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and Evolution
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The interplay of ecology and evolution has been a rich area of research for
decades. A surge of interest in this area was catalyzed by the observation that
evolution by natural selection can operate at the same contemporary timescales
as ecological dynamics. Specifically, recent eco-evolutionary research focuses
on how rapid adaptation influences ecology, and vice versa. Evolution by non-
adaptive forces also occurs quickly, with ecological consequences, but under-
standing the full scope of ecology-evolution (eco—evo) interactions requires
explicitly addressing population-level processes — genetic and demographic.
We show the strong ecological effects of non-adaptive evolutionary forces and,
more broadly, the value of population-level research for gaining a mechanistic
understanding of eco-evo interactions. The breadth of eco-evolutionary
research should expand to incorporate the breadth of evolution itself.

The Scope of Ecological-Evolutionary Interactions

Ecological and evolutionary processes influence all levels of biological organization, but ecology
and evolution are inseparable at the population level. Survival, recruitment, abundance, density,
and exchange of individuals among populations are all determined by the interaction of
ecological and evolutionary processes [1,2]. In turn, these demographic parameters determine
whether and how variation in individual fitness is converted into higher-order ecological and
evolutionary effects, setting the rate and scale of future eco—evo interactions [3-5].

Population genetics theory provides a framework for understanding the interdependence of
ecological and evolutionary processes by accounting for effects of demography on phenotype
and gene frequencies (Figure 1). Natural selection acts at the level of the individual, but both
adaptive and non-adaptive evolutionary forces acting at the population level determine whether,
how, and at what spatial scale phenotypic change and resulting ecological consequences occur
[6,7]. Likewise, ecological dynamics acting at higher levels of organization (e.g., species inter-
actions in communities) must affect population processes to drive adaptive and non-adaptive
evolution [8,9] through changes in selection, genetic drift (see Glossary), or gene flow.

In the past decade, ecologists have embraced the concept of eco-evolutionary dynamics,
which emphasizes the power of ecological selection to cause rapid adaptation and, likewise, for
adaptive evolution to influence ecological processes in real time [10,11]. The perceived novelty
of this concept appears to stem from the fast rate of interaction between ecological conditions
and phenotypic adaptation, which contrasts with traditional, gradualistic models of adaptation.
Aspects of the eco-evolutionary dynamics concept are challenging, including the difficulty of
characterizing the rate of eco—evo interaction in a way that is not biased by human perception,
and the fact that all adaptive (or non-adaptive) evolution can be linked to ecological causes and
conseqguences. However, there is also no doubt that exciting examples of observable eco—evo
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interactions have come to light recently [12-14], adding to a foundation of classic examples
[15-18].

We are mainly concerned that a narrow focus on adaptation in eco-evolutionary studies
obscures equally strong and rapid ecological effects of non-adaptive evolutionary forces
(Figure 1). To understand the ecological causes and consequences of the full scope of
evolutionary forces, eco-evolutionary research could benefit from explicit integration of popula-
tion processes — genetic and demographic. Greater integration of population-level processes will
not only elucidate the ecological effects of non-adaptive evolution but also provide novel insight
on how these non-adaptive forces promote (or prevent) rapid phenotypic adaptation.

Our goal is to show the importance of considering the full scope of evolutionary processes —
adaptive and non-adaptive — to advance mechanistic understanding of eco—evo interactions.
We first review the treatment of population genetic principles in evolutionary biology and ecology,
and the history of the view that population-level processes conflict with adaptive evolution — a
misperception that still influences eco-evolutionary research both implicitly and explicitly. To
move beyond this view, we then review studies showing how demographic parameters mediate
eco—evo interactions via adaptive and non-adaptive mechanisms. Finally, we identify emerging
opportunities for population-level research on the interplay of ecology and evolution.

Wrestling with the Population Context of Ecological-Evolutionary Interactions
Population genetics theory provides a mechanistic framework for integrating ecological and
evolutionary processes by explicitly incorporating population parameters that are, themselves,
shaped by ecological interactions (Box 1). More generally, population genetics theory illuminates
the full suite of forces that promote or prevent evolutionary change, and the genetic and
demographic mechanisms that govern these forces. By contrast, the recent surge of eco-
evolutionary research hinges on the rate of adaptive phenotypic change, thus emphasizing
directional selection at the cost of other evolutionary processes and their demographic bases.
While often described as ‘contemporary evolution’, this area of research might be better
described as ‘contemporary adaptation’ [19].

The rift between longstanding population genetics theory and current eco-evolutionary research
underscores the challenge of fully addressing the forces that drive evolution at the population
level. This challenge is not new ([20], p. 64), and is embodied in a historical debate over the power
of selection to drive evolutionary change in the face of other, non-adaptive forces — a debate that
is largely settled in the field of evolutionary biology, but the root of a narrow view of evolution in
many current eco-evolutionary studies.

By treating genes as independent units, population genetics was criticized by some evolutionary
biologists as overly simplistic and devoid of the functional interrelationships among genes that
are crucial to selection (reviewed in [21]). Mayr [22] questioned whether this ‘mathematical’
school contributed anything to evolutionary theory, characterizing gene pool models as ‘bean-
bag genetics’ because they merely track the frequency and distribution of individual genes,
ignoring the functional integration of these genes. This criticism reflects a broader debate on the
relative power of selection to drive evolutionary change.

Debate over hard versus soft selection also centers on the power of selection to produce rapid
adaptive change. Under hard selection, genotypes with fithess below a threshold are removed
from the population [23]. This process can result in the rapid adaptive change spotlighted in
current eco-evolutionary studies. Under soft selection, the availability of different niches in the
environment and competition among genotypes results in adaptive change [24]. There are no
optimal genotypes, but instead a range of successful genotypes determined by the combination
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Glossary

Compensatory mortality: when one
source of mortality largely replaces
another source of mortality, resulting
in little or no change in population
dynamics.

Density dependence: when
population growth or specific
demographic rates (e.g., mortality,
fecundity) are regulated by the
density of the population.

Dispersal: permanent movement
away from an origin and long-term
settlement at a new location.
Disruptive selection: natural
selection that favors extreme values
of a trait over intermediate values,
also known as diversifying selection.
Eco-evolutionary dynamics:
interplay between ecological and
evolutionary dynamics in real time (i.
e., relatively instantaneously).
Effective population size (N,): the
size of an ideal population that would
experience the same amount of
genetic drift as the observed
population.

Fixation index (Fsy): 2 measure of
population subdivision that indicates
the proportion of heterozygosity
found between populations relative to
the amount within populations.

Gene flow: movement of genes from
one population to another. In
population genetics theory, gene flow
is represented by migration rate (m) —
the proportion of individuals in a focal
population that are immigrants.
Genetic drift: change in gene
frequencies over time owing to
random differences in the survival
and fecundity of individuals, as well
as to binomial sampling of alleles
during meiosis.

Genetic rescue: increase in
population growth of small
populations following immigration,
resulting from the reduction of
genetic load caused by inbreeding
depression.

Hard selection: natural selection
that removes from the population
individuals whose phenotype does
not attain a particular threshold,
independently of population density
or genotype/phenotype frequency.
Hard selection can result in additional
mortality, and can therefore depress
population size.

Selection coefficient: a measure of
the reduction in the relative fitness of
a given genotype. The selection
coefficient takes a value between



Box 1. Interactions between Population Genetic and Demographic Processes

The fusion of population genetics with population ecology can be compared to a prearranged marriage between
partners who speak different languages (Roughgarden [4], p. 297).

There are four fundamental population genetic processes that interact with population demography: natural selection,
genetic drift, mutation, and gene flow. We consider here the interactions of the first three of these processes with
demography. The effects of gene flow are considered in detail in Box 2.

Natural selection brings about local adaptation that results in increased fitness of individuals in their local habitat.
Nevertheless, trait changes by natural selection that are advantageous to individuals do not necessarily benefit the
population. Haldane ([89], pp. 65-70] suggested that traits can evolve by natural selection that are detrimental to the
population. The concept that natural selection can decrease the viability of a local population has been called ‘evolu-
tionary suicide’ [90].

Genetic drift causes stochastic fluctuations in allele frequencies resulting from random differences in the survival and
fecundity of individuals, as well as from binomial sampling of alleles during meiosis. These stochastic effects can
overwhelm the effects of selection in small populations. Thus, smaller populations are less likely to become locally
adapted. Johansson et al. [91] found reduced local adaptation in small isolated populations compared to continuous
large populations of the common frog (Rana temporaria). They concluded that the effects of genetic drift swamped the
effects of natural selection in smaller populations.

The relevant metric of population size here is the genetically effective population size (Ve), not the census size. In general,
changes in allele frequency are determined primarily by genetic drift rather than by natural selection when the product of
N, and the selection coefficient is less than 1.0 [92]. Thus, a deleterious allele that reduces fitness by, say, 5% will act
as if it were selectively neutral in a population with N, of 20. The increase in frequency of deleterious alleles in small
populations (inbreeding effect of small populations) can decrease the viability of small populations. Under Wright's shifting
balance theory, random genetic drift allows subpopulations to explore the adaptive landscape and potentially occupy a
higher adaptive peak [93].

Mutation is a change in DNA sequence or chromosome arrangement during the transmission of genetic information from
parent to progeny. Mutation is the ultimate source of advantageous alleles. However, mutation rates are generally
extremely low (on the order of 1 08 per locus per generation), and thus have demographic effects only over the very long
term. Advantageous mutations could be more likely to be incorporated into large rather than small populations because
more mutations will occur and selection is more effective in larger populations. By contrast, Wright ([94], p. 157) first
suggested that small populations would decline in vigor slowly over time because of the accumulation of deleterious
mutations that natural selection would not be effective in removing as a result of the overpowering effects of genetic drift.
As deleterious mutations accumulate, population size might decrease further and thereby accelerate the rate of
accumulation of deleterious mutations. This feedback process has been termed mutational meltdown [95].

of extrinsic forces, density, and the frequency of other genotypes in the population. Soft
selection presents a model of adaptive evolution that can maintain a range of successful
phenotypes, and high levels of standing genetic variation [25]. Assessing hard versus soft
selection requires population-level analyses of genotype and phenotype frequencies and
densities. Interestingly, a recent review suggests that cases of rapid adaptive evolution
highlighted in the eco-evolutionary dynamics literature require high amounts of standing genetic
variation [26], showing the importance of understanding forces (such as soft selection) that
maintain that standing variation.

The guasi-instantaneous interplay of ecology and adaptation that has come to define eco-
evolutionary dynamics is consistent with a traditional focus on unencumbered adaptive evolution
among ecologists. In 1969, Ehrlich and Raven [27] argued that ‘selection is both the primary
cohesive and disruptive force in evolution, and ... the selective regime itself determines what
influence gene flow (or isolation) will have.” Their argument centers on the relative influence of
selection versus gene flow, but their assertion of the primacy of selection implies equally weak
effects of the other non-adaptive evolutionary processes (Figure 1).

Acknowledgement of the complexities of evolution at the population level can be traced through
subsequent decades in the ecological literature [28-31]. Nevertheless, there remains an
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Figure 1. Evolutionary and Ecological Processes Are Inseparable. Conceptual illustration of interconnections among evolutionary forces and ecological
interactions (biotic and abiotic) through population-level demographic and genetic parameters. (A) represents those interconnections emphasized in current eco-
evolutionary research. (B) represents a more comprehensive model of these interconnections, including the full suite of evolutionary forces and a range of population
parameters that are themselves interdependent. We build our review around population demographic parameters (size, density, connectivity), but describe key
interactions with genetic parameters (mean fitness, genetic variation). We define mean fitness according to population genetics theory as the sum of the fitnesses of

genotypes in a population weighted by their proportions [88], thus representing the population-level effects of local adaptation.

overarching view that strong ecological effects are predominantly associated with local
adaptation. The limitations of this view are made evident by strong ecological effects of non-
adaptive evolution. This view also obscures the great value of population-level research in
uncovering the broader implications of eco—evo interactions (e.g., [32,33]), including what
determines the rate of these interactions and the spatial scale of their influence.

Research at the Population Ecology-Evolution Interface

Eco—evo interactions occur in diverse systems and affect multiple levels of ecological organiza-
tion [11]. The next challenge is to gain insight into the mechanisms that determine the spatial
scope and strength of these ‘real-time’ feedbacks. This will require explicitly addressing the role
of population processes (Figure 2), which mechanistically unite ecological and evolutionary
dynamics across levels of response. Below we review studies showing these evolution—-demog-
raphy links, and thus offering a roadmap to improve the integration of population genetic and
demographic principles in eco-evolutionary research.

Population Size

Perhaps the most direct interaction of genetics and demography results from the effect of
population size on population viability and associated ecological conseguences. One of the
oldest empirical observations of population genetics is that offspring of related individuals tend to
have lower fitness than offspring between unrelated individuals [34]. The ‘inbreeding effect of
small populations’ leads to reduced fitness of individuals in small populations primarily because
of increased homozygosity for deleterious recessive alleles ([9], p. 101). However, it has been
somewhat difficult to determine the effects of decreased fitness of individuals due to inbreeding
on population demography and resulting ecological interactions.

Johnson et al. [35] modeled the demographic consequences of inbreeding depression in
bighorn sheep (Ovis canadensis). Their approach reduces mean vital rates of cohorts rather
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Figure 2. Population Parameters Affect the Balance of Adaptive and Non-Adaptive Evolutionary Forces. llustration of the relative influence of different
evolutionary forces in a population exposed to predation (A) as a function of population size (B), population density (C), and population connectivity (D). Text size
represents variation in the relative influence of each evolutionary force.

than modeling the individual effects of inbreeding depression, but these individual effects are
likely to have important demographic and ecological implications [36,37]. Specifically, Johnson
et al. [35] use a female-based model that does not incorporate the effects of inbreeding
depression on one-half of the population (i.e., males). Further, this approach reduces the
fecundity of all females equally rather than taking into account that the fitness of most individuals
(i.e., those that are not inbred) will not be reduced. Because the relationship between reduction
in fitness and inbreeding coefficient is not linear [38], using the mean inbreeding coefficient will
underestimate the mean reduction in fitness. Finally, inbreeding depression affects many
aspects of fitness that are not included in this model [39].

Johnson et al. [35] projected the demographic influence of inbreeding depression in future
generations by increasing the mean inbreeding coefficient of the population based on estimates
of effective population size (V) and increasing the mean inbreeding coefficients of individuals
by 1/(2Ng) per generation. This rate of increase assumes selective neutrality (i.e., no inbreeding
depression), but we know that differences among individuals in the proportion of their genes that
are identical by descent (IBD) because of inbreeding provide an opportunity for natural selection
to eliminate individuals with a greater proportion of the genome IBD. There can be great
variability in the proportion of the genome IBD, even among individuals with the same inbreeding
coefficient [40]. For example, Bensch et al. [41] found in a population of wolves (Canis lupus) that
the most heterozygous wolves for each value of the pedigree inbreeding coefficient became
established breeders. This selection process reduced the loss of heterozygosity despite a
steady increase of the inbreeding coefficient.

Studies of the livebearing topminnow Poeciliopsis monacha show the demographic context
of inbreeding in small populations and subsequent genetic rescue [42]. This fish inhabits
rocky arroyos in northwestern Mexico. The upstream portion of a small stream dried
completely in 1976, but within 2 years fish recolonized this area from permanent springs
downstream. The fitness of the source and founder populations was compared with that of
coexisting asexual forms of Poeciliopsis that experienced the same extinction-recolonization
event. Cloning preserves heterozygosity, eliminating inbreeding depression in the asexual
fish.
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Compared to clones, the inbred founder population of P. monacha exhibited reduced fitness
and an increased parasite load [43]. By 1983, P. monacha was nearly eliminated from several
small pools while the clones flourished. The founder population was then rescued by trans-
planting 30 genetically variable females from a downstream location where P. monacha was
genetically variable. By the following spring (2-3 generations), sexual P. monacha regained
numerical dominance over the clones [42], and its parasite load dropped to amounts that were
typical of the permanent localities downstream [43].

A growing number of cases of genetic rescue (reviewed in [44]) provide vivid — but often
overlooked — evidence of strong and rapid ecological effects of non-adaptive evolutionary
processes by which the presence of a species and its web of biotic and abiotic effects depends
on the restoration of genetic variation lost at small population sizes. In a striking example,
population dynamics of wolves on Isle Royale, USA —and the numerous ecological effects of this
apex predator — show the harmful effects of inbreeding and the positive effects of gene flow [45].
Genetically driven cycles in the population dynamics of this large carmivore have far-reaching
ecological consequences; wolves on Isle Royale directly influence moose population dynamics
and behavior, and thus indirectly influence community composition through trophic cascades
mediated by moase herbivory [46].

Small population size will also lead to loss of allelic diversity [47], and this can have strong
demographic and ecological effects even in the absence of inbreeding depression. Many
flowering plant species have genetic incompatibility mechanisms. In one system, the mating
type of an individual is determined by its genotype at the self-incompatibility (S) locus [48].
Pollen grains can only fertilize plants that do not have the same S-allele as the pollen, and
smaller populations are expected to maintain many fewer S-alleles than larger populations at
equilibrium [49]. Reinartz and Les [50] concluded that some one-third of the remaining
14 natural populations of Aster furactus in Wisconsin had reduced seed sets because of a
diminished number of S-alleles. An analogous effect occurs in the nearly 15% of animal species
that are haplodiploid, in which sex is determined by genotypes at one or more hypervariable locCi
[51,52].

Population Density

Most populations are influenced by density regulation [53], but integrating evolutionary pro-
cesses into population models with density dependence has been a challenge for decades
[4,5]. The influence of density on fitness and eco—evo interactions continues to be of interest,
especially in relation to life-history evolution [54] and dispersal [30]. The strength of density
dependence also plays a key role in determining the form of natural selection acting on
phenotype and allele frequencies (hard vs soft selection [24]), which in turn influences population
dynamics [2].

Soft selection is a density-dependent (and frequency-dependent) process closely tied to
population dynamics. For example, soft selection can reduce variation in population abundance
(a fundamental ecological response) when limiting factors compensate for the demographic
costs of hard selection — that is, when soft selection results in compensatory mortality. The
demographic context of selection is exemplified by research showing desynchronization
between egg laying in great tits (Parus major) and the availability of caterpillar prey [55]. Spring
warming has increased the phenological mismatch between reproduction in great tits and the
caterpillar food resource, increasing directional selection for earlier egg laying. However, demo-
graphic costs of selection are currently offset by relaxed competition for food and breeding
territories among young birds. These compensatory dynamics might be necessary for species to
persist while undergoing rapid adaptive evolution [56], but detecting such dynamics requires
population-level analyses.
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Density dependence influences other eco—evo interactions with relevance to conservation. In
high-density populations, disruptive selection resulting from intraspecific competition can lead
to life-history variation that simultaneously increases genetic and phenotypic variation, popula-
tion productivity, and population stability [57]. This increase in standing genetic variation
increases the maximum potential rate of evolution due to natural selection [58]. Greater
phenotypic variability can also increase effective population size directly or by reducing variation
in N across generations [59]. Likewise, populations at low densities due to human harvest can
have reduced adaptive variation owing to relaxation of intraspecific competition and diversifying
selection, loss of variation through drift or anthropogenic selection, and reduced opportunity for
the stabilizing demographic effects of soft selection. Together, these factors can reduce the
efficacy of evolution by natural selection and threaten long-term population persistence [60].

Population Connectivity

Dispersal and gene flow are commonly seen as threats to local adaptation, thus limiting the
strength of eco—evo interactions [27,31]. This view is based on the assumption that selective
regimes differ between source and recipient populations such that dispersal introduces genes
mismatched to the selective regime of the recipient population [61]. Even under this assumption,
gene flow can interact with local selection regimes to produce a range of ecological effects and
adaptive consequences (Box 2) [62]. Furthermore, recognition that dispersal is not an entirely
random process has led to a more nuanced understanding of its ecological and evolutionary
implications [63,64].

Recent work on animal personalities illustrates the ecological and evolutionary effects of non-
random dispersal, and the role of population processes in mediating these effects. Animal
personality has repeatedly been linked to dispersal propensity, with individuals exhibiting ‘bold’
or ‘exploratory’ personalities being more likely to disperse than those with ‘shy’ personalities
[65]. These personality traits often affect local ecological dynamics [66], and we are beginning to
uncover their genomic basis [67]. In combination, these attributes of animal personality — close
association with dispersal, strong ecological effects, and genetic basis — set the stage for rapid
and spatially extensive eco—evo interactions.

A genetic correlation between dispersal and aggression enables western bluebirds (Sialia mex-
icana) to invade and displace less-aggressive mountain bluebird (S. currucoides) populations in
the northwestern USA, influencing landscape-level patterns of distribution and abundance in both
species [68]. Following displacement of mountain bluebirds, population-level feedbacks deter-
mine temporal pattemns of phenotypic change and abundance in western bluebirds. Specifically,
population size and frequency of the aggressive phenotype are driven by density-dependent
demaographic effects (i.e., reduced fitness of aggressive individuals at high densities) and matemal
effects (i.e., increased production of aggressive offspring at high densities).

A similar association among dispersal, personality, and ecological effects occurs in the spider
Anelosimus studiosus. Docile and aggressive phenotypes are heritable, the aggressive pheno-
type is associated with increased exploratory behavior and dispersal distance, and the species
builds webs that serve as habitat for >50 other species of spider [69]. In a 7 year study of
experimentally established A. studiosus colonies, the personality of founding individuals affected
successional patterns of species composition and community longevity [70]. Furthermore,
variation in the docile:aggressive ratios of A. studiosus populations appears to be related to
site-specific selection at the group level, where colony survival depends on the optimal docile:
aggressive ratio [71].

Strong association with dispersal and local ecological interactions is not restricted to personality
traits [66,72]. However, these examples underscore the potential for spatially extensive eco—evo
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interactions, where genetically based traits of dispersing individuals exert strong ecological
effects in recipient populations. They also show how traits of dispersers can influence the rate of
adaptive evolution in recipient populations depending on how dispersal phenotypes match the
selective regime of a recipient population (e.g., competition with mountain bluebirds). A similar
situation can occur under the non-equilibrium conditions of species invasion, where the best
dispersers at the invasion front also have traits that allow establishment [73]. These examples
show the crucial importance of quantifying population parameters (e.g., dispersal, gene flow,
local population dynamics) to understand the true spatial scale at which eco—evo interactions are
occurring and their demographic and community-level implications [74,75].

Future Directions
Novel methods in population genomics and demographic estimation will create exciting oppor-
tunities to advance mechanistic understanding of eco—evo interactions. However, we must first

Box 2. The Nuances of Gene Flow

Longstanding population genetics theory and recent empirical work show that not all amounts of gene flow will have
homogenizing effects on populations, and thereby work against local adaptation (Figure ) [62,80]. One immigrant per
generation ensures that the same alleles will be shared among populations over long periods of evolutionary time [96],
but does not preclude considerable genetic differentiation (i.e., high fixation index, Fsy) among subpopulations
([88], p. 293). Subpopulations are expected to have equal allele frequencies only if they are panmictic, which requires
considerably more exchange than one migrant per generation (>10 individuals per generation) [97]. By contrast, even
small amounts of gene flow (an average of one immigrant every 10 generations) are sufficient to allow advantageous
alleles to spread across populations [98].

In a population exposed to strong directional selection, effective population size (V,) also influences the relationship
between gene flow (migration, m) and mean fitness (Figure 1l). Realized mean fitness is a function of both inbreeding
depression and local adaptation. Isolation can result in reduced fitness because of the accumulation of inbreeding
depression in small, isolated populations. This effect is alleviated by at least one migrant per generation (Nm = 1). Thus,
smaller values of m are required to alleviate the effects of inbreeding depression in larger populations. Genetic drift also
reduces the efficacy of natural selection in small populations. Thus, larger populations are expected to show greater mean
fitness. Finally, local adaptation can be swamped at large migration rates, resulting in lower fitness at high values of m.

These complex relationships among gene flow, genetic variation, and adaptation underscore the value of direct
measurements of dispersal and local demographic parameters to understand eco—evo interactions.
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Figure |. Three Types of Genetic Connectivity. Expected values of Fsr with the island model of migration in which N
is the local effective population size (Ne) [99]. Arrows indicate the Fsr values for the three types of genetic connectivity —
the degree to which gene flow affects evolutionary processes within populations. Under adaptive connectivity, gene flow
is sufficient to spread advantageous alleles. Under inbreeding connectivity, gene flow is sufficient to avoid the harmful
effects of local inbreeding. Under drift connectivity, gene flow is sufficient to maintain similar allele frequencies among
populations. Redrawn from Lowe and Allendorf [80].
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Figure Il. The Interplay of Selection, Population Size, and Gene Flow. The expected influence of effective
population size (V) on the relationship between migration rate (m) and mean fitness in a population exposed to strong
directional selection. We define mean fithess according to population genetics theory, as the sum of the fitnesses of
genotypes in the population weighted by their proportions [88]. A comprehensive measure of realized mean fitness in
natural populations should incorporate a range of other ecological, demographic, and life history factors (i.e., many of the
factors addressed in this paper; Figure 1), as others have noted [100]. However, the relationship described here will,
nevertheless, underlie population response to those factors.

acknowledge the advances already resulting from modeling approaches that integrate popula-
tion-level ecological and evolutionary processes. Smallegange and Coulson [76] developed a
framework that links quantitative genetics and structured population modeling to capture the
population-level dynamics of phenotypes controlled by additive genetic components. This
flexible framework allows the simulation of a wide range of feedbacks between ecological
and evolutionary variables, including population growth rates, life history, heritability, genetic
variance—covariance structure, and adaptation. Using integral projection models and simulations
based on field data, Rees and Eliner [32] show that changes in population structure (e.g., size
or stage) can strongly affect overall selection pressure, in addition to the changes in demography
(i.e., growth, survival, fecundity) commonly associated with selection.

The genomics revolution has given us unprecedented opportunities to explore how genome
composition and structure influence ecological function at the level of the whole organism [77].
However, this depth of focus often comes at the cost of a broader perspective on how genomic
variation is partitioned among individuals within populations, and among populations linked by
gene flow. Recent studies of individual-level genomic changes with clear population-level
ecological implications show the importance of closing this gap. For example, Myburg et al.
[78] genotyped 28 progeny from a single Eucalyptus grandis tree at 9590 loci. Fifty percent of the
genome is expected to be IBD in progeny produced by selfing. However, the 28 progeny lost an
average of only 34% of heterozygosity (range, 21 — 48%) compared to the parental tree. Results
such as these provide new opportunities to understand the genetic basis of inbreeding
depression such that it can be incorporated into population models.

Advances in genomic resolution are even more exciting in light of parallel advances in methods
for quantifying demographic rates in wild populations. Spatial capture—-mark-recapture methods
can now quantify demographic rates within populations (i.e., survival and recruitment) and
rates of dispersal among populations (i.e., immigration and emigration) [79]. In combination with
population genomic analyses, estimates of local and spatial demographic rates can resolve
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cryptic interactions between gene flow and selection (Figure 2). For example, it is now possible to
compare genetic divergence to population-specific immigration and emigration rates [80].

The combination of genomic and demographic tools can also provide new insight into the
evolutionary basis and ecological effects of intraspecific phenotypic variation [36,81]. Much of
the interest in eco—evo interactions seems to stem from observations of intraspecific covariation in
phenotype and ecology. Traditionally, assessing environmental versus genetic influences on this
phenotypic variation has required transplant experiments or intensive pedigree analyses. By taking
advantage of the high resolution of genomic markers, it is now possible to assess genetic structure
associated with specific phenotypes, both within and among populations [82]. Current capture—
mark—recapture methods offer the same resolution of rates of survival, recruitment, and dispersal
among phenotypes [83]. With these methods, it is possible to test for concordance between
genomic and demographic estimates of the strength and type of selection acting on phenotypes
[84], and to track the ecological and genetic effects of dispersal-associated phenotypes [85].

In experimental studies of eco—evo interactions, we see great value in treatments that vary
demographic and genetic parameters in addition to selection (Figure 1B). To date, most eco-
evolutionary experiments have applied ecological treatments to replicate ‘populations’, which
are then monitored for adaptive response. This approach typically standardizes the size,
composition (e.g., genetic variation, stage or size structure), and connectivity of populations
— all of which will influence evolutionary response. Adding treatments that manipulate these
population parameters will increase the applicability of results to natural systems, and reveal
interactions between adaptive and non-adaptive evolutionary processes [86,87].

Concluding Remarks

This review aims to promote interdisciplinary research by highlighting the inseparability of
ecological and evolutionary processes at the population level, thus setting a common platform
for integrative studies. The struggle to understand evolution at the population level — and
associated ecological causes and consequences — is not new. Despite this history, our excite-
ment at the power of natural selection to produce rapid adaptation and ecological responses
often eclipses fundamental questions of how adaptive evolution occurs in complex natural
systems and — equally importantly — the ecological causes and consequences of non-adaptive
evolution. Population-based approaches that explicitly integrate genetic and demographic
information are necessary if we hope to gain insight on the full scope of mechanisms driving
eco—evo interactions.
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