conservation biology issues, the null
 hypothesis testing paradigm, hence P values, put the
 "burden of proof' on the party holding the "null
 position" (e.g., state and federal agencies and conserva-
 tion organizations).

 In even fairly simple problems, one is faced with the
 "multiple testing problem" and corrections such as
 Bonferroni's are problematic when analyzing medium to
 large data sets. Anderson et al. (2000) provides a more
 detailed review of these and other technical issues. C. R.

 Rao, the well-known statistician and former Ph.D.
 student under R. A. Fisher (see Rao 1992), summarized
 the situation, "... in current practice of testing a null
 hypothesis, we are asking the wrong question and
 getting a confusing answer."
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 Statistical science has seen huge advances in the past
 50-80 years, but the historical methods (e.g., t tests,
 ANOVA, step-wise regression, and chi-squared tests)
 are still being taught in applied statistics courses around
 the world. Nearly all applied statistics books cover only
 historical methods. There are perhaps two reasons for
 this: few rewards for updating course materials and lack
 of awareness of viable alternatives (e.g., IT and
 Bayesian). Students leave such classes thinking that
 "statistics" is no more than null hypotheses and P values
 and the arbitrary ruling of "statistical significance."
 Such courses are nearly always offered in a least squares
 setting, instead of the more general likelihood setting
 which would serve those wanting to understand
 generalized linear models and the Bayesian approaches.
 Murtaugh (2014) argues that P values and AIC
 differences are closely related (see his Fig. 2). However,
 the relationship holds only for the simplest case (i.e.,
 comparison of two nested models differing by only one
 parameter). Thus, his "result" is not at all general. We
 believe that scientists require powerful modern methods
 to address the complex, real world issues facing us (e.g.,
 global climate change, community dynamics, disease
 pandemics).

 21st-century Statistical Science

 Methods based on Bayes theorem or Kullback-Leibler
 information (Kullback and Leibler 1951) theory allow
 advanced, modern approaches and, in this context,
 science is best served by moving forward from the
 historical methods (progress should not have to ride in a
 hearse). We will focus on the information- theoretic
 methods in the material to follow. Bayesian methods,
 and the many data resampling methods, are also useful
 and other approaches might also become important in
 the years ahead (e.g., machine learning, network theory).
 We will focus on the IT approaches as they are so
 compelling and easy to both compute and understand.
 We must assume the reader has a basic familiarity with
 IT methods (see Burnham and Anderson 2001, 2002,
 2004, Anderson 2008).

 Once data have been collected and are ready for
 analysis, the relevant interest changes to post-data
 probabilities, likelihood ratios, odds ratios, and likeli-
 hood intervals (Akaike 1973, 1974, 1983, Burnham and
 Anderson 2002, 2004, Burnham et al. 2009). An
 important point here is that the conditioning is on the
 data, not the null hypothesis, and the objective is
 inference about unknowns (parameters and models).
 Unlike significance testing, IT approaches are not
 "tests," are not about testing, and hence are free from
 arbitrary cutoff values (e.g., a = 0.05).

 Statisticians working in the early part of the 20th
 century understood likelihoods and likelihood ratios

 X(0o)/X(O).

 This is an evidence ratio about parameters, given the
 model and the data. It is the likelihood ratio that defines

 evidence (Royall 1997); however, Fisher and others,
 thinking of the data (to be collected) as random
 variables, then showed that the transformation

 -21og{¿(e0)/¿(é)}

 was distributed asymptotically as chi squared. Based on
 that result they could compute tail probabilities (i.e., P
 values) of that sampling distribution, given the null
 hypothesis. While useful for deriving and studying
 theoretical properties of "data" (as random variables)
 and planning studies, this transformation is unnecessary
 (and unfortunate) for data analysis. Inferential data
 analysis, given the data, should be based directly on the
 likelihood and evidence ratios, leaving P values as only
 an index to evidence. Such P values are flawed whereas
 likelihood ratios are evidential without the flaws of P

 values. Early statisticians (e.g., Fisher) had the correct
 approach to measuring formal evidence but then went
 too far by mapping the evidence into tail probabilities (P
 values). Likelihood ratios and P values are very different
 (see Burnham and Anderson 2002:337-339). Just be-
 cause the two approaches can be applied to the same
 data should not, and does not, imply they are both
 useful, or somehow complementary. Inferentially they
 can behave quite differently.

 The information-theoretic approaches allow a quan-
 tification of K-L information loss (A) and this leads to
 the likelihood of model /, given the data, L(gi | data), the
 probability of model /, given the data, Prob{g/| data},
 and evidence ratios about models. The probabilities of
 model i are critical in model averaging and uncondi-
 tional estimates of precision that include model selection
 uncertainty. These fundamental quantities cannot be
 realized using the older approaches (e.g., P values).

 Recent advances in statistical science are not always
 new concepts and methods, but sometimes an enlight-
 ened and extended understanding of methods with a
 long history of use (e.g., Fisher's likelihood theory).
 There is a close link between K-L information,
 Boltzmann's entropy (H' = K-L), and the maximized
 log-likelihood. Akaike (1981, 1992) considered the
 information-theoretic methods to be extensions to

 Fisher's likelihood theory (Edwards 1992). In his later
 work, Akaike (1977, 1985) dealt more with maximizing
 entropy (//') rather than (the equivalent) minimizing K-
 L information. Entropy and information are negatives
 of each other (i.e., -H' = information) and both are
 additive.

 Twenty-first-century science is about making formal
 inference from all (or many of) the models in an a priori
 set (multimodel inference). Usually there is uncertainty
 about which model is actually "best." Information
 criteria allow an estimate of which model is best, based
 on an explicit, objective criterion of "best," and a
 quantitative measure of the uncertainty in this selection
 (termed "model selection uncertainty"). Estimates of
 precision, either for prediction or parameter estimation,
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 include a component for model selection uncertainty,
 conditional on the model set.

 Information-theoretic approaches are very different
 from historical methods that focus on P values. There is

 no need for a formal null hypothesis, no concept of the
 asymptotic distribution of a test statistic, no a level, no
 P value, and no ruling of "statistical significance."
 Furthermore, the "burden of proof' is the same across
 hypotheses/models when using an IT approach. Cham-
 berlain's famous (1890) paper advocated hard thinking
 leading to multiple hypotheses that were thought to be
 plausible (most null hypotheses are false on a priori
 grounds). He wanted post-data probabilities of these
 alternatives. He must have been disappointed to see the
 field of statistics lean toward testing null hypotheses
 with little attention to evidence for or against a single
 alternative hypothesis, much less multiple alternative
 hypotheses.

 Simple P values conditioned on the null hypothesis
 prevent several important approaches useful in empirical
 science: ways to rank models and the science hypotheses
 they represent, ways to deal with non-nested models
 (most model sets contain non-nested models), ways to
 incorporate model selection uncertainty into estimates
 of precision, ways to model average estimates of
 parameters or predictions, ways to reduce model
 selection bias in high dimensional problems (Lukacs et
 al. 2007, 2010), ways to assess the relative importance of
 predictor variables, ways to deal with large systems and
 data sets (e.g., 50-100 models, each with 10-300
 parameters, where sample size might be in the thou-
 sands), ways to analyze data from observational studies
 (where the distribution of the test statistic is unknown).

 The limitations of P values, as above, are very serious
 in our current world of complexity.

 Comments on the "Scientific Method"

 and Statistical Science

 While the exact definition of the so-called "scientific

 method" might be controversial, nearly everyone agrees
 that the concept of "falsifiability" is a central tenant of
 empirical science (Popper 1959). It is critical to
 understand that historical statistical approaches (i.e., P
 values) leave no way to "test" the alternative hypothesis.
 The alternative hypothesis is never tested, hence cannot
 be rejected or falsified! The breakdown continues when
 there are several alternative hypotheses (as in most real-
 world problems). The older methods lack ways to reject
 or falsify any of these alternative hypotheses. This is
 surely not what Popper (1959) or Piatt (1964) wanted.
 "Support" for or against the alternative hypothesis is
 only by default when using P values. Surely this fact
 alone makes the use of significance tests and P values
 bogus. Lacking a valid methodology to reject/falsify the
 alternative science hypotheses seems almost a scandal.

 It seems that Chamberlin's (1890) notion concerning
 alternative science hypotheses that are considered
 plausible should also be considered an integral part of

 the scientific method. Perhaps it is best if the "scientific
 method" embraced the concepts of formal evidence and
 likelihood in judging the relative value of alternative
 hypotheses because they provide a formal "strength of
 evidence."

 Another serious limitation relates to the common case

 where the P value is "not quite" statistically significant
 (e.g., P = 0.07 when a = 0.05). The investigator then
 concludes "no difference" and the null hypothesis
 prevails. Even worse, they often also conclude there is
 no evidence against the null hypothesis. Evidence ratios
 provide actual evidence in terms of odds, for example, at
 P = 0.07 (under normal theory and 1 df) the evidence is
 5.2 to 1 against the null hypothesis. At P = 0.05, the
 evidence is 6.8 to 1 against the null. At P = 0.096 the
 evidence is 4 to 1 against the null, or equivalently, 4 to 1
 in favor of the alternative. Depending on the context,
 even 3 to 1 odds might be useful or impressive; this is
 very different from concluding "no evidence against the
 null hypothesis." If the odds are, say, 224 to 1 (this is for
 P = 0.001), then the result must be considered as very
 convincing and evidence presented this way is much
 more understandable than saying P = 0.001. No
 automatic "cut-off' (e.g., P = 0.05) is relevant in an
 evidential paradigm such as IT. The interpretation of the
 evidence, being usually context specific, is left to the
 investigator: science is about evidence, not about sharp
 dichotomies or decisions.

 Summary

 Early statistical methods focused on pre-data proba-
 bility statements (i.e., data as random variables) such as
 P values; these are not really inferences nor are P values
 evidential. Statistical science clung to these principles
 throughout much of the 20th century as a wide variety
 of methods were developed for special cases. Looking
 back, it is clear that the underlying paradigm (i.e.,
 testing and P values) was weak. As Kuhn (1970)
 suggests, new paradigms have taken the place of earlier
 ones: this is a goal of good science. New methods have
 been developed and older methods extended and these
 allow proper measures of strength of evidence and
 multimodel inference. It is time to move forward with

 sound theory and practice for the difficult practical
 problems that lie ahead.

 Given data the useful foundation shifts to post-data
 probability statements such as model probabilities
 (Akaike weights) or related quantities such as odds
 ratios and likelihood intervals. These new methods allow

 formal inference from multiple models in the a prior set.
 These quantities are properly evidential. The past
 century was aimed at finding the "best" model and
 making inferences from it. The goal in the 21st century is
 to base inference on all the models weighted by their
 model probabilities (model averaging). Estimates of
 precision can include model selection uncertainty
 leading to variances conditional on the model set. The
 21st century will be about the quantification of
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 information, proper measures of evidence, and multi-
 model inference. Neider (1999:261) concludes, "The
 most important task before us in developing statistical
 science is to demolish the P-value culture, which has
 taken root to a frightening extent in many areas of both
 pure and applied science and technology."
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