

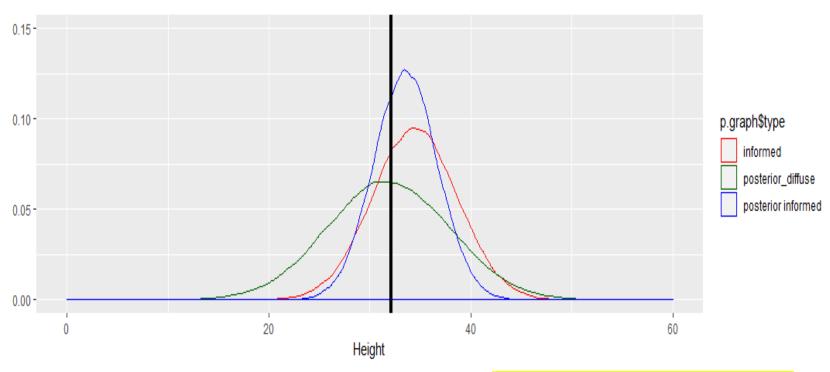
Methods in Experimental Ecology I

Experimental Design and Pseudo-replication
Data with normal errors
Summary statistics
Confidence Intervals
Regression
Model Selection approaches

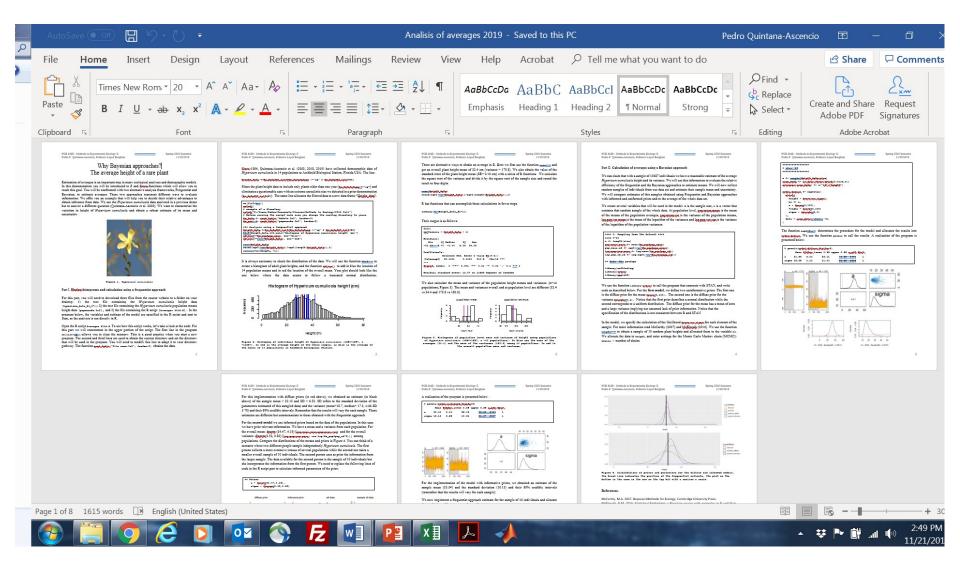
Statistics

Computer Science

Methods in Experimental Ecology II


Bayesian approaches Complex data General Linear Mixed Models Non-linear Models Decision-making process

Approach


- Understanding the attributes of the data
- Implementation of analysis
- Identification of model limitations
- Understanding different approaches
- Application to case studies

Bayesian Analysis

Demos

Session	TOPIC	Class dates / return exercise
0	Class presentation	January 11
1	Why spend time with stats?	January 13
	Exercise 1 (and Extra Credit)	January 18
2	Why to worry about assumptions?	January 18-20
	Exercise 2	January 25
3	Three Frameworks of Analysis	January 25-27
	Exercise 3	February 1
4	Why Bayesian? The model of the mean	February 1-3
	Exercise 4	February 8
5	How to analyze binary responses?	February 8-10
	Exercise 5	February 15
6	How to analyze non-linear relationships?	February 15-17
	Exercise 6	February 22
7	How to deal with count data?	February 22-24
	Exercise 7	March 1
8	Why linear mixed models?	March 1-3
	Exercise 8	March 8
9	Model selection for mixed models	March 8-10
	Exercise 9	March 22
	Spring break	March 15-17
10	Model selection for mixed models II	March 22-24
	Exercise 10	March 29
11	Models for data with too many zeros	March 29-31
	Exercise 11	April 5
12	Non-linear count data	April 5-7
	Exercise 12	April 19
13	TBD	April 12-14
	Exercise 13	April 21
	Closing remarks-Optional topics	April 19-21

R and RStudio

- While you can use any platform you feel comfortable with...
- ... we will teach using R because:
 - It's free
 - It has reasonable documentation online
 - It's flexible
 - It has many application for biological purposes

Stan

- While you can use any platform you feel comfortable with...
- ... we will teach using STAN because:
 - It's free
 - It has reasonable documentation online
 - It's flexible and stable

Stan and Rethinking

- rstanarm:

fit <- stan_glm(NestsPerQuadrat ~ Habitat, data = nd)</pre>

Stan and Rethinking


```
- stan:
data{
    int<lower=1> N;
    real NestsPerQuadrat[N];
    real Forest[N];
parameters{
    real a;
    real b;
    real<lower=0, upper=100> sigma;
model{
    vector[N] mu;
    // sigma ~ uniform( 0 , 100 );
    b \sim normal(0, 100);
    a \sim normal(0, 100);
    for ( i in 1:N ) {
        mu[i] = a + b * Forest[i];
    NestsPerQuadrat ~ normal( mu , sigma );
generated quantities{
    vector[N] mu;
    for ( i in 1:N ) {
        mu[i] = a + b * Forest[i];
```

Stan and Rethinking

- rethinking:

```
model2 <- map2stan(
   alist(
     NestsPerQuadrat ~ dnorm(mu, sigma),
     mu <- a + b*Forest,
     a ~ dnorm(0,100),
     b ~ dnorm(0,100),
     sigma ~ dunif(0,100)
),
   data = nd, chains =3,
   start = list(a=1,b=1, sigma=10)
)</pre>
```