
Journal of Ecology. 2023;00:1–13.    | 1wileyonlinelibrary.com/journal/jec

Received: 9 June 2022  | Accepted: 25 April 2023

DOI: 10.1111/1365-2745.14143  

R E S E A R C H  A R T I C L E

The implications of seasonal climatic effects for managing 
disturbance dependent populations under a changing climate

Bethan J. Hindle1,2  |   Pedro F. Quintana- Ascencio3  |   Eric S. Menges4  |    
Dylan Z. Childs1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2023 The Authors. Journal of Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

1School of Biosciences, Alfred Denny 
Building, University of Sheffield, Sheffield, 
UK
2School of Applied Sciences, University of 
the West of England, Bristol, UK
3Department of Biology, University of 
Central Florida, Orlando, Florida, USA
4Archbold Biological Station, Venus, 
Florida, USA

Correspondence
Bethan J. Hindle
Email: bethan.hindle@uwe.ac.uk

Funding information
Natural Environment Research Council, 
Grant/Award Number: NE/L501682/1; 
University of Sheffield

Handling Editor: Kyle Tomlinson

Abstract
1. The frequency of ecological disturbances, such as fires, is changing due to chang-

ing land use and climatic conditions. Disturbance- adapted species may thus re-
quire the manipulation of disturbance regimes to persist.

2. However, the effects of changes in other abiotic factors, such as climatic condi-
tions, are frequently disregarded in studies of such systems. Where climatic ef-
fects are included, relatively simple approaches that disregard seasonal variation 
in the effects are typically used.

3. We compare predictions of population persistence using different fire return in-
tervals (FRIs) under recent and predicted future climatic conditions for the rare 
fire- dependent herb Eryngium cuneifolium. We used functional linear models 
(FLMs) to estimate the cumulative effect of climatic variables across the annual 
cycle, allowing the strength and direction of the climatic impacts to differ over 
the year. We then estimated extinction probabilities and minimum population 
sizes under past and forecasted future climatic conditions and a range of FRIs.

4. Under forecasted climate change, E. cuneifolium is predicted to persist under a 
much broader range of FRIs, because increasing temperatures are associated with 
faster individual growth. Climatic impacts on fecundity do not result in a tempo-
ral trend in this vital rate due to antagonistic seasonal effects operating through 
winter and summer temperatures. These antagonistic seasonal climatic effects 
highlight the importance of capturing the seasonal dependence of climatic effects 
when forecasting their future fate.

5. Synthesis. Awareness of the potential effects of climate change on disturbance- 
adapted species is necessary for developing suitable management strategies for 
future environmental conditions. However, our results suggest that widely used 
simple methods for modelling climate impacts, that disregard seasonality in such 
effects, may produce misleading inferences.
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1  |  INTRODUC TION

Disturbance events, such as fires or floods, drive the dynamics of 
local extinction and (re)colonisation, altering biodiversity and com-
munity structure (Thom & Seidl, 2016; Velle et al., 2014). Many spe-
cies are adapted to live in frequently disturbed habitats; for example, 
fire- adapted plants may have persistent seed banks and require ex-
treme heat or smoke for germination (e.g. Davies et al., 2013). Such 
disturbance adapted species may be outcompeted when disturbance 
regimes are suboptimal; for example, pine recruitment and growth 
decreased in a fire suppressed mixed- conifer forest, which became 
increasingly dominated by fir (Levine et al., 2016). The frequency of 
disturbances has been altered over recent time scales due to anthro-
pogenic effects, including land use modifications and climate change 
(Knorr et al., 2014; Restrepo et al., 2009). Management strategies 
that restore natural disturbance regimes thus may be used to aid the 
persistence of such disturbance adapted species (Allen et al., 2002; 
Henry et al., 2020; Menges, 2007).

Population viability analyses (PVAs) have been widely ad-
opted to determine the conservation status of threatened popula-
tions and identify appropriate management strategies (Jaffre & Le 
Galliard, 2016; Lindenmayer & Possingham, 1996; Todd et al., 2017). 
PVAs use population models to simulate future dynamics and cal-
culate performance metrics such as population size, growth rate, 
and extinction risk (Menges, 2000). Determining how disturbance 
regimes can be optimised to maximise the probability of future 
persistence (e.g. Brys et al., 2004; Sanchez- Velasquez et al., 2002) 
or to eradicate invasive species (e.g. Emery & Gross, 2005) is a 
common goal, with one- quarter of environmentally explicit demo-
graphic models in plants considering the role of disturbance (Ehrlen 
et al., 2016). However, demographic responses to disturbance are 
often estimated as a function of discrete categories of disturbance 
events, such as whether or not a disturbance has recently occurred 
(e.g. Canales et al., 1994; Stevens & Latimer, 2015). This is despite 
the effect a disturbance has on a population or community poten-
tially occurring over multiple years (Fieberg & Ellner, 2001; Menges 
& Hawkes, 1998) and such responses not necessarily occurring lin-
early over time (Doak & Morris, 2010). Furthermore, many of these 
studies have assumed that, with the exception of disturbance fre-
quency, populations will continue to experience the same environ-
mental conditions in the future as during the observation period 
(Bernardo et al., 2016; though see e.g. Bucharova et al., 2012).

In reality, anticipated directional changes in environmental 
variables— for example, due to climate change— will also affect 
population persistence (Flatley & Fule, 2016; Harris et al., 2006). 
As such changes may drastically alter demographic rates, ignoring 
their effects can produce inaccurate future population predictions 
(Coulson et al., 2001; Crone et al., 2013). Climate change has already 
been implicated in local population extinctions (Wiens, 2016) and 
is predicted to become a key driver of future extinction dynamics 
(van Vuuren et al., 2006). However, demographic studies predict-
ing climatic impacts on plant population viability are relatively rare 
(Ehrlen et al., 2016; Selwood et al., 2015; though see e.g. Hadjou 

Belaid et al., 2018). Incorporating the effects of climate change 
may provide more accurate predictions of future dynamics (Crone 
et al., 2013; Fieberg & Ellner, 2001), allowing the development of 
management strategies that are appropriate for future environmen-
tal conditions (Bernardo et al., 2016; Bucharova et al., 2012; Souther 
& McGraw, 2014).

There is a pressing need to study the joint effects of climate and 
disturbance on population dynamics within fire- adapted systems, 
given the ongoing rapid environmental change in such systems 
(Nolan et al., 2021). Anthropogenic influences have been a critical 
driver of fire regimes over recent periods; however, the ability of hu-
mans to suppress fire activity is likely to decrease in the future, with 
temperature likely to be a key driving force in future fire regimes 
(Shindell, 2010). Despite this relatively few studies have focused on 
the demographic consequences of climate change on optimal dis-
turbance regimes in fire- adapted systems (though see e.g. Stevens 
& Latimer, 2015).

Climatic effects can be complex, however. For example, the im-
pact of a single driver may vary seasonally (Foster et al., 2014; Kruuk 
et al., 2015; Paniw et al., 2019), and those climatic variables that 
show the most prominent changes are not necessarily the stron-
gest drivers of ecological responses (Czachura & Miller, 2020). The 
rate and direction of climatic change differs across the seasons, and 
whether an individual can survive or reproduce, for example, is often 
affected by the environmental conditions at particular times of the 
year rather than by changes to the annual mean of a specific climatic 
driver (Bassar et al., 2016; Cordes et al., 2020; Paniw et al., 2019). For 
example, in plants, the effects of climatic conditions may be likely to 
differ between the dormant and growing season. Considering the 
effects of environmental drivers at different times of year is thus 
vital for accurately predicting the impacts of future change at a pop-
ulation level (Evers et al., 2021).

Here, we address two key questions: (1) how does the impact 
of climatic drivers on population performance vary seasonally and 
(2) how does forecasted future climate change impact on optimal 
disturbance regimes? We tackle these using data from a multi-
population study of a rare, fire- adapted plant species, Eryngium 
cuneifolium (Menges, 2007; Menges & Quintana- Ascencio, 2004). 
We used generalised additive models (Scanga, 2014; Wood, 2017) 
to capture nonlinear responses to time since fire. To allow the 
effect of the climatic drivers to differ seasonally, we used func-
tional linear models (FLMs) to capture climatic responses, allowing 
the effect of the climatic covariates to be estimated as a smooth 
function of seasonal anomalies (Hindle et al., 2019; Roberts, 2008; 
Teller et al., 2016). This is likely to mainly capture the direct ef-
fects of climatic change, rather than indirect effects, for example 
mediated through changes to the growth of interspecific compet-
itors, which may take place over longer timeframes. However, as 
little is known about the effect of climatic variation on the de-
mography of the study species, this provides an important step 
to understanding the dynamics of this system and the potential 
future impacts of a changing climate. We compared the predictive 
performance of FLMs using a range of possible climatic drivers 
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(minimum temperature, maximum temperature, precipitation, and 
drought). Finally, we used an integral projection model (IPM) to 
explore whether future forecasted climate change will affect pop-
ulation viability (extinction probabilities and minimum population 
sizes) in this species under a broad range of FRIs.

2  |  MATERIAL S AND METHODS

2.1  |  Study system

Eryngium cuneifolium is a rare perennial herb endemic to Florida 
rosemary scrub (Menges & Kimmich, 1996; Menges & Quintana- 
Ascencio, 2004). Its vital rates are negatively affected by time 
since fire, as it is outcompeted by shrubs such as Ceratoila ericoides 
(Menges & Kimmich, 1996; Quintana- Ascencio & Menges, 2000), 
with fire return intervals (FRIs) of less than 15 years necessary for its 
persistence (Menges, 2007; Menges & Quintana- Ascencio, 2004).

We used demographic data from 12 populations, from 1990 
to 2014, at the Archbold Biological Station, Florida (Menges & 
Quintana- Ascencio, 2004). A fieldwork permit was not required. 
The data included over 10,000 observations of more than 4000 in-
dividual plants. Time since fire in the Florida Rosemary scrub, the 
primary habitat of this species in the study area, varied from zero 
to 42 years. Individual measurements were recorded annually at the 
end of October/beginning of November. The square root of rosette 
diameter was used as a measure of plant size. The vital rates were 
assumed to be density- independent as interspecific interactions are 
typically considered more limiting than intraspecific competition in 
this species (Menges & Kimmich, 1996) and the collinearity between 
time since fire and abundance in this species makes it difficult to 
disentangle the impacts of interspecific density and time since fire.

Daily weather data were recorded onsite at the Archbold 
Biological Station. The site undergoes cold, dry winters and hot, wet 
summers, with the highest monthly temperatures in August and the 
majority of the precipitation falling between June and September. 
Four climatic covariates were considered; minimum temperature 
(°C), maximum temperature (°C), precipitation (mm) and the Keetch- 
Byram drought index (referred to as drought from here on in), which 
is a function of mean annual precipitation, daily maximum tempera-
ture and daily precipitation (Appendix A1; Keetch & Byram, 1968). 
The means of each of the daily climatic variables were calculated 
every fortnight from the beginning of November in year t until the 
end of October in year t + 1, that is for the 12 months between each 
annual census.

Predicted climatic data were available from the Meteorological 
Research Institute atmospheric general circulation model, version 
3.2 (MRI- AGCM3.2), with a 60 km grid size (Mizuta et al., 2012). 
Climatic data were simulated from 1979 to 2099 (Kusunoki & 
Mizuta, 2013), assuming the moderate emissions scenario, A1B 
(IPCC, 2007). Predicted climatic data from general circulation mod-
els (GCMs) often differ from that recorded at local weather stations 
due to model biases or differences in spatial scale between the 

predicted and observed data (Baker et al., 2017). Therefore, a cu-
mulative distribution function transform (CDF- t) approach was used 
to downscale predictions from the GCM (Appendix A1; Lavaysse 
et al., 2012; Michelangeli et al., 2009).

2.2  |  Parameterisation of the IPM

As E. cuneifolium has a persistent seed bank (Navarra et al., 2011), 
we constructed a two- stage stochastic IPM to simulate population 
dynamics (Appendix A2). Four vital rates were assumed to vary with 
time since fire and the climatic variables: survival, growth, fecundity 
and recruit size. A model with no climatic drivers was fitted first for 
each vital rate; these acted as baselines to evaluate the predictive 
performance of the climatic models. For example, the probability of 
survival (s

∙
(z)) for individual i in year t and population p was estimated 

as a function of size (z) and time since fire (l) as follows:

�
0 is an intercept and fz and fl are smooth functions of size (z), 

where zit is the size of individual i  in year t, and time since fire ( l ), 
where ltp is the number of years since a fire occurred in year t for 
population p. �p ∼ N

(

0, �p
)

 and �tp ∼ N
(

0, �t
)

 are random effects for 
population and year respectively. The random year effects (�tp) were 
estimated separately for each year- population combination (tp), but 
these were drawn from the same distribution, that is the standard 
deviation of the random year effects (�t) did not differ among popu-
lations. The smooth functions (fz and fl) were parameterised by spline 
basis expansion, for example fz(z) =

∑K

k=1
�
z
k
bz
k
(z), where �z

k
 are co-

efficients, bz
k
(z) are basis functions, and K is the dimension of the 

spline basis (Wood, 2017; see Appendix A3 for comparison with a 
linear time since fire model). The growth and fecundity models are 
structurally analogous to the survival model, differing only in the as-
sumed distribution and link function (Gaussian for the growth model 
and negative binomial with a log link for the fecundity model). A 
Gaussian distribution was assumed for the recruit size model, which 
also did not include the size spline.

Four climatic models were fitted for each vital rate, each con-
taining a single climatic variable. The cumulative effect of the cli-
matic variables over the 12- month period before the annual census 
was estimated using FLMs (for a more detailed explanation on using 
FLMs with demographic data see Teller et al., 2016). The FLMs in-
corporated the mean of the climatic variable every fortnight (w) from 
the beginning of November (w = 1) to the end of October (w = 26) 
as covariates. For example, the probability of survival was given by

where Ctw is climatic variable C in year t and fortnight w and fc(w) is 
a smooth function over time. The remaining parameters are defined 
above (Equation 2). The smooth function fc(w) is parameterised using 
spline basis expansion, as above.

(1)logit
(

s
∙
(zit

)

) = �
0
+ fz

(

zit
)

+ fl
(

ltp
)

+ �p + �tp.

(2)logit
(

s
∙
(zit

)

) = �
0
+ fz

(

zit
)

+ fl
(

ltp
)

+

∑W

w=1
fc(w)Ctw + �p + �tp,
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Models were fitted in R (R Core Team, 2016) using the gam 
function from the mgcv package and a cubic regression spline basis 
(Wood, 2017). Six knots were used for the size and time since fire 
splines and eight for the climatic splines. Quadratic smoothing pen-
alties, 

∑

j

�j�
T
Sj�, control the degree of smoothing in the splines, 

where Sj are known smoothing penalty matrices and �j are smooth-
ing parameters (Wood, 2017). The smoothing parameters (�) were 
estimated using restricted maximum likelihood (REML), as this is less 
prone to overfitting than generalised cross- validation (GCV; Reiss 
& Ogden, 2009; Wood, 2011). Cluster cross- validation was used to 
assess the predictive performance of each climatic model relative to 
the base model (Appendix A3).

As the data available to parameterise the remaining IPM func-
tions were more limited (Menges & Quintana- Ascencio, 2004), these 
were assumed to not be driven by climatic variation. Early seedling 
survival (e) was estimated using a logistic mixed- effects model with 
a fixed effect of time since fire and a random year effect. The num-
ber of seeds per flowering stem (m) was set to the mean observed 
number (183; Menges & Quintana- Ascencio, 2004). Estimates of 
germination range from 0 to 0.1 in the first year 

(

cf
)

 and 0.005 to 
0.04 from the seed bank 

(

cb
)

 (Menges & Quintana- Ascencio, 2004; 
Quintana- Ascencio & Menges, 2000), whilst seed mortality (d) was 
unknown. Populations were simulated using a range of germination 
estimates and a wide range of seed mortality estimates (0.1, 0.3, …, 
0.9) and compared to observed aboveground population dynamics 
(Appendix A5, Menges & Quintana- Ascencio, 2004). The selected 
fertility scenario had low germination 

(

cf = 0, cb = 0.005
)

 and low 
seed bank mortality (d = 0.3; see Appendix A5 for effects of uncer-
tainty in the seed bank parameters on the extinction probabilities).

2.3  |  Population viability in a changing climate

We explored how climate change may affect population viability 
under a range of FRIs, by simulating populations under the observed 
climatic conditions during the study period (1990– 2014; ‘past cli-
mate’) and forecasted future climate (2015– 2099; ‘future climate’). 
The downscaled GCM climatic data were used for the past and fu-
ture climate simulations. Populations were simulated for 85 years, 
starting with a fire year (see Appendix A6 for a comparison between 
populations simulated over a shorter, 30- year, period). Temporal var-
iation due to time since fire, climatic effects and random year effects 
were incorporated independently of one another. The forecasted cli-
mate projections from 2015 to 2099 were used (in sequence) for 
future climate simulations. For the past climate simulations, 1 year 
of climatic covariates was randomly selected from the 25 observed 
years at each iteration. FRIs were simulated using a Weibull cumula-
tive distribution function (e.g. Evans et al., 2010) with a range of me-
dians (3, 6, 9, …, 30; Figure S1). The upper limit is less than that of the 
suggested FRI for the rosemary scrub habitat (Menges et al., 2017). 
However, there is relatively little demographic data available for 
E. cuneifolium beyond 30 years after a fire, as it is outcompeted. 
Thus, using less frequent FRIs would involve extrapolating these 

demographic relationships. The FRIs were stochastic, with the prob-
ability of fire increasing as time since the last fire increased. Fire was 
assumed to kill all rosettes (Menges & Kohfeldt, 1995).

The random year and population effects were incorporated using 
a kernel selection approach to preserve correlations among the vital 
rates (Metcalf et al., 2015; Rees & Ellner, 2009). A population was 
selected for each simulation from each of eleven populations, and 
all vital rates were estimated conditional on the population random 
effects throughout the simulation (one population with no recruits 
during the study period was excluded, as a random effect could not 
be estimated for recruit size). At each iteration, a year- population 
combination was selected at random and used for the random year 
effects across all of the vital rates.

Three sets of simulations were run to explore the effects of ini-
tial population size, variability in the FRI, and differences among the 
populations. Unless otherwise stated, 1000 simulations were run for 
each parameter combination. First, a range of initial population sizes 
were used (1000, 7000, 15,000, or 30,000 seeds). Here, the shape 
parameter (a) of the Weibull distribution, which gives the slope in 
the probability plot, for the FRIs was set to 64, resulting in little vari-
ation around the median FRI (Figure S1). Second, we explored how 
differences in the variability of fire occurrence affected extinction 
risk. Here, using an initial population size of 7000 seeds, four val-
ues of a (2, 8, 32 and 64; Figure S1) were used to simulate the FRIs. 
Third, to determine how extinction probabilities differed among 
populations, 500 simulations were run for each of the eleven popu-
lations, with a set to 64 and an initial population size of 7000. Quasi- 
extinction probabilities were given by the proportion of simulations 
falling below one individual (including seeds). Minimum population 
sizes were calculated as the mean of the minimum number of indi-
viduals in each simulation.

3  |  RESULTS

3.1  |  Climate model inputs

The climate inputs for the model are summarised in Figure 2. 
Temperature is generally predicted to increase under the forecasted 
future climate, with particularly strong effects over spring and summer 
(Figure 2b,c). Whilst precipitation does not appear to undergo a direc-
tional change over the forecast period (Figure 2d), drought appears to 
increase over summer, presumably due to the increase in maximum 
temperatures (Figure 2a). The climatic variables tended to be most 
variable over winter (Figure 2ii). There are no clear trends in the among 
year variability of the climatic predictors over this period (Figure 2ii).

3.2  |  Response of vital rates to time since fire and 
climatic conditions

The vital rates respond nonlinearly to individual plant size (Figure S2) 
and time since fire (Figure 1). For all the vital rates, using a smooth 
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function for the time since fire effect had a better predictive perfor-
mance than assuming that the effect was linear (Appendix A3). The 
rates were negatively affected by increasing time since fire, with the 
fastest decreases in the first 10 years post fire. There was some in-
dication of a slight increase in survival, growth and recruit size after 
20 years since a fire, as well as a slight intermediate increase in re-
cruit size around 12 years post fire. Such impacts could be a result 
of decreased competition, as population sizes are strongly related to 
time since fire. However, sample sizes did also decrease with time 
since fire (Figure S3), dropping to an average of 13 individuals per 
population 25 years post fire and the effect sizes of these features 
is small; thus they may simply be a result of sampling variation and 
are unlikely to affect the population level predictions. There was also 
some evidence of senescence in survival, which appears to decrease 
in very large (i.e. older) individuals (Figure S2).

Higher temperatures across the year increased growth, with par-
ticularly strong effects over winter and spring (Figure 3a; Table 1). 
Maximum temperatures were a better predictor of growth than min-
imum temperatures (Table 1). Higher temperatures during summer, 
when temperatures were at their peak, had a small positive effect 
on growth compared to the rest of the year (Figure 3a). Including 
drought as a covariate improved the predictive performance of the 
survival model (Table 1).

Increased drought over winter and spring and decreased drought 
over summer and autumn were associated with increased survival 
(Figure 3c; Table 1). Seasonal effects were also evident in the fe-
cundity model, where higher minimum temperatures over winter 

and spring increased fecundity, whilst higher temperatures during 
summer decreased fecundity (Figure 3e, Table 1). Recruits emerge 
between January and March (Menges & Quintana- Ascencio, 2004); 
higher maximum temperatures shortly after this period increased 
recruit size (Figure 3g; Table 1).

Despite climatic effects being identified in all four of the vital 
rates (Table 1; Figure 3) the predicted future climatic change 
(Figure 1) only appears likely to lead to a strong directional change 
in growth and recruit size (Figure 3a,h, respectively). There are no 
strong temporal trends in survival and fecundity (Figure 3d,f, re-
spectively). For survival, this is due to a lack of sizeable directional 
change in drought, which is the critical climatic driver for this vital 
rate, and only shows an indication of increasing during summer 
(Figure 2; Appendix A4). For fecundity, however, this is due to an-
tagonistic seasonal effects, with increasing minimum temperatures 
during winter and early spring predicted to increase fecundity over 
the forecasted study period, but temperature increases during late 
spring and summer predicted to decrease fecundity (Figure 3e and 
Appendix A4). Conversely, the forecasted temperature increases 
over the next 85 years (Figure 1) appear likely to increase growth 
(Figure 3b) and recruit size (Figure 3h).

3.3  |  Optimal FRIs under a changing climate

In all scenarios, the predicted extinction probabilities were lower and 
minimum population sizes higher under future climatic conditions than 

F I G U R E  1  Time since fire models for 
(a) growth, (b) survival, (c) fecundity and 
(d) recruit size. Lines show predictions 
(±1 standard error) for a median sized 
individual on a square root scale (2.45) in 
an average population and year. Points 
and error bars show mean (± standard 
error of the mean) for each vital rate 
across all individuals.
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past. Under past climatic conditions, optimal median FRIs were be-
tween 9 and 15 years, with extinction probabilities less than 5% for 
all initial population conditions over 1000 individuals and below 20% 
with an initial population size of 1000 seeds (Figure 4ai). Outside of 
this optimal range, mean minimum population sizes were less than 600 
individuals, even with an initial population size of 30,000 individuals 
(Figure 4aii). In the future climate simulations, extinction probabilities 
were below 5% for all median FRIs above 3 years (Figure 4aii). The opti-
mal median FRIs were not affected by the climate, with the largest min-
imum population sizes still seen with FRIs between nine and 15 years 
under the future climate simulations. Mean minimum population sizes 
under these FRIs were between five and eight times as large as those 
predicted for the same FRIs under past climate (Figure 4aii).

Changes to the median FRI had relatively little effect on the 
population performance metrics when the shape parameter for 
the Weibull distribution was set to 2; the minimum population size 

increased while the median FRI was below 10 and then plateaued 
(Figure 4b). There was little difference in extinction probability 
or minimum population size at the higher values of the shape pa-
rameter (Figure 4b; a = 8, 32 and 64); that is, where the fire return 
intervals were more concentrated around the median (Figure S1).

Extinction risk among populations was very variable. Under past cli-
mates, the probability of extinction with a median FRI of 30 years var-
ied from 25% in one population to nearly 100% in another (Figure 4ci). 
With a median FRI of 15 years, the mean minimum population size 
ranged from 10 to over 850 and from 1500 to over 3000 among pop-
ulations under past and future climates, respectively (Figure 4cii).

The results are robust within the range of uncertainty evaluated 
for the seedbank parameters; altering the fertility scenario estimates 
(gf , gb and d) affected the absolute predictions of extinction risk and 
minimum population size, but not the pattern with respect to FRI or 
climate (Appendix A5). The probability of extinction remained less 

F I G U R E  2  Intra- annual change in the 
mean (i) and standard deviation (ii) for 
(a) drought, (b) maximum temperature, 
(c) minimum temperature and (d) 
precipitation. Data shown over the 25- 
year study period (1990– 2014) and 
85 year forecast period (2015– 2099). 
Each line is the mean (left column) or 
standard deviation (right column) over a 
5 year period. The annual census takes 
place at the end of October or beginning 
of November. Drought is on a scale 
from zero (soil fully saturated) to 800 
(maximum possible drought).

Winter Spring Summer Autumn(i)

200

400

600

800

0 10 20 30 40 50
2000
2025
2050
2075

Year

(a) Drought

(i)

25

30

35

0 10 20 30 40 50

2000
2025
2050
2075

Year

(b) Max temp

(i)

5

10

15

20

25

0 10 20 30 40 50

2000
2025
2050
2075

Year

(c) Min temp

(i)

0

3

6

9

0 10 20 30 40 50

2000
2025
2050
2075

Year

(d) Precipitation

Week

M
ea

n 
of

 c
lim

at
e 

va
ria

bl
es

Winter Spring Summer Autumn(ii)

0

100

200

300

0 10 20 30 40 50

(ii)

0

1

2

3

4

0 10 20 30 40 50

(ii)

0

2

4

6

0 10 20 30 40 50

(ii)

0

2

4

6

0 10 20 30 40 50

Week

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 c

lim
at

e 
va

ria
bl

es

 13652745, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2745.14143 by C

ochrane C
anada Provision, W

iley O
nline L

ibrary on [07/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  7Journal of EcologyHINDLE et al.

Climate model Growth Survival Fecundity Recruit size

Base 3950.1 5039.4 30044.6 990.8

Min temperature 3909.5 5054.9 29823.2* 1007.0

Max temperature 3857.8* 5080.8 30082.2 967.3*

Drought 3954.4 5029.9* 30250.9 1003.9

Precipitation 3969.9 5060.5 30389.4 1001.5

TA B L E  1  Cross validation results 
comparing the predictive performance 
of the climatic models. Lower values 
indicate better predictive performance. 
Climatic models with a better predictive 
performance than the base model (with 
no climatic effects) are highlighted in 
bold. * denotes the model with the best 
predictive performance for each vital rate; 
these are used to parameterise the IPM.

F I G U R E  3  Climatic coefficients 
over the year preceding the census (left 
column) and the average annual vital 
rates estimated using the downscaled 
climate predictions from 1990 to 2099 
(right column), for growth (a & b), survival 
(c & d), fecundity (e & f) and recruit size 
(g & h). Only the climatic variables with 
the highest predictive performance 
are plotted and included in the IPM 
(Table 1). The coefficients are scaled by 
the standard deviation of the respective 
climatic covariate for plotting. Dotted 
lines indicate the model ±1 standard error. 
In the right column, each point is the 
prediction for a median sized individual 
on a square root scale (2.45) 10 years post 
fire and in an average population and year. 
Increasing the number of knots did not 
change the pattern in any of the FLMs.
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than 5% under future climate when the FRI median was over 6 years 
(Appendix A5).

4  |  DISCUSSION

Our model predicts that the range of FRIs under which E. cuneifo-
lium is able to persist is likely to increase under forecasted climate 
change. Climate change is expected to substantially alter population 

viability across a broad range of taxonomic groups and geographi-
cal locations (Bellard et al., 2012; Maclean & Wilson, 2011), with 
implications for the design of appropriate conservation strategies 
(Bucharova et al., 2012). Optimal disturbance regimes will differ 
among species within a community, necessitating compromises 
when determining optimal regimes for the community as a whole 
(Menges, 2007; Menges et al., 2017). Under recent climatic condi-
tions, the probability of persistence for E. cuneifolium was low at 
the upper end of the recommended FRI for Florida rosemary scrub 

F I G U R E  4  Quasi- extinction 
probabilities (left column) and minimum 
population sizes (right column) across a 
range of FRIs and under past and future 
climatic conditions. (a) shows different 
initial population sizes (number of seeds 
in seed bank). (b) shows the effect of 
changing the level of variability in the FRI, 
where increasing the shape parameter (a) 
decreases the variability. In (c), each line 
represents a different population. Points 
show mean of 1000 simulations (500 in 
c). Error bars in the right column show 
bootstrapped 95% confidence intervals 
for the mean. Points were jittered to 
minimise overplotting.
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(15– 30 years; Menges, 2007; Menges & Quintana- Ascencio, 2004). 
Our model predicts that temperature increases towards the end of 
the 21st century are likely to allow E. cuneifolium to persist even with 
FRIs of 30 years, largely due to increasing individual growth. The 
ability of populations to persist at lower FRIs is also increased, thus 
resulting in a much wider range of potential FRIs for this species.

Our results highlighted seasonal differences in the impacts of 
environmental drivers on E. cuneifolium. Seasonality in climatic ef-
fects have previously been recorded across a diverse range of spe-
cies, including mammals (Hindle et al., 2019), plants (Tenhumberg 
et al., 2018) and birds (Kruuk et al., 2015). There are a range of pos-
sible mechanisms by which such effects may occur. Direct physio-
logical responses may differ according to season. For example, in 
the case of E. cuneifolium increased minimum temperatures during 
the coldest part of the year had a positive effect, whilst increased 
temperatures during the hot summers had a negative impact. 
Seasonal effects may also however be the result of indirect effects 
mediated through interacting species, such as competitors, pollina-
tors or soil micro- organisms (Evers et al., 2021) or potentially trade- 
offs between demographic rates such as survival and fecundity 
(Tenhumberg et al., 2018).

While including the effects of environmental drivers may increase 
the accuracy of future population projections (Bakker et al., 2009), 
accurately quantifying future extinction risk is only possible where 
sufficient data are available to reliably estimate the vital rates and 
their responses to environmental drivers (Coulson et al., 2001; 
Fieberg & Ellner, 2001). Demographic studies typically make a pri-
ori assumptions about the temporal windows over which climatic 
covariates influence the vital rates, usually selecting a single win-
dow (Ehrlen et al., 2016; Evers et al., 2021; Van der Pol et al., 2016). 
This choice may impact on inferences, if failure to capture seasonal 
differences in the climatic effects leads to inaccurate predictions of 
future population performance. Our model suggests that in the case 
of E. cuneifolium, fecundity would be predicted to increase under fu-
ture temperatures if a winter period was selected but decrease if a 
summer period was selected. By capturing the effect of temperature 
over the whole year, we found that these effects cancel one another 
out, resulting in very little net change in predicted future fecundity. 
Given the antagonistic seasonal effects in fecundity here, it seems 
probable that in some cases choosing a seasonal period a priori has 
the potential to lead to misleading inferences. A useful direction for 
further study would thus be a systematic comparison of the predic-
tive performance, at the population level, of models with and with-
out seasonal effects.

As with all approaches forecasting the future an awareness of 
uncertainties is important if the output is used to guide management 
(Schindler & Hilborn, 2015). For example, here, despite relatively 
small distances among populations, we found large differences in 
their predicted population dynamics; highlighting the importance 
of studying multiple populations and considering such uncertainty 
when making management decisions (Ellner & Fieberg, 2003). 
Furthermore, though this study system is data- rich relative to many 
others (Crone et al., 2011; Menges, 2000) data describing the seed 

bank dynamics and early seedling survival are relatively limited. 
Almost half of matrix population models exclude the seed bank 
completely (Doak et al., 2002; Nguyen et al., 2019), despite it hav-
ing important implications for estimating population persistence 
(Arroyo- Cosultchi et al., 2022; Nguyen et al., 2019; Quintana- 
Ascencio et al., 2019). We found that extinction probabilities under 
forecasted climate change remained low under two possible sce-
narios of seed bank dynamics. However, due to data constraints, 
we did not consider how the seed bank dynamics or early seedling 
survival may be affected by environmental change. Germination, 
seed mortality and early seedling survival are likely to respond to 
environmental conditions (e.g. Hawkes, 2004; King & Menges, 2018; 
Mackenzie et al., 2016), with consequences for future seed bank and 
population persistence (Ooi et al., 2012). This study represents a 
step in understanding the future dynamics of this system; further 
studies quantifying the effect of drivers of such dynamics under a 
broad range of environmental conditions are necessary to fully un-
derstand population responses to future change (Menges, 2000).

Our study has focused on the main effects of two key abiotic 
drivers, climate and disturbance. Whilst we were unable to quantify 
them here, interactions between these drivers are likely to also be 
important, which could result in the optimum FRI differing between 
past and future climatic conditions (Ehrlen et al., 2016). Such inter-
actions are likely in this study system, as the impacts of both cli-
mate change and disturbance may both, at least partly, be mediated 
indirectly through biotic interactions (Adler et al., 2012; Araujo & 
Luoto, 2007; García- Cervigón et al., 2021). Under past environmen-
tal conditions, the performance of E. cuneifolium has been limited 
by shrubs such as C. ericoides (Menges & Kimmich, 1996; Menges & 
Quintana- Ascencio, 2004). The increase in the demographic perfor-
mance of E. cuneifolium following a recent fire is directly related to 
the creation of gaps within the shrub matrix, which will close over 
time. Future optimal FRIs for E. cuneifolium will thus likely depend 
on how C. ericoides and other species respond to the changing envi-
ronments. Caution should also be taken in the interpretation of the 
result of population persistence with FRIs of over 30 years, as such 
gaps are likely to remain ephemeral in the future, and the data used 
to parameterise the model may not allow adequate extrapolation of 
this effect. Further studies on the influence of climatic conditions 
on C. ericoides and other species, and their competitive effects on E. 
cuneifolium are needed to determine the direct and indirect climatic 
effects operating and to fully understand how these will affect opti-
mal FRIs (e.g. Adler et al., 2012).

We have shown how forecasted climate change may broaden the 
range of disturbance regimes under which a rare endemic can persist, 
potentially decreasing the intensity of management needed. Climate 
change is expected to drive widespread population change (Maclean 
& Wilson, 2011; Parmesan & Yohe, 2003). Failure to account for 
these effects may lead to suboptimal conservation planning (Hannah 
et al., 2002; Hulme, 2005; Ibanez et al., 2013), yet many population- 
level studies continue to determine optimal management assum-
ing stationary environments (though see Bernardo et al., 2016; 
Bucharova et al., 2012; Sletvold et al., 2013). Furthermore, simple 
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estimators of climatic drivers using windows of influence, chosen a 
priori, may lead to inaccurate predictions of future population re-
sponses (Evers et al., 2021). The impacts of even a single environ-
mental driver can be complex and seasonally dependent. Thus the 
widespread use of statistical tools, such as FLMs, which negate the 
need to select a single time period (Teller et al., 2016), are necessary 
to fully understand the impacts of climate change on optimal man-
agement strategies.
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Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
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Figure S1. Cumulative probability of a fire occurring under the 
Weibull distribution with different medians (3, 6, 15, or 30) and 
shape parameters (2, 8, 32, or 64).
Figure S2. Effect of size on (a) survival, (b) growth, and (c) 
fecundity. Red lines show the fitted splines, points show 
raw data, which are split into size bins for the survival data. 
Predictions were made assuming a time since fire of 15 years and 
with the random year and population effects set to zero. The 
square root of rosette diameter was used as the measure of plant 
size. Raw data are from all 12 populations. Survival decreases 
at large sizes, presumably due to senescence. Plants either do 
not flower or produce very few flowering stems until they are 
sufficiently large.
Figure S3. Total number of individuals with survival data, across all 
12 populations, against the number of years since fire.Appendix A1. 

Downscaling of the predicted climate covariates.
Appendix A2. Structure of the IPM.
Appendix A3. Cluster cross validation.
Appendix A4. Exploring seasonality in the climatic effects.
Appendix A5. Selecting seed bank parameters.
Appendix A6. Effect of simulation length.
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