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Global biodiversity is continuing to decline despite increasing 
conservation efforts1–4. On the other hand, recent years have 
seen increases in people’s awareness of the scale of biodiver-

sity change and of the important roles that biodiversity plays, and 
also increases in funding for many aspects of conservation work 
and in the designation of protected areas5. It is likely that the fail-
ure of these increased conservation efforts to improve the state of 
biodiversity is caused by a continuing increase in the pressures on 
biodiversity5. There remain many gaps in our understanding of the 
effects of pressures on biodiversity globally6, gaps which need to be 
addressed to understand better how to reduce the downward biodi-
versity trend.

Broad-scale models play a vital role in efforts to understand bio-
diversity change7,8, although they tend to focus on better-understood 
pressures8. Models can be used to attribute differences in biodiver-
sity to putative pressures, generally pointing to large impacts of 
climate and land-use change1,2,4,9,10. Currently, the available biodi-
versity data are patchy and biased11, and so models are necessary 
even to predict present-day biodiversity for many under-sampled 
species and locations. To explore possible future trajectories, bio-
diversity models can be applied to different alternative scenarios in 
an attempt to identify societal pathways that have a more positive 
outcome for biodiversity1,9,12,13.

Most broad-scale biodiversity models neglect important geo-
graphical variation in the sensitivity of biodiversity to human pres-
sures. At the global scale, two main modelling approaches are used 
to capture the effects of land-use and climate change, both of which 
use spatial patterns to predict changes over time (space-for-time 
substitution). Responses of species to spatial variation in climate are 
typically represented using species distribution models, which use 
statistical methods to relate broad-scale data on species’ observed 

distributions to spatial variables describing the climate14 (and some-
times other aspects of the environment, including land use10). While 
species distribution models represent the response of each species 
individually, and thus implicitly capture geographical variation in 
sensitivity, it is rare to quantify that variation explicitly (although 
a recent study showed that tropical terrestrial communities have 
a smaller climate safety margin15). Globally, responses to land-use 
change have typically been assessed using statistical models that 
assess spatial differences in biodiversity across land-use types based 
on collations of fine-scale data1,16. These models generally assume 
that differences in biodiversity among land uses are constant across 
the whole terrestrial surface of the world1,16, although some models 
have considered tropical–temperate and taxonomic differences17,18. 
A recent study based on time-series data showed more negative bio-
diversity trends in tropical, temperate and Mediterranean biomes 
than in boreal areas or drylands19, highlighting important geograph-
ical differences in biodiversity change, probably driven in part by 
differences in the sensitivity of biodiversity to the major pressures.

There are several ecological and environmental differences 
among biomes that may cause geographical differences in the sen-
sitivity of biodiversity. First, certain biomes (principally those in 
temperate areas) have been impacted by humans for a much lon-
ger period of time than others20. This long history of human use 
is likely to have already filtered out the most sensitive species even 
from natural habitats21, which is likely to lead to a smaller response 
of biodiversity to contemporary land-use change. Second, species 
have on average smaller range sizes in tropical biomes than else-
where22. Smaller range size has been associated with a dispropor-
tionate sensitivity to both land-use change18 and climate change23. 
Third, there is a greater proportion of dietary and habitat specialist 
species found within tropical areas than in other biomes24. Dietary 
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and habitat specialists have been shown to be most sensitive to both 
human land use25,26 and climate change27. Fourth, tropical species 
tend to have a slower ‘pace of life’, having smaller numbers of off-
spring and maturing more slowly than other species28. At least for 
birds, long generation time (which is associated with a slow pace 
of life) has been shown to confer greater sensitivity to human land 
use25 and to climate change27. Fifth, the position of populations 
within species’ geographical distributions and climatic niche limits 
(that is, the observed climatic conditions that species inhabit) var-
ies across biomes. Tropical biomes have a high proportion of popu-
lations living near the edge of their distribution and at the upper 
end of species’ thermal limits, while high latitudes have a greater 
proportion of populations at lower thermal limits29. Similarly, spe-
cies’ upper and lower moisture limits will most often be reached 
in moist and dry biomes, respectively. In general, species near the 
edges of their geographical distribution have been shown to be 
more sensitive to environmental changes30. For bumblebees, recent 
climate change has been shown to impact most strongly those com-
munities where a greater proportion of species are near the upper 
temperature limit of their observed distribution4. Land uses heavily 
modified by humans tend, on average, to be hotter and drier than 
natural habitats, which has led to shifts in ecological assemblages 

by favouring species associated with these climatic conditions31–33. 
The generally reduced canopy cover in heavily modified land uses 
means that there is also less of a buffering of temperature extremes 
compared to natural habitats34. Together, these differences in local 
climatic conditions in heavily modified land uses are favouring 
species that can tolerate greater extremes of climate (that is, hotter 
maximum temperatures, colder minimum temperatures, and wetter 
and drier precipitation extremes)31,32,35. Finally, the very existence of 
biomes, with their widely differing vegetation structure, is caused 
by differences in climatic properties. In particular, tropical biomes 
have a lower degree of seasonality than temperate and high-latitude 
biomes. Species that have evolved to tolerate the narrower range of 
climatic and other environmental conditions within tropical biomes 
are likely to be more sensitive to environmental changes than those 
that evolved in areas with greater environmental variability36,37. 
Indeed, responses to both climate and land-use change have been 
shown to be most negative in areas of low climatic seasonality or 
among species inhabiting these areas18,27,38.

Here we ask whether sensitivity of biodiversity to climate and 
land-use change differs across biomes. We focus on species richness 
as a measure of biodiversity, which is easy to measure but captures 
only some of the many dimensions of biodiversity39 (in the Extended 
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Fig. 1 | Differences in species richness among land-use types, across different biomes. a–f, Tropical forest (a), tropical grasslands (b), drylands (c), 
mediterranean (d), temperate forest (e) and temperate grasslands (f). Plots show the percentage change in species richness compared to primary 
vegetation (PV), in secondary vegetation (SV), pasture (PAS) and areas of harvested agriculture (woody plantations and herbaceous croplands; HARV). 
Error bars show 95% confidence intervals. Sample sizes at the bottom of each panel refer to the number of sites in each combination of land use and 
biome. The most complex models were the best fitting—including the finest division of both biome and land use, and their interaction (Extended Data 
Figs. 3 and 4). However, because relatively few sites were sampled in some biomes and thus to maximize the number of biomes for which we could make 
a reasonably confident inference of land-use responses, we show here the results based on a coarser division of both biome and land use. The model 
with coarser land-use and biome groupings still showed a relatively similar fit to the data compared to the most complex models (species richness: 
R2

conditional = 0.61, R2
marginal = 0.025).
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Data, we also present responses to land use of total community 
abundance and a measure based on the endemicity of species in 
the community). We further test the extent to which variation in 
the sensitivity of species richness is correlated with environmental 
and ecological differences among biomes that are hypothesized to 
influence sensitivity (climatic seasonality, average position of spe-
cies within their climatic niche limits and length of human land-use 
history). We hypothesize that tropical biomes will show the most 
negative responses because they harbour species known to be most 
sensitive on average to both pressures (slow-breeding specialists 
with small range sizes, which have evolved under more stable cli-
matic conditions with a shorter history of land-use change), and 
because populations in tropical biomes tend to be nearer their 
upper thermal limits than elsewhere. Responses to land-use change 
may also be disproportionately negative in biomes with relatively 
drier climates because populations will tend to be closer to species’ 
lower moisture limits.

To assess sensitivity to land-use change, we used mixed-effects 
models to compare species richness among land uses, using data 
from the PREDICTS database (Extended Data Fig. 1), which con-
tains samples of communities from different land uses, mostly 
collected between 2000 and 201340. Land uses considered were: pri-
mary vegetation (natural habitat, not known to have been destroyed 
in the past), secondary vegetation (natural habitat, recovering after 
being destroyed by human actions or extreme natural events), plan-
tation forest (areas used to grow woody crops), cropland (areas 
used to grow herbaceous crops, including for livestock fodder) and 
pasture (areas used to graze livestock). In the final models, planta-
tion forests and croplands were grouped into a single ‘Harvested 
agriculture’ category. The hierarchical structure of the land-use 
analysis means that differences in biodiversity among land uses are 
estimated within individual studies that span limited climatic gradi-
ents. Our estimates of likely sensitivity to climate change were based 
on a published ensemble of future projections of climate effects 
on species distributions9 between a 1960–1990 baseline and the 
future period 2061–2080 (assuming intermediate ‘limited’ disper-
sal ability; see Methods). We calculated sensitivity as the predicted 
change in grid-cell species richness per degree Celsius of expected 
mean temperature increase. The use of different input datasets and 
methods to estimate land-use and climate sensitivity was necessi-
tated because we currently lack the data required to consider both 
pressures simultaneously9, and because climate and land use oper-
ate on biodiversity at very different scales. Land-use sensitivity was 
estimated using observed responses, whereas climate sensitivity 
was estimated based on future predicted changes because global 
datasets do not yet exist to allow a broad assessment of sensitiv-
ity to observed climate change. Nevertheless, for both pressures we 
express biodiversity changes in terms of species richness, so relative 
sensitivities across biomes should be comparable.

results
Spatial differences in biodiversity among land uses varied strongly 
across biomes (Fig. 1 and Extended Data Fig. 2). In secondary veg-
etation, species richness was more than 40% lower on average than 
in primary vegetation in the Mediterranean biome, around 10% 
lower in tropical forests and grasslands (although not significantly 
so in the latter case), and similar or even higher than in primary 
vegetation in temperate forests, temperate grasslands and drylands 
(Fig. 1). In pastures, species richness was between 20 and 40% 
lower compared with primary vegetation in tropical forests and 
grasslands and in the Mediterranean biome, 17% lower in temper-
ate grasslands, and similar or even higher than primary vegetation 
in temperate forest and drylands (Fig. 1). Finally, for harvested 
croplands (woody plantations and herbaceous croplands), average 
species richness reductions were between 20 and 40% for the tropi-
cal forest, temperate grassland and Mediterranean biomes, between  

15 and 20% for tropical grasslands and temperate forests, respec-
tively, and around 10% for drylands (although not a significant 
reduction in the last case; Fig. 1). Alternative groupings of either 
the land-use or biome classification did not markedly improve 
the fit of the models to the data (Extended Data Figs. 3 and 4). 
Patterns were similar for two alternative measures of biodiversity: 
total community abundance and community-average range size 
(Extended Data Figs. 5 and 6).

The sensitivity of vertebrate biodiversity to a 1 °C increase in 
annual average temperature also varied widely across biomes (Fig. 2; 
climate sensitivity was estimated by projecting biodiversity change 
against projected climate change between a 1960–1990 baseline and 
the future period 2061–2080, and then dividing by projected tem-
perature change across the same time period). The most sensitive 
biomes were tropical forests, tropical grasslands and Mediterranean 
areas, with median projected local declines of between 10 and 13% 
in species richness for each degree of climate warming (Fig. 2). 
Drylands showed intermediate sensitivity, with estimated declines 
of 5% of species for every degree increase in temperature. Finally, 
the biomes estimated to have the least sensitivity to climate change 
were temperate forests (median of 2% loss per degree of climate 
warming), temperate grasslands (1.5% loss) and boreal forests 
(1% gain). Results were qualitatively very similar regardless of 
the Representative Concentration Pathways (RCP) emissions sce-
nario assumed, but absolute sensitivities were less negative in most 
cases for the low-emissions scenario (RCP 2.6) compared with the 
high-emissions (RCP 8.5) scenario: tropical forests, −14%; tropical 
grasslands, −9.7%; Mediterranean, −6.1%; drylands, −2.8%; tem-
perate forests, +1.4%; temperate grasslands, +1.4%; boreal forests, 
+7% (Extended Data Fig. 7).

Three biomes stood out for having large biodiversity reduc-
tions in land uses heavily modified by humans and a high sensi-
tivity to climate warming: tropical forests, tropical grasslands and 
Mediterranean environments. These biomes showed approximately 
30% reduction in species richness in the most modified land uses 
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Fig. 2 | Predicted sensitivity of biodiversity to climate change across 
biomes. Shown is the predicted percentage change in vertebrate species 
richness for each °C of climate warming expected under the RCP 8.5 
scenario. Results were qualitatively very similar under the lower-emissions 
RCP 2.6 scenario (Extended Data Fig. 7). Biomes considered were 
tropical forest (TrF, total number of 10-km grid cells, ncells = 236,527), 
tropical grasslands (TrG, ncells = 203,690), drylands (Dry, ncells = 279,178), 
mediterranean (med, ncells = 31,630), temperate forest (TeF, ncells = 
170,680), temperate grasslands (TeG, ncells = 144,369) and boreal forest 
(BoF, ncells = 168,005). Thick horizontal black lines show median values 
across all grid cells within the biome, boxes extend to the first and third 
quartiles, and whiskers to 1.5× the interquartile range.
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compared to primary vegetation, and a 10–12% average local loss of 
species for each degree of climate warming (Fig. 3). In contrast, the 
other biomes showed smaller sensitivities that were less consistent 
for land-use change and climate change (Fig. 3).

Exploratory analyses suggested that both land-use and climate 
sensitivity may be associated with the same underlying factors 
(Table 1, Fig. 4, where the sensitivity of biodiversity to land use for 
any given value of an explanatory variable is inferred as the rela-
tive species richness in disturbed land uses compared to the spe-
cies richness in primary vegetation, and Fig. 5). The sensitivity of 
biodiversity to both climate change and to land use was greatest 
in areas with the lowest seasonality of both temperature and pre-
cipitation (Figs. 4a,b and 5a,b), and where a higher proportion of 
species were near the upper edge of their observed thermal niche 
(although for land use this was only true for harvested agriculture, 
not pasture; Figs. 4c and 5c). Contrary to our predictions, reduc-
tions in species richness in the most human-modified land uses 
(especially pasture) were greatest in areas where a higher proportion 
of species were near the centre of their precipitation niche (Fig. 4d).  
As expected, responses to land use were strongest in areas that have 
experienced land-use impacts more recently (Fig. 4e; this explana-
tory variable was not expected to have an effect on sensitivity to 
climate change, and so was not included in the analysis of climate 
responses). Although the explanatory variables helped to explain 
variation in sensitivity to land use among biomes, there remained 
a significant interaction between land use and biome in explaining 
species richness (χ2

18,70 = 170, P < 0.001). Owing to the need to use 
separate modelling paradigms for climate and land-use effects, we 
were not able to consider here any effects on biodiversity of interac-
tions between land-use change and climate change, nor whether the 
effects of such interactions were strongest in certain biomes. This 
question should be addressed in future studies.

Discussion
Our results demonstrate that species’ sensitivity to climate and 
land-use change varies geographically, and that high sensitivity to 
these two pressures coincides in the same parts of the world. The 
existence of such strong geographical variation implies that attempts 
to extrapolate inferences about the impact of climate and land-use 
change from well-studied areas1,4,41 to other parts of the world may 
be misleading. In particular, we find that tropical biomes (forests 
and grasslands) and the Mediterranean biome have a particularly 
high sensitivity to both pressures. We caution that quantitative 
comparisons of responses to climate change versus land-use change 
should not be made because of the very different scales at which 
these pressures operate, and because of the different methods used to 
assess their impacts. Nevertheless, the relative sensitivity of biomes 

to each pressure should be unaffected by the different methods  
used. Our results support previous studies that have shown greater 
reductions in biodiversity in heavily human-modified land uses in 
tropical compared with temperate areas17,18, but go further in show-
ing differences among individual biomes. Our results are also con-
sistent with a recent study showing similar geographical variation in 
historical biodiversity change using time-series data19.

The explanatory variables we considered help to explain geo-
graphical variation in the sensitivity of biodiversity, but do not com-
pletely explain the observed differences in biodiversity sensitivity 
among biomes. As expected, sensitivity to both pressures was high-
est in places with low climatic seasonality, probably because species 
confined to less-seasonal environments are not as resilient to envi-
ronmental changes18,27,36. Sensitivity was also high in areas where a 
majority of species are close to the hottest temperatures within their 
observed distributions (for land use this was true for harvested agri-
culture, but not for pastures used for livestock grazing). The dispro-
portionate biodiversity reductions in agriculture in areas dominated 
by species near their upper temperature limits probably results from 
the fact that heavily human-modified land uses tend to have hot-
ter maximum temperatures than natural habitats42. The results 
with regard to precipitation were more equivocal. Unexpectedly, 
there were greater biodiversity reductions in the most modified 
land uses where there were more species approaching the centre of 
their precipitation niche (Fig. 4). Precipitation patterns, and result-
ing changes in moisture availability, are not predicted to change as 
consistently and monotonically as temperature either with regional 
climate change43 or with human land use33,44. As expected, the effects 
of human land use were strongest in areas that have experienced a 
relatively short history of land-use disturbance. This is consistent 
with suggestions that a longer period of disturbance filters out the 
most sensitive species from ecological communities rendering the 
remaining communities less sensitive to further disturbance21.

−12 −10 −8 −6 −4 −2 0

−30

−20

−10

0

Richness change per °C (%)

R
ic

hn
es

s 
ch

an
ge

 h
um

an
-d

om
in

at
ed

 la
nd

 u
se

 (%
)

Tropical forest

Tropical grasslands

Drylands

Mediterranean

Temperate forest

Temperate grasslands
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as the average percentage difference in species richness between 
human-dominated land uses (plantation forests, cropland and pasture) and 
primary vegetation.

Table 1 | Statistics for the ability of potential explanatory 
variables to explain responses of species richness to land use

interaction with land use χ2 d.f. P

Biome 170 18, 70 <0.001

Temperature seasonality 23.8 6, 70 <0.001

Precipitation seasonality 67.3 6, 70 <0.001

Thermal position 70.3 6, 70 <0.001

Precipitation position 203.5 6, 70 <0.001

Time since landscape conversion to 
human-dominated land uses

25.8 6, 70 <0.001

Shown are the statistics (chi-squared values, χ2; degrees of freedom, d.f.; and P values from 
likelihood-ratio tests) describing the effect on species richness of interactions between the 
explanatory variables and land use (using the most parsimonious land-use classification, 
highlighted in bold in Extended Data Fig. 3).

NATurE EcOlOgy & EvOluTiON | VOL 4 | DECEmBER 2020 | 1630–1638 | www.nature.com/natecolevol 1633

http://www.nature.com/natecolevol


Articles NATurE EcOlOGy & EvOluTiON

Future efforts to model broad-scale biodiversity changes should 
consider geographical variation in the sensitivity of biodiversity. 
Previous models, especially those focusing on the effects of land-use 
change, have generally ignored geographical variation in sensitivity 
altogether1,9,16. The existence of wide differences among regions in 
the sensitivity of biodiversity to environmental changes has impor-
tant implications for predictions of future biodiversity. Tropical 
biomes are predicted to experience most future agricultural expan-
sion45, and to be among the first areas to experience unprecedented 
temperatures as a result of climate change46. The disproportionate 
sensitivity of tropical biodiversity that we find thus implies that 
future biodiversity changes may be larger than suggested by most 
previous models.

The disproportionate sensitivity of tropical and Mediterranean 
biomes points to important gaps in our understanding of the ecol-
ogy and conservation of these areas47. Data on biodiversity are 
patchy, and often show strong bias toward temperate forests and 
grasslands11,19. Our results suggest that the under-studied biodi-
versity of tropical biomes is most sensitive to major environmental  

changes, supporting previous research that has highlighted the 
sensitivity of tropical biodiversity to land-use change17,18. Tropical 
and Mediterranean areas are the richest in overall numbers of spe-
cies48 and in numbers of endemic species49, and so higher propor-
tional losses of species in these biomes will translate into even larger 
losses in absolute terms. We need more research to understand bet-
ter the causes and consequences of the sensitivity of tropical and 
Mediterranean biodiversity. The growing availability of databases 
describing changes in biodiversity over time will probably allow 
progress in this area, although such databases still under-represent 
tropical areas50.

Broad-scale models of the response of biodiversity to both 
land-use and climate change have a number of important known 
limitations. Both model types ignore important ecological effects 
such as biotic interactions and adaptation to environmental 
changes51, and synthetic models of land-use impacts may gener-
ally underestimate sensitivity because of the difficulty of estab-
lishing baseline conditions without human influence52. To affect 
the qualitative patterns of biodiversity sensitivities across biomes, 
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any model artefacts would have to affect disproportionately cer-
tain biomes over others. This may be true for some of the eco-
logical limitations of the models. For example, biotic interactions 
are thought to be relatively more important in shaping biodiver-
sity in tropical than temperate latitudes53. A failure to account for 
biotic interactions and other factors limiting species’ distributions 
will affect the inference of climatic niche limits, which determine 
expected responses to climate change in the models. Unfortunately, 
data on true physiological limits are available for too few species to 
include in an analysis such as is presented here35, but future studies 
should explore this question further. Our results suggest an impor-
tant role of climatic variation in explaining the observed sensi-
tivity of biomes. However, in the correlative analysis we present 
here, we cannot rule out the possibility that climate determines the 
distribution of biomes, but that some other feature of biomes (for 
example, vegetation differences or differences in species composi-
tion unrelated to climate) determines sensitivity. Data limitations 
are another potential source of bias if data quantity or quality differ 
markedly across biomes. For assessing climate impacts, we used 
globally consistent data on the extent of species ranges54,55, rather 
than opportunistically collected data that tend to be geographically 
biased11. Nevertheless, differences in the accuracy of these range 
estimates across biomes are very likely. Similarly, the data used to 
assess responses to land use40 were compiled to be as geographi-
cally representative as possible, and biomes were sampled roughly 
in proportion to their area56. Yet, as with the data on species’ 
ranges, we cannot rule out geographical variation in data quality. 
We focus in this study on species richness as a biodiversity measure  

that can be estimated by both the modelling approaches we use, 
while acknowledging that species richness cannot capture the 
many dimensions of biodiversity39. We show that similar patterns 
in land-use responses are obtained for two other measures based 
on abundance or species endemicity (Extended Data Figs. 5 and 6), 
but future modelling work should aim to represent a broader suite 
of biodiversity metrics. Finally, it was not possible to isolate com-
pletely observed responses to climate change and land-use change, 
given that both pressures are operating within complex real-world 
ecological systems. While the hierarchical structure of the models 
of land-use responses, with differences in biodiversity fitted within 
individual studies that span relatively small climatic gradients, 
should factor out most effects of regional climate change, climate 
inevitably plays a role in shaping observed responses (indeed, we 
show this to be the case in our analyses).

In conclusion, we have shown that biodiversity in tropical and 
Mediterranean biomes is disproportionately sensitive to both 
land-use and climate change, which has important implications 
for conservation in these areas. Further work is needed to incor-
porate differences in sensitivity into broad-scale models of biodi-
versity changes. Moreover, results such as these can contribute to 
the discussions around the post-2020 biodiversity framework57 by 
highlighting the disparity in how environmental changes impact 
biodiversity in different geographic regions of the world and show-
ing a disproportionate sensitivity of the under-studied tropics. 
Importantly, our results suggest that the high level of land-use and 
climate change expected in tropical biomes in the coming decades 
will affect ecological communities that are particularly sensitive to 
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Fig. 5 | relationships of predicted biodiversity sensitivity to climate change with putative explanatory variables. a–d, Temperature seasonality (a); 
precipitation seasonality (b); average proximity of species in an assemblage to lower (value = 0.0) or upper (value = 1.0) monthly temperature limits 
based on species’ observed distributions (c); and average proximity of species in an assemblage to lower or upper maximum precipitation limits based on 
species’ observed distributions (d). We estimated climate sensitivity as the percentage change in species richness for each °C of warming expected under 
the RCP 8.5 climate scenario. Relationships are shown here for a random sample of 10,000 10-km grid cells from across the world’s terrestrial surface. We 
derived fitted relationships (shown by red lines) from a simple linear model relating climate sensitivity to each variable, but the direction and significance 
of relationships was consistent when using a spatial autoregressive model.
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these environmental changes, and thus biodiversity declines may be 
stronger than previous models have implied.

Methods
Defining biomes. There are several schemes by which the world can be divided 
into biogeographical units, differing in the set of species they contain58–60. A recent 
global study showed marked changes in species composition across the boundaries 
of ecoregions60, which are a nested subunit of biomes61. For understanding 
large-scale differences in the sensitivity of biodiversity to environmental changes, 
a coarser division into biomes is more practical than an ecoregion-based division, 
given the paucity of biodiversity data for most ecoregions11,40.

We derived estimates of the spatial distribution of biomes from The Nature 
Conservancy’s map of global ecoregions62. This map divides the world into 
16 different biomes, 11 of which we considered in this study: Tropical and 
Subtropical Moist Broadleaf Forests; Tropical and Subtropical Dry Broadleaf 
Forests; Tropical and Subtropical Coniferous Forests; Temperate Broadleaf and 
Mixed Forests; Temperate Conifer Forests; Boreal Forests/Taiga; Tropical and 
Subtropical Grasslands, Savannas and Shrublands; Temperate Grasslands, Savannas 
and Shrublands; Montane Grasslands and Shrublands; Mediterranean Forests, 
Woodlands and Scrub; and Deserts and Xeric Shrublands. Biomes excluded owing 
to a paucity of biodiversity data were: Tundra; Mangroves; Flooded Grasslands and 
Savannas; Inland Water; and Rock and Ice. Although a newer version of the biomes 
map is available61, it is unlikely that its use would have made a noticeable difference 
to the broad-scale patterns we report here. The biome classification is already built 
into the PREDICTS (Projecting Responses of Ecological Diversity in Changing 
Terrestrial Systems) database63, which we used to assess responses to land-use 
change (see ‘Estimating biodiversity response to land use’). For the assessment 
of sensitivity to climate change, we simply overlaid the map of biomes with the 
projections of ecological community change under future climate scenarios (see 
‘Estimating biodiversity sensitivity to climate change’).

Framework for modelling biodiversity responses. We used mixed-effects models 
to estimate differences in biodiversity among different land-use types, and species 
distribution models to project likely biodiversity responses to climate change. 
Treating the effects of land use and climate in separate models is often necessitated 
by the fact that these pressures operate at very different spatial scales, and because 
the data documenting responses to the two pressures do not transcend the different 
scales (data on species distributions are typically not accurate enough to capture 
effects of land use, while data on the effects of land use do not span large enough 
climatic gradients to capture the effects of regional climate change)9. In some 
regions, distribution and land-use data are sufficiently accurately resolved that 
it is possible to include the effects of land use directly into species distribution 
models10. Alternatively, for some well-known taxonomic groups, expert knowledge 
can be used to predict species’ responses to land-use change in species distribution 
models64. For global multi-clade analyses, however, it remains necessary to use 
separate modelling paradigms9. The difference in methods used means that the 
absolute estimates of responses to each pressure are not directly comparable. 
Nevertheless, the relative sensitivities of biodiversity to each pressure across biomes 
should be unaffected. All input datasets are detailed in Extended Data Fig. 8.

Estimating biodiversity response to land use. We obtained data describing 
differences in biodiversity among land-use types from the database of the 
PREDICTS Project63. This database is a global collation of published comparisons 
of ecological assemblages across different types of land use, both natural and 
human-dominated56. We excluded any studies that focused on a single species 
because these cannot be expected to give a reliable estimate of species richness1. 
Original samples were collected in the field between 1984 and 2013 (95% of 
locations were sampled since 2000). The PREDICTS database is structured such 
that data from each published Source may be divided into one or more Studies, 
distinguished if the data were collected using a different sampling protocol. Studies 
may be divided into one or more Spatial Blocks, within which one or more distinct 
Sites are sampled. The data for each Site consist of a list of taxa, in most cases with 
recorded abundances, but sometimes just simple presence or absence (a very small 
number of records give the overall species richness of a group of species). The 
predominant land use at each site was classified based on the description of the 
sampled habitat as given in the original source publication, as follows56: primary 
vegetation describes natural habitat with no record of historical destruction of 
the vegetation (including remnant patches in urban areas); secondary vegetation 
describes natural habitat that is known to have been destroyed historically, either 
by human actions or extreme natural events, but which is now recovering to its 
natural state; plantation forests are areas used for cultivation of woody crops (such 
as fruit, oil palm, coffee or timber plantations); cropland is land used for cultivating 
herbaceous crops (including fodder for livestock); pastures are areas regularly or 
permanently used for livestock grazing; and urban areas are those used for human 
settlements or civic amenity, or areas where the vegetation has been transformed 
for human recreation. We excluded urban land use in this study, because there 
were too few urban samples to allow a consideration of biome differences. The 
PREDICTS database contains data for 47,044 species of vertebrates, invertebrates, 

plants and fungi40. The data analysed in this study were from 20,585 sites in 11 
out of 14 of the world’s terrestrial biomes (the tundra, flooded grasslands and 
mangroves biomes were discarded from the analysis because they were represented 
by too few sites) and from 91 of the world’s countries.

We used mixed-effects models65 to fit differences in sampled species richness as 
a function of land use and biome. We modelled species richness using generalized 
linear mixed-effects models with a Poisson distribution of errors. We included 
a random intercept of study identity to account for the differences in sampling 
protocols among studies, and to ensure that comparisons were made within studies 
that spanned relatively small environmental gradients, thus excluding most effects 
of climate change on observed biodiversity differences1. We additionally included 
a random intercept of site identity (that is, an observation-level random intercept), 
to account for the over-dispersion present66. Some combinations of land use and 
biome are poorly sampled, so using the finest divisions of these variables (that 
is, all 11 biomes and all 5 land uses) would reduce the potential generality of our 
findings. Therefore, we initially sought the most parsimonious groupings of land 
use and biome for explaining observed differences in species richness. For example, 
croplands and pastures could be grouped together as a single ‘agriculture’ class, or 
tropical conifer forest, tropical moist broadleaf forest and tropical dry broadleaf 
forest could be grouped as ‘tropical forest’. Using the finest division of biomes, we 
compared different groupings of land use. Separately, using the finest division of 
land uses, we compared different groupings of biome. For all four sets of models, 
we selected the one with the lowest Akaike Information Criterion (AIC) value as 
the best fitting. We then fit a final model of species richness using the combination 
of the best-fitting land-use grouping and the best-fitting biome grouping. This 
procedure allowed us to maximize the generality of our results, without unduly 
sacrificing explanatory power. We focus in the main text on changes in species 
richness, which can be measured more-or-less consistently with respect to both 
land-use change and climate change. However, species richness does not capture all 
facets of biodiversity39. To test whether the estimated sensitivity of biodiversity to 
land-use change was influenced by choice of biodiversity metric, we repeated the 
models also for the total sampled abundance of each community1, and the average 
range size of species within the community (weighted by species’ abundance)18. 
The latter metric captures the degree of endemicity of species within each 
community, and so may be a more sensitive metric of the effects of land use18. We 
estimated the average range size of species within each community using published 
estimates already calculated for the communities sampled in the PREDICTS 
database (https://doi.org/10.6084/m9.figshare.7262732.v1)18. These estimates 
were originally made18 by: (1) taking all records for each species from the Global 
Biodiversity Information Facility (GBIF) database; (2) mapping these records onto 
a 110-km equal-area (Behrmann projection) grid; (3) summing the total area of 
the occupied grid cells (which should be relatively insensitive to geographical 
outliers among the biodiversity records); and (4) calculating the average area of 
occupancy across all species within any sampled community in the PREDICTS 
database, weighted by species’ abundance (see ref. 18 for full details). We assumed 
that the GBIF records would be adequate for estimating broad relative differences 
in species’ area of occupancy (indeed, previous analyses have shown that effects 
of these range size estimates on responses to land use are relatively robust to 
alternative methods of calculation18).

Estimating biodiversity sensitivity to climate change. We obtained our estimates 
of the predicted response of biodiversity (vertebrate assemblage species richness) 
to climate change from published projections based on species distribution 
models9. These projections were derived using species’ distribution data for 
20,938 terrestrial vertebrate species from published extent-of-occurrence range 
maps54,55. While such maps tend to underestimate the full extent of species’ ranges 
while overestimating local occupancy67, they are the best data with which to 
capture broad-scale responses to climate change of a large number of species9. The 
published distribution models9 used an ensemble of five modelling algorithms 
(DOMAIN, BIOCLIM, Maxent, generalized linear models and random forests), 
fit using the dismo package v.1.1–4 in R. For any given location (10-km grid cell) 
we took the median of the projections across the ensemble. Each range map was 
converted to a raster at 10-km spatial resolution, using a cylindrical equal-area 
projection. Each occupied cell was considered a presence record in the distribution 
models. The Maxent algorithm drew 10,000 background points from all grid cells 
(occupied and unoccupied) within realm–biome combinations containing at 
least one presence record. For the generalized linear models and random forests, 
pseudo-absence records were drawn at random from unoccupied cells within 
realm–biome combinations that also contain a presence record. The distribution 
of each species was modelled as a function of four climatic variables shown to have 
good explanatory power for vertebrate distributions: minimum temperature of the 
coldest month, total annual precipitation, growing degree days and water balance. 
Distribution models were evaluated against a reserved 20% of records, using the 
area under the receiver operating characteristic curve (AUC) statistic; all models 
with an AUC > 0.8 were retained. The distribution models were projected onto 
current and future climate estimates under the RCP scenarios68 derived from the 
WorldClim Version 1.4 database. Continuous predictions from all models were 
converted to a binary prediction of presence or absence using a threshold that 
minimizes the difference between model sensitivity and specificity. In the original 
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paper in which these projections were presented9, three dispersal scenarios were 
used: no dispersal, unlimited dispersal, and intermediate ‘limited’ dispersal. In this 
study, we focused on the projections under ‘limited’ dispersal. Birds and mammals 
were assumed to be able to expand their ranges by 3 km per year, and reptiles 
and amphibians by 0.5 km per year (see ref. 9 for full details of the distribution 
modelling and projection methods). To estimate the sensitivity of ecological 
communities to climate change across space, here we took the future projections 
(from a 1960–1990 baseline until the period 2061–2080) of percentage change in 
the number of species present in each location (negative for species loss, positive 
for species gain) divided by the number of degrees by which annual average 
temperature is expected to increase within the same timeframe and under the 
same scenario (negative for projected decreases in temperature). We obtained the 
latter estimates of change in annual mean temperature also from the WorldClim 
Version 1.4 database. Because biodiversity may show a nonlinear response to 
climate warming, we tested the robustness of the results to two different RCP 
climate scenarios with varying overall projected temperature increase: the RCP 2.6 
scenario, which is characterized by strong climate-mitigation efforts, and RCP 8.5, 
which represents a high-emissions scenario.

Explaining biome differences in biodiversity sensitivity to land use and climate 
change. To attempt to explain any observed differences in biodiversity sensitivity 
among biomes, we considered a set of factors that differ among biomes and that 
have been hypothesized or shown to influence differences in biodiversity among 
land uses or the response of species to climate change: climate (temperature and 
precipitation) seasonality; the community-average position of species with respect 
to their observed climatic (temperature and precipitation) niche limits; and the 
number of years since the landscape was substantially impacted by human land-use 
activities. We initially considered two other variables (the average proportion of 
habitat specialists within a community; and the average range size of species within 
a community). However, these variables were strongly correlated with others and 
can be less reliably measured across the breadth of species considered in this study.

Temperature and precipitation seasonality estimates were derived directly from 
WorldClim Version 1.4 (ref. 69; bioclimatic variables, Bio4 and Bio15, respectively) 
at 10-arc-minute spatial resolution.

Thermal and precipitation position indices were estimates of the 
community-average position of species within their observed (that is, realized) 
thermal and precipitation niches (a value of 0 would indicate that all species 
were at their lower thermal or precipitation niche limits, cold and dry limits, 
respectively; whereas a value of 1 would indicate that all species were at their hot 
or wet niche limits). For each vertebrate species (species that have relatively reliable 
information on broad-scale distribution), we estimated position within niche limits 
based on the minimum and maximum conditions experienced throughout its 
distribution. Estimates of species distributions were the extent-of-occurrence maps 
as described above. We did not use GBIF data (see above) to estimate position 
within species’ thermal and precipitation niches because the patchy and biased 
nature of the GBIF data11 means that estimates of the precise position of range 
(and thus climatic niche) boundaries are likely to be unreliable. We processed 
the distribution maps by: (1) excluding areas where species are considered to 
be vagrant, or present only during migration; (2) excluding areas outside the 
known elevational limits for the species; and (3) resampling the maps to a 10-km 
cylindrical equal-area (Behrmann) spatial projection. The grain size of 10 km was 
selected as a reasonable trade-off between precision and map accuracy. We defined 
the limits of a species thermal niche as the minimum across its distribution of 
the minimum temperature of the coldest month (bioclimatic variable Bio6 from 
WorldClim Version 1.4 (ref. 69)) and the maximum across its distribution of the 
maximum temperature of the warmest month (Bio5). For precipitation, we defined 
niche limits as the minimum across a species’ distribution of the total precipitation 
in the driest month (Bio14) and the maximum across the distribution of the total 
precipitation in the wettest month (Bio13). For a given location, we then calculated 
a species’ thermal or precipitation position as the average across the year of the 
monthly average maximum temperature or monthly total precipitation values—
also obtained from WorldClim Version 1.4 (ref. 69)—after rescaling the raw climatic 
variables to take values of 0 and 1 at species’ estimated niche limits. Finally, for 
every location (10-km grid cells), we estimated the community-average thermal 
and precipitation position indices as the average of the species-level values for all 
species potentially occurring within a grid cell, with potential occurrence defined 
using the same distribution maps as before. We resampled all climatic variables to 
the same 10-km equal-area projection as the distribution maps.

Our estimates of the length of time that a landscape had been substantially 
impacted by human land-use activities was based on the HYDE reconstruction 
of historical land use45. Specifically, we calculated the number of years since each 
0.5° grid cell is estimated to have first surpassed 30% conversion of natural habitat 
to human-dominated uses (croplands, pastures and urban environments). A 30% 
threshold has been suggested previously to represent a level at which significant 
effects of fragmentation will begin to be felt for some species70, and the time since 
this level of conversion occurred has been shown previously to explain responses of 
biodiversity to land use1.

To test the importance of these factors in explaining land-use responses, we 
fit more complex mixed-effects models of species richness as a function not only 

of land use and biome interactions, but also of land use in interaction with the 
additional explanatory variables. We fit the additional explanatory variables and 
their interactions with land use as fixed effects in the model, allowing quadratic 
terms for the continuous explanatory variables because we hypothesized that the 
responses would probably be nonlinear. The random-effects structures were the  
same as for the earlier models of land-use responses: site identity nested 
within study identity. We used backward stepwise model selection to exclude 
non-significant terms (likelihood-ratio test, α = 0.05).

To explain geographical variation in the sensitivity of vertebrate assemblages to 
climate change, we modelled the estimates of percent species richness change per 
degree of temperature change (see above) as a function of the same explanatory 
variables as used for analysing land-use responses. We initially fit these models 
using ordinary least squares regression, allowing only linear terms for the 
continuous variables because over-fitting was likely with such a large sample 
(all terrestrial 10-km grid cells). Since species richness, species richness change 
and all of the explanatory variables are likely to show strong, positive spatial 
autocorrelation, we repeated all of the models using spatial autoregression  
(using the lagsarlm function in the spdep package v.1.1–3 (ref. 71) in R).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Extended Data Fig. 1 | Map of sites with data in the PrEDicTS database used for analysing land-use responses. Points are coloured by one of the 
classifications of biomes, which we used in our analyses.
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Extended Data Fig. 2 | Modelled differences in biodiversity among land-use types. Results are shown for three community-level measures of biodiversity: 
total sampled species richness, total sampled community abundance, and community-average range size. The last is a measure of the inverse of the 
endemicity of species within communities, and is the average of the range sizes of all sampled species in the community, weighted by sampled abundance. 
All values are expressed as a percentage change relative to primary vegetation as the baseline. Numbers in parentheses are the lower and upper bounds of 
the 95% confidence limits.
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Extended Data Fig. 3 | Statistics for mixed-effects models of species richness with different land-use groupings. Species richness was modelled as a 
function of both land use (using the different combinations as shown here) and biome (using the finest division into 11 different biomes). Shown are the 
model degrees of freedom (DF), difference in AIC compared with the best-fitting model (ΔAIC), and the conditional and marginal R2 values72.  
The best-fitting model is shown in italics, while the land-use combination used in the final models is shown in bold. PV = Primary Vegetation; 
SV = Secondary Vegetation; PF = Plantation Forest; CR = Cropland; PA = Pasture; Agric. = Cleared Agriculture (Cropland + Pasture); Harv. = Harvested 
agriculture (Plantation Forest + Cropland); Human = Human-dominated Land use (Plantation Forest + Cropland + Pasture).
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Extended Data Fig. 4 | Statistics for species richness models with different biome groupings. Species richness was modelled as a function of both land 
use (using the finest division into five different land-use categories) and biome (using the different combinations as shown here). Shown are the model 
degrees of freedom (DF), difference in AIC compared with the best fitting model (ΔAIC), and the conditional and marginal R2 values72. The best-fitting 
model is shown in italics, while the biome combination used in the final models is shown in bold. BF = Boreal Forests/Taiga; TeCF = Temperate Conifer 
Forests; TeBF = Temperate Broadleaf and mixed Forests; TrCF = Tropical and Subtropical Coniferous Forests; TrDBF = Tropical and Subtropical Dry 
Broadleaf Forests; TrmBF = Tropical and Subtropical moist Broadleaf Forests; TeG = Temperate Grasslands, Savannas and Shrublands; TrG = Tropical and 
Subtropical Grasslands, Savannas and Shrublands; moG = montane Grasslands and Shrublands; mED = mediterranean Forests, Woodlands and Scrub; 
DRY = Deserts and Xeric Shrublands; TeF = Temperate Forests (Coniferous and Broadleaf); TrF = Tropical Forests (Coniferous, Dry Broadleaf and moist 
Broadleaf); TemoG = Temperate and montane Grasslands; Temp. = Temperate (Forests and Grasslands, including montane Grasslands); Trop. = Tropical 
(Forests and Grasslands); NonTrop. = Non-Tropical (Boreal and Temperate Forest and Grasslands, including montane Grasslands); For. = Forest (Boreal, 
Temperate and Tropical); Grass. = Grasslands (Temperate, montane and Tropical).
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Extended Data Fig. 5 | Differences in total abundance among land-use types, across different biomes. a) Tropical forest; b) Tropical grasslands;  
c) Drylands; d) mediterranean; e) Temperate forest; and f) Temperate grasslands. Plots show the percentage change in species richness compared to 
primary vegetation (PV), in secondary vegetation (SV), pasture (PAS) and areas of harvested agriculture (woody plantations and herbaceous croplands; 
HARV). Error bars show 95% confidence intervals. Sample sizes at the bottom of each panel refer to the number of sites in each combination of land use 
and biome. The final model plotted here had an R2

conditional of 0.89 and an R2
marginal of 0.031.
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Extended Data Fig. 6 | Differences in community-average range size (rcAr) among land-use types, across different biomes. a) Tropical forest; b) 
Tropical grasslands; c) Drylands; d) mediterranean; e) Temperate forest; and f) Temperate grasslands. Plots show the percentage change in species 
richness compared to primary vegetation (PV), in secondary vegetation (SV), pasture (PAS) and areas of harvested agriculture (woody plantations and 
herbaceous croplands; HARV). Error bars show 95% confidence intervals. Sample sizes at the bottom of each panel refer to the number of sites in each 
combination of land use and biome. The final model plotted here had an R2

conditional of 0.87 and an R2
marginal of 0.10.
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Extended Data Fig. 7 | Sensitivity of biodiversity to climate change across biomes. Shown is the predicted percentage change in species richness for each 
°C of climate warming expected under the RCP 2.6 scenario. Results for the RCP 8.5 scenario are shown in Fig. 2. Biomes considered were tropical forests 
(TrF), tropical grasslands (TrG), drylands (Dry), mediterranean (med), temperate forest (TeF), temperate grasslands (TeG) and boreal forest (BoF). Thick 
horizontal black lines show median values across all grid cells within the biome, boxes extend to the first and third quartiles, and whiskers to 1.5 × the 
inter-quartile range.
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Extended Data Fig. 8 | Overview of input datasets used. References correspond to the numbered references in the bibliography, unless given as DOIs.
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