
Trends in

Ecology & Evolution
Opinion
Improving Predictions of Climate Change–Land
Use Change Interactions
Henrike Schulte to Bühne,1,2,* Joseph A. Tobias,2 Sarah M. Durant,1 and Nathalie Pettorelli1
Highlights
Climate change–land use change (CC–
LUC) interactions have a wide range of
effects on biodiversity.

Current research focuses on classifying
interaction types by identifying unex-
pected biodiversity outcomes under
combined climate change and land use
change.

The mechanisms underpinning these in-
teractions are often overlooked, limiting
Climate change and land use change often interact, altering biodiversity in unex-
pected ways. Research into climate change–land use change (CC–LUC) interac-
tions has so far focused on quantifying biodiversity outcomes, rather than
identifying the underlying ecological mechanisms, making it difficult to predict
interactions and design appropriate conservation responses. We propose a
risk-based framework to further our understanding of CC–LUC interactions. By
identifying the factors driving the exposure and vulnerability of biodiversity to
land use change, and then examining how these factors are altered by climate
change (or vice versa), this framework will allow the effects of different interac-
tion mechanisms to be compared across geographic and ecological contexts,
supporting efforts to reduce biodiversity loss from interacting stressors.
our ability to predict biodiversity change
and inform conservation responses.

The concept of risk focuses attention on
how climate change alters the exposure,
sensitivity, and adaptive capacity of bio-
diversity in the face of land use change
(and vice versa).

Risk frameworks can improve our under-
standing of CC–LUC interaction mecha-
nisms, offering a method for identifying
species and ecosystems at risk from
these interactions, aswell as for targeting
conservation responses.
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Predicting Biodiversity Change When Stressors Interact
Climate change and land use change are two major drivers of biodiversity change [1–3].
Predicting the effects of climate change and land use change on biodiversity is necessary to in-
form effective conservation strategies and ultimately safeguard biodiversity and the benefits
that humans derive from it [4]. The impacts of both drivers on species and ecosystems have
been extensively studied in the past, mostly separately from each other [5], and are relatively
well understood. However, there is a rapidly growing body of evidence showing that climate
change and land use change do not always affect biodiversity independently from each other,
meaning that climate change alters the impact of land use change on biodiversity, and vice
versa [6]. It is these combined effects, or so-called climate change–land use change (CC–LUC)
interactions, that are comparatively less well understood.

Most research into CC–LUC interactions has focused on identifying situations in which the com-
bined impact of climate change and land use change could have dramatic negative effects on
species or ecosystems [7]. For instance, land use change often reduces habitat availability and
landscape connectivity, thereby reducing carrying capacity and dispersal between neighbouring
populations, and increasing their sensitivity to extreme events. Specifically, populations
fragmented or isolated by land use change are at a higher risk of decline and extinction as ex-
treme climatic events become more frequent due to climate change (Figure 1) [8]. However,
since climate change does not always exacerbate the effects of land use change on biodiversity
and vice versa [9,10], it is equally important to predict neutral or positive, as well as negative, out-
comes to help improve targeting of management and policy interventions.

Climate change and land use change, and their interactions, operate across different scales, pos-
ing challenges to effective conservation planning, resourcing, andmanagement. At the regional to
global level, accounting for CC–LUC interactions could change conservation prioritisation hierar-
chies of ecosystems and species [11], highlighting the need to identify species and ecosystems at
the highest risk of adverse outcomes from CC–LUC interactions. At the site level, CC–LUC
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Figure 1. Multiple Mechanisms Drive Climate Change–Land Use Change Interactions. In this example, a
combination of climate change and land use change drives population extinction in both scenarios, but interaction
mechanisms differ. In scenario A (left panel), deforestation reduces habitat availability (green patches), reducing the size of
three hypothetical populations and, in some cases, leading to their extinction. Dispersal between these populations is also
reduced (1A). Climate change may also drive population declines, for example, by increasing the frequency of extreme
droughts (2A). In absence of deforestation, these declines may be reversed by dispersal and recolonisation (inverted
rodent icon, 3A). However, in conjunction with deforestation, recolonisation of habitat patches is impossible, leading to
local extinction of some populations (skull icon; 4A). In scenario B (right panel), habitat clearance reduces availability of
food resources, leading to lower reproductive success (fewer offspring), and therefore population decline, in a hypothetical
population (1B). Climate change may also reduce reproductive rates in this population, for instance by increasing aridity,
inducing physiological stress (2B). Habitat clearance again mediates the effect of climate change on the population: in its
absence the population declines in size, but persists (3B), whereas climate change in conjunction with habitat clearance
leads to population collapse and local extinction (4B).
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interactions could affect which biodiversity management options have the greatest effectiveness
[12]. Understanding the potential impacts of CC–LUC interactions on biodiversity will therefore
provide critical information to guide effective conservation interventions and to mitigate against
the impacts of anthropogenic global change at local and regional levels [13].

Despite substantial progress in our understanding of interactions between climate change and
global change stressors [14], including decades of research into CC–LUC interactions, we cur-
rently have little ability to predict when and where these interactions are going to happen, and
how they are likely to affect biodiversity [7]. Predicting CC–LUC interactions is challenging be-
cause climate change, land use change and biodiversity are all multidimensional concepts
[15–17], resulting in a high number of possible interactions. For instance, climate change can en-
tail changes in average temperature, shifts in season, or a change in the frequency of extreme
events, which may interact with a multitude of land use change effects, ranging in intensity from
land conversion such as deforestation to more subtle changes in land management (e.g., altering
fertiliser regimes). As a result, predicting the presence, type, and magnitude of CC–LUC interac-
tions by looking at each potential driver combination in turn is unlikely to provide comprehensive
insights into the effects of multiple drivers and their interactions. Additionally, CC–LUC
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interactions are likely to be shaped by interspecific interactions and trophic cascades [18,19].
This is further complicated by the fact that biodiversity responses at different organisational scales
(e.g., individual behaviour, population size, and species composition) can play out over different
timescales, and that CC–LUC interactions can change over time [20].

To address the challenges in predicting and managing CC–LUC interactions, we (i) summarise
recent research into CC–LUC interactions; (ii) demonstrate the need to expand this research,
which is currently focused on quantifying biodiversity outcomes, by focusing on the mechanisms
underpinning these interactions; and finally (iii) propose a risk-based framework as a way to effi-
ciently identify key mechanisms governing the outcome of CC–LUC interactions in different eco-
logical contexts.

CC–LUC Interactions: Current State of Play
What We Know so Far
To identify the main gaps in our understanding of CC–LUC interactions, we collated a represen-
tative sample of peer-reviewed studies (including empirical studies, meta-analyses, and reviews)
that explicitly discuss or quantify an interaction between climate change and land use change in
the context of their effects on terrestrial and freshwater biodiversity (see supplemental information
online for methodology). We excluded the marine realm since land use change does not directly
affect large parts of the oceans.We did not consider studies which only show that climate change
alters the rate of land use change, or vice versa [6]. Although such studies identify situations in
which biodiversity is affected by combined climate and land use change (and that there is thus
a chance for CC–LUC interactions to occur), they do not directly consider how the impacts of cli-
mate change on biodiversity are altered by land use change (and vice versa).

We considered 69 studies focusing on the combined effects of climate change and land use
change on biodiversity (see supplemental information online for a complete list). These studies
addressed numerous features of biodiversity, including the distribution of individual species
[21,22], species abundance [23], response to disturbance dynamics [24], species diversity
[25,26], or ecosystem composition and processes [27,28]. Across these studies, we found two
predominant empirical approaches to investigating CC–LUC interactions. First, some analyses
compared biodiversity outcomes between scenarios of no climate and land use change, either
climate or land use change, and combined climate and land use change [29–31]. Second,
other analyses tested a dose–response relationship between climate, land use, an interaction
term, and biodiversity variables using a statistical model [32–34]. Only eight of the empirical stud-
ies directly investigated interaction mechanisms (Table 1) [9,35–41]. However, all 11 reviews re-
trieved by our literature search explicitly discussed mechanisms through which climate change
could alter the impact of land use change on biodiversity, and vice versa (Table 1).

Studies of CC–LUC interactions are drawn from different research fields with an emphasis on either
climate, land use, or biodiversity science, and thus would benefit from a shared, unifying framework
to interpret and extract general patterns from the results. Previous attempts to provide such a frame-
work – based on studies of interactions between different stressors (including, but not limited to,
climate change and land use change) – have focused on classifying interactions based on how
realised outcomes differ from expected outcomes; that is, those occurring in the absence of an in-
teraction [42–44]. These classifications tend to distinguish between: (i) independent effects (cases
where climate change does not change the effect of land use change on biodiversity, or vice
versa); (ii) antagonistic effects (cases where climate change reduces the strength of the effect that
land use change has on biodiversity, or vice versa); and (iii) synergistic effects (cases in which climate
change increases the strength of the effect of land use change on biodiversity). Sometimes, a so-
Trends in Ecology & Evolution, January 2021, Vol. 36, No. 1 31



Table 1. Overview of Known or Hypothesised CC–LUC Interaction Mechanisms

Interaction
mechanisma

Description Refs

Microclimate
refugia

Land use change alters the structure of the vegetation canopy and the litter
layer, as well as drainage patterns, and thus can create microclimates that
either accentuate or reduce sensitivity to climate change.

[8,33,36,37,63]

Disturbance
responses

Climate change reduces the resistance and/or resilience of ecosystems
to disturbance caused by land use change (e.g., by delaying recovery
from habitat disturbance), and vice versa, thereby increasing risk.

[8,64,65b]

Range shifts Land use change can hinder adaptive range shifts, including access to
climate refugia, reducing the habitat available to a species affected by
climate change. Conversely, climate change can prevent the expansion
of species into habitat that land use change has made suitable (e.g., due
to forest clearance or abandonment of cultivation).

[8,9,41,66–70]

Natural
selection

Land use change can reduce local effective population size or gene flow,
potentially reducing or counteracting selection for genotypes that
increase fitness under climate change, and thus reducing adaptive
capacity. Conversely, climate change can lead to genetic
homogenisation of populations, potentially reducing their capacity to
adapt to new ecological conditions caused by land use change.

[71b,72b]

Genetic
constraints

Coadaptation to climate change and land use change could be difficult
because of antagonistic pleiotropy (i.e., the same genes confer high
fitness under climate change but low fitness under land use change, or
vice versa), or epistasis (i.e., genetic interdependence) of traits conferring
high fitness in the presence of one driver but low fitness in the presence
of another. This mechanism reduces the capacity of a population to
adapt to either stressor in the presence of the other.

[8,73b]

Metapopulation
dynamics

Land use change can lower the size of habitat patches and increase the
effective distance between them. Thus, species populations may decline or
disappear within patches, and incur reduced connectivity or genetic transfer
between patches (e.g., by constraints on dispersal of individuals or
propagules), increasing the sensitivity of metapopulations to climate change.

[4,8,66–68,74–77]

Community
filtering

Species can be cotolerant or cosensitive to climate change and land use
change, suggesting that the sensitivity of communities to subsequent
climate change depends on whether they have already been ‘filtered’ by
land use change, and vice versa.

[38,39,78,79]

Portfolio effect Land use change can increase sensitivity of species communities to
climate change by decreasing species richness and functional diversity.
This is because such declines decrease the so-called portfolio effect
whereby apparent high redundancy provides greater insurance or
resilience in the face of climate change.

[40]

Antagonistic
interaction

Antagonistic species (e.g., predator, pathogen, dominant competitor)
can benefit from changes to habitat associated with land use change,
increasing sensitivity to climate change for associated species (e.g., prey,
host, subordinate competitor). Similarly, the risk of disease can be
elevated by climate change (especially warming temperatures), reducing
the resilience of populations to land use change.

[32,35,80,81b]

Mutualistic
interaction

Climate change can disrupt mutualistic interactions by driving asymmetric
range shifts or asynchronous phenology, for example, between plants and
their pollinators, thereby reducing population size and theoretically increasing
sensitivity to land use change. Similarly, land use change can theoretically
fragment populations of codependent mutualists and increase their sensitivity
to phenological mismatches or other effects of climate change.

[82b,83b]

Community
rearrangement

A species community can adapt to climate change by shifting community
trait distributions to match the new climatic conditions. Land use change
could decrease the capacity of communities to adapt by limiting the
arrival of new species whose traits match the new climatic conditions.

[84b]

aExamples are given of mechanisms by which climate change can alter the sensitivity of biodiversity to land use change, or its
capacity to adapt to land use change (and vice versa).
bIndicates references not captured by the systematic literature search.
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called dominance effect is included whereby climate change reduces the effect of land use change
to zero, or vice versa [45,46], although dominance effects are more commonly framed as an alter-
native null model describing an independent effect [47,48].

Issues with the Current Approach
The current approach to researching CC–LUC interactionsmakes it difficult to synthesise insights
from empirical studies that can predict the prevalence and effect of CC–LUC interactions. One
reason for this is that there is no standard approach to formally define interaction types: what
may be termed, for example, synergy by one study may not be considered an interaction at all,
or an antagonistic interaction, by another [7]. To overcome this challenge, however, it is not
enough to develop a consensus on how interactions are classified based on the difference be-
tween expected and observed outcomes. What outcomes are expected always depends on
the chosen null model; that is, the expected biodiversity outcome if no CC–LUC interaction oc-
curs. This means that the choice of null model affects whether an interaction is classified as inde-
pendent, antagonistic, or synergistic. Often, however, null models are not explicitly chosen but
imposed by the choice of statistical methods. As a result, there are now efforts to standardise
null model choice in stressor interaction research to account for known differences in the mech-
anisms driving the effects of single stressors on biodiversity [48] and thus to enable direct com-
parison of results and the synthesis of insights across studies.

However, standardising the way wemeasure and classify outcomes of CC–LUC interactions is by
itself insufficient for the development of predictive power. For this, we need an improvement in our
understanding of the mechanisms underlying CC–LUC interactions. Since climate change, land
use change, and biodiversity each have multiple dimensions, interactions that are classified as
synergistic (or antagonistic or independent, respectively) are likely to include cases frommany dif-
ferent geographic and ecological contexts, which may not be directly comparable. For instance,
change in species richness, abundance or interactions due to habitat lossmay depend on climate
change, but how it depends on climate change varies between biomes and taxonomic groups
[49]. The type, strength and direction of CC–LUC interactions is therefore shaped by a range of
different biological or ecological processes (Figure 1 and Table 1) – put differently, the surprising
outcomes that characterise CC–LUC interactions likely result from different mechanisms, de-
pending on geographic and ecological context.

Using Risk-Based Frameworks to Predict Interactions
The mechanistic pathways by which climate change and land use change interact are best iden-
tified using a framework based on risk, as this can improve our ability to predict the outcomes of
CC–LUC interactions on biodiversity. Risk is the likelihood of an adverse outcome resulting from
an external hazard, and can be conceptualised as a function of the exposure to this hazard, as
well as the intrinsic vulnerability of any particular entity to it [50,51], where vulnerability is deter-
mined by sensitivity and adaptive capacity [52]. In a biodiversity context, species, communities,
or ecosystems with high exposure and high vulnerability are at a higher risk of an adverse out-
come than other species, communities, or ecosystems (Figure 2) [53]. Overall risk can be esti-
mated by: (i) identifying indicators for each risk component (exposure, sensitivity, adaptive
capacity) [54], so that each indicator represents a process that affects the risk of an adverse out-
come, then (ii) deriving an overall risk estimate, typically by combining scores from different risk
components either qualitatively [55] or quantitatively [56].

Risk-based frameworks have previously been used to identify the risk of single stressors such as
climate change on species [53,57], and have been adapted to include observed outcomes of in-
teractions between two stressors [58]. Building on this work, we propose a novel application of
Trends in Ecology & Evolution, January 2021, Vol. 36, No. 1 33
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Figure 2. Using the Concept of Risk to Conceptualise Interactions between Biodiversity Stressors. Thes
diagrams illustrate the approach as applied to a hypothetical African wild dog (Lycaon pictus) population. The risk of biodiver
sity change in response to a single stressor is determined by different risk components; the overall risk increases as each com
ponent increases. These components are exposure to a hazard (the rate or magnitude of the stressor that biodiversit
experiences), and vulnerability of biodiversity to this hazard, which is determined by sensitivity (the magnitude of the biodiver
sity response to a unit of a given stressor), and adaptive capacity (the capacity of biodiversity to undergo changes in respons
to a hazard that allow it to persist). Following [62], we use non-adaptability, that is, the inverse of adaptive capacity, to visualis
this relationship, so that increases along this axis represent increases in overall risk. Each risk component represents an en

(Figure legend continued at the bottom of the next page.
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risk frameworks that identifies the mechanisms driving such interactions, and incorporates them
into the assessment. Specifically, candidate interaction mechanisms are systematically identified
(and then tested) by asking how climate change could alter the exposure and vulnerability of a
species, community, or ecosystem to land use change; that is, how climate change can affect
the components that determine risk of an adverse outcome in response to land use change,
and vice versa (Figure 2).

To illustrate this, consider risks fromCC–LUC interactions to populations of a large predator, such
as African wild dogs (Lycaon pictus). This species declines in anthropogenically modified land-
scapes due to reduced prey populations. Climate change (specifically increased temperatures)
is predicted to increase sensitivity of wild dogs to land use intensification by restricting the number
of hours they can hunt [59]. Such time restrictions around hunting compound the risk from re-
duced prey availability, and thus increase the overall risk posed by land use change to this pop-
ulation. CC–LUC interactions could also affect adaptive capacity. For instance, a species’ ability
to adapt to climate change by shifting its range can be impeded by habitat fragmentation, in-
creasing the overall risk posed by climate change (Figure 2). These mechanisms, which relate
to changes in intrinsic vulnerability (sensitivity and adaptive capacity), correspond to what Didham
et al. [6] term 'modification effects', that is, true CC–LUC interactions (Table 1).

The risk framework approach we propose can also explicitly account for the direct effects of cli-
mate change and land use change on each other via effects on exposure, which need to be con-
sidered to estimate the overall impact on biodiversity. For instance, if the exposure of an
ecosystem to climate change is determined by the magnitude of rainfall change, then land use
change in the form of large-scale deforestation, which affects regional rainfall patterns, could in-
crease the exposure of this particular ecosystem to climate change. Such interaction mecha-
nisms correspond to the ‘chain effects’ of Didham et al. [6].

To account for CC–LUC interaction mechanisms within this framework, it is necessary to identify
risk components (exposure, sensitivity, and adaptive capacity) with regard to both climate
change and land use change, as well as suitable risk indicators to estimate each component. Po-
tential indicators may be drawn from existing frameworks and databases that identify and quan-
tify threats to biodiversity, such as the International Union for Conservation of Nature (IUCN) Red
List of Species or Ecosystems ( http://www.iucnredlist.org) and existing climate change or land
use change risk assessments [57,60,61]. Once risk components are known, candidate interac-
tion mechanisms can be identified based on known sets of possible interaction mechanisms
(Table 1) as well as local and expert knowledge. Which of these interaction mechanisms affect
biodiversity in a given context can then be tested empirically. Interaction mechanisms that are
shown to have important effects on overall risk levels to biodiversity can subsequently be inte-
grated into risk assessments, either by modifying risk scores, or by including interaction mecha-
nisms in quantitative risk models.

An important aspect of our risk framework is that it can be applied to any dimension of biodiver-
sity, such as genetic diversity or community composition. Indeed, the process explicitly considers
vironmental, biological or ecological process that shapes biodiversity. If different stressors do not interact, the risk from a
given stressor is independent from the presence of another (A). Stressor interactions can be conceptualised as mechanisms
by which a second stressor alters processes that affect each risk component (B). In this example, land use change decreases
the African wild dogs’ ability to adapt to climate change by limiting range shifts, and climate change increases their sensitivity
to land use change by limiting the time available to hunt prey, which are already depleted owing to land use change. The in
teraction of these effects increases overall risk from global change.
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Outstanding Questions
How do mechanisms governing CC–
LUC interactions vary across different
environmental contexts? In particular,
we need to know how interaction
mechanisms are influenced by the
geographical setting (e.g., montane
versus lowland, continent versus
island) and the type of biome (e.g.,
grassland versus forest).

How do CC–LUC interaction
mechanisms vary among different types
of species? Variation in interaction
mechanisms may be related to
differences in species ecology (e.g.,
herbivore versus decomposer, long
lifespan versus short lifespan).

How are CC–LUC interaction
mechanisms shaped by species
interactions? The dynamics of underlying
mechanisms may be related to the type
of species interactions involved (e.g.,
symbiosis, competition, plant–animal, or
host–pathogen) as well as the structural
properties of interaction networks.

What properties of socioecological
systems determine how climate change
alters the exposure of biodiversity to
land use change (and vice versa) in
different biomes? The mechanisms by
which climate change shapes the
exposure of biodiversity to land use
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all ways by which climate change may impact biodiversity’s response to land use change, as well
as the ways by which land use change may impact biodiversity’s response to climate change, to
ensure that the largest range of potential CC–LUC interactionmechanisms are identified (Table 1).
The scope and flexibility of our framework can thus be harnessed to provide conservation deci-
sion makers with context-specific information about all interaction mechanisms posing risks to
all aspects of biodiversity at any given scale or context.

Concluding Remarks
Interactions between climate change and land use change can significantly shape biodiversity. So
far, predicting their occurrence and impact has been hampered by a focus on classifying the out-
comes of interactions, rather than understanding the mechanisms by which they operate. To ad-
vance our understanding of CC–LUC interactions, and to improve our ability to mitigate their
potentially negative impacts on biodiversity across different geographic and taxonomic contexts,
we recommend that future research focuses on investigating how the exposure and sensitivity of
biodiversity to land use change, as well as its capacity to adapt to such change, is altered by
climate change, and vice versa (see Outstanding Questions). A key step towards this goal will in-
volve interdisciplinary cooperation – for example, among ecologists, physiologists, agronomists,
and climate scientists – as insights from a range of fields are required to advance our understand-
ing of how CC–LUC interactions affect biodiversity, and to develop more effective risk assess-
ment procedures to support environmental management worldwide.
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