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ABSTRACT

Understanding the processes that lead to species extinctions is vital for lessening pressures on biodiversity. While species
diversity, presence and abundance are most commonly used to measure the effects of human pressures, demographic
responses give a more proximal indication of how pressures affect population viability and contribute to extinction risk.
We reviewed how demographic rates are affected by the major anthropogenic pressures, changed landscape condition
caused by human land use, and climate change. We synthesized the results of 147 empirical studies to compare the
relative effect size of climate and landscape condition on birth, death, immigration and emigration rates in plant and
animal populations. While changed landscape condition is recognized as the major driver of species declines and losses
worldwide, we found that, on average, climate variables had equally strong effects on demographic rates in plant
and animal populations. This is significant given that the pressures of climate change will continue to intensify in
coming decades. The effects of climate change on some populations may be underestimated because changes in climate
conditions during critical windows of species life cycles may have disproportionate effects on demographic rates. The
combined pressures of land-use change and climate change may result in species declines and extinctions occurring
faster than otherwise predicted, particularly if their effects are multiplicative.
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I. INTRODUCTION

Biodiversity continues to decline; of species that have
been assessed for extinction risk around the world, 38%
are considered to be under threat (Vié, Hilton-Taylor &
Stuart, 2009). The abundances of vertebrate populations
fell by one-third between 1970 and 2006, and continue to
decline; 70% of assessed plant species have been classified
as threatened by the IUCN (Vié et al., 2009). The principal
pressures causing biodiversity loss are unabated, and, in most
cases, are increasing (Butchart et al., 2010). Human land-use
change, leading to the loss, fragmentation and degradation
of native vegetation, is the predominant driver of terrestrial
species decline (Sala et al., 2000). Climate change has been
recognized comparatively recently as a major driver, and its
effect on plant and animal populations is increasing (Bellard
et al., 2012; Foden et al., 2013).

The most widely used measure of biodiversity is species
richness, although subspecies, races and genotypes are
important components. However, it is the extinction of
individual species, especially iconic ones, that causes most
consternation among practitioners and the public, so that it
is important to understand the processes leading to species
extinction. While there is a relatively good understanding of
the identity of the pressures acting on species, the mechanisms
by which these pressures operate and interact to affect the
viability of species and populations is poorly understood
(Akçakaya et al., 2006). Understanding the processes that
ultimately cause species extinctions is critical for deciding on
the most appropriate actions for conservation management
(Cushman, 2006).

The effects of land-use change have been a focus for
conservation biology for several decades, particularly the
effects of habitat fragmentation (Fischer & Lindenmayer,
2007). The most common measures for quantifying the effects
on biota are species richness, species occurrence and the
abundance patterns of individual species (Debinski & Holt,
2000). Few studies on fragmentation measure demographic
responses, with most studies measuring presence/absence,
diversity, or abundance (McGarigal & Cushman, 2002); these
are ‘static’ rather than dynamic measures, and so generally
do not provide much information on the trajectories of
change. There has been much less focus on the demographic
effects of land-use change on populations, which provide
indications of trajectories of change (Lampila, Mönkkönen
& Desrochers, 2005).

Climate change is expected to become an equally, or
more important, driver of global biodiversity loss over the
next century (Heller & Zavaleta, 2009). Climate change and
climatic events (e.g. drought) have already caused range shifts
(Chen et al., 2011), severe and long-term population declines
(Sanderson et al., 2006; Newton, 2008b) and extinctions
(Thomas, Franco & Hill, 2006). While interest in the effects
of climate on biodiversity has escalated in recent decades,
studies on the effects of climate have predominantly focused
on observed and potential shifts in species ranges (Dawson
et al., 2011) and changes in species phenology (Parmesan,

2006; Chambers & Keatley, 2010) and physiology (Buckley,
Nufio & Kingsolver, 2013). These factors may indicate or
lead to a change in the likelihood of a species’ persistence, but
they do not directly reveal the changes in demographic rates
that determine the chances that a population will persist.
Changes in the phenology, such as timing of breeding, do
not in themselves indicate a deleterious effect on population
viability. The population is affected when these changes alter
demographic rates.

Geographic distribution is the spatial expression of
demographic rates, but change in distribution is one
of the last signals to be detected as a species declines
(Martinez-Meyer, 2012). Focusing on shifts in species ranges
misses the population-level processes leading to these shifts,
including local extinctions and recolonizations, and the
changes in demographic rates that lead to these. While
species-distribution models may predict range expansions
with climate change, demographic studies may indicate
the opposite effect (Campbell et al., 2012). Organisms may
colonize or remain in poor-quality habitat if there is
asynchrony between the cues used for habitat selection and
declines in habitat suitability caused by climate change (van
de Pol et al., 2010), so that distributions do not necessarily
inform population viability.

We refer to ‘pressure’ as a human-induced perturbation
that negatively affects a population and that may be transient
(pulse), persistent (press), or monotonically changing in
magnitude (ramping) over time. We synonymize pressure
with ‘stressor’ and ‘threat’. Pressures have causative effects
on demographic rates (e.g. decreased seed germination,
increased nest predation), while associations between
pressures and changes in species richness, species occurrence
and abundance are correlative. The close connection
between a pressure and a demographic-rate response
means that measuring the changes in demographic rates
should offer a more accurate indication of the mechanisms
through which anthropogenic pressures affect population
viability (Fig. 1).

Here, we review the effects of some of the major
anthropogenic pressures on population viability, and we
present a conceptual model to describe these relationships.
We focus on the processes through which climate change
and changed landscape condition induced by human land
use affect population viability in terrestrial plant and
animal populations. Last, we quantify these relationships
by synthesizing the results of empirical studies to provide
a comparison of the effects of these major pressures on
population viability. For tractability, this review concentrates
on terrestrial systems; different sets of pressures may
predominate for freshwater (Ficke, Myrick & Hansen, 2007)
and marine (Halpern et al., 2008) systems. There are other
pressures on biodiversity such as direct harvest (including
fisheries), pollution, invasive species and disease (Mace,
Masundire & Baillie, 2005). These are vast topics, so we
do not consider them further; instead we focus on the
influence of landscape condition and climate change as the
main pressures of interest, given their pervasive influence.
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Fig. 1. A general representation of the linkages between the effects of a pressure, such as vegetation loss, and commonly used
measures of populations.

(1) Factors affecting population viability

Population viability is a quantitative measure of the capacity
of a population to persist, typically the probability of per-
sistence for 100 years, which indicates the risk of extinction
(Boyce, 1992). Population viability analyses often are used
to quantify extinction risks for individual populations, which
can include the identification of minimum viable population
size (Reed et al., 2003). The processes that lead to the
extinction of a population arise from deleterious changes
to demographic rates, which occur through changes in
reproductive output, survival and dispersal of individuals in
response to a pressure (Fig. 1). Population viability is based
on likely changes in population size over time, with the
component demographic rates contributing to changes in
population size. Birth, death, immigration and emigration
are the four fundamental demographic parameters that
determine changes in population size (Begon, Mortimer &
Thompson, 1996). The dynamics of a population can be
represented by (Cohen, 1969):

Nt+1 = Nt (1 + b + i − d − e) ,

where: N t is the abundance of a population at time t, b
and d are the per capita birth and death rates, and i and
e are per capita immigration and emigration rates during
time interval (t + 1) − t. The effective population size will
be affected by the sex ratios of individuals contributing to
these demographic rates (Frankham, 1995). If one or more of
these demographic rates is affected by a proximal pressure,
arising from a distal driver, then this will affect the size of
the population, and may decrease its viability, unless offset
by changes to another demographic rate (i.e. consistently
have N t + 1 < N t , Fig. 2). Once populations become small,
stochastic events, inbreeding depression and genetic erosion
further affect demographic rates and steepen the rate of
decline in population viability (Young et al., 2000; Keller
& Waller, 2002). Given the direct effects on population
dynamics, measuring changes in demographic rates allows
us to infer likely changes to a population’s viability in response
to human pressures.

II. CONCEPTUAL MODEL

(1) Overview of land-use change and climate change

Changes in human land use for food and resource production
and urbanization affect landscape condition through the loss
and fragmentation of native vegetation (Fahrig, 1997) and the
degradation of remnant vegetation (Fischer & Lindenmayer,
2007). Climate change can further degrade vegetation
condition through changes to the frequency and intensity
of disturbances that can affect vegetation composition,
structure and function (Cunningham et al., 2009; Bennett
et al., 2013), decrease plant growth and cause disruptions
to plant–pollinator interactions (Memmott et al., 2007). In
some locations, increased temperature or carbon dioxide
levels may enhance plant growth (Reich & Oleksyn, 2008;
Wigley, Bond & Hoffman, 2010).

Barriers to movement caused by vegetation loss and
fragmentation affect the movement of individuals and
propagules (Cunningham, 2000a; Schtickzelle & Baguette,
2003). Vegetation loss and degradation alter microclimates,
habitat quality and habitat structure, affecting conditions for
survival and reproduction and modify species interactions
(Mac Nally, Bennett & Horrocks, 2000). Resources for
survival and reproduction are diminished in degraded and
fragmented vegetation (Zanette, Doyle & Tremont, 2000).

Changes to the global climate include increased global
temperature and sea levels, decreased extent of snow and
ice (both sea and ice-caps) and increased prevalence and
intensity of drought (IPCC, 2013). Changes to climate alter
demographic rates because of the physiological responses of
organisms to environmental variables such as temperature,
which affect survival and reproduction (Chown et al., 2010).
Climate conditions affect dispersal behaviour (Altermatt,
Pajunen & Ebert, 2008) and pathways (Kuparinen et al.,
2009). Climate-induced changes to phenology are well
documented (Parmesan, 2006), and these affect demographic
rates through their effects on reproduction and survival
(Lehikoinen, Kilpi & Öst, 2006; Briscoe et al., 2012),
through mismatches in trophic relationships and species
interactions (Durant et al., 2007; Miller-Rushing et al., 2010).
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Fig. 2. A general model of the how anthropogenic pressures (P1 –P4) impinge on demographic rates (i, e, b, d ) in complex networks
of effects. The quantification of the strengths of the relationships is key to managing population viability. ‘Pressure’ refers to a
human-induced perturbation that negatively affects a population and that may be transient (pulse), persistent (press), or monotonically
changing in magnitude (ramping) over time (Mac Nally et al., 2011). A population may be exposed to multiple pressures and the one
pressure may affect multiple syntopic populations of different species. We synonymize pressure with ‘stressor’ and ‘threat’.

Demographic rates are controlled by resource availability
(Skogland, 1985), such as food, which depends on climate
(Previtali et al., 2009; Tian et al., 2010). Some populations
may benefit from climate change, perhaps through an
increase in survival or growth with warmer temperatures
(Reich & Oleksyn, 2008). Climate-induced changes to species
interactions may benefit some populations by competitor or
predator release, while others may be adversely affected by,
for example, weakened mutualistic relationships (Tylianakis
et al., 2008).

Despite the numerous mechanisms through which
land-use change and climate change affect demographic
rates, there has been little attention to the relationships
between these pressures and demographic responses.
Identifying and quantifying the pathways through which
anthropogenic pressures affect population viability is
important for framing management actions to contribute to
population persistence.

(2) Model description

Multiple pressures need to be considered together because
pressures rarely occur singly and interactions among
pressures may be multiplicative rather than additive (Dawson
et al., 2011; Mantyka-Pringle, Martin & Rhodes, 2012). The
relationships among pressures and demographic rates are
shown in Fig. 2.

Depending on biological characteristics such as longevity,
sexual maturity, and propensity to disperse, changes in one
or more demographic rates may have a greater influence
on population viability than a proportionally similar change
in others (Harper, Rittenhouse & Semlitsch, 2008). For

example, long-lived species are most affected by changes in
death rates because adult survivorship contributes most to
population persistence (Li et al., 2009).

By populating the general model of Fig. 2 with empirical
information, we show how the principal human pressures
(Mace et al., 2005) impinge on demographic rates in plant
and animal populations (Fig. 3). The model emphasizes
the large roles that land-use change and climate change
play in affecting population viability, which we quantify in
Section III.

The loss, fragmentation and degradation of native
vegetation are proximal ecological pressures stemming
from land-use change, which affect demographic rates
and population viability through their effects on landscape
condition and resource availability. We refer to ‘landscape
condition’ as the degree to which a landscape resembles its
natural condition prior to substantial human disturbance or
alteration, consisting of native vegetation cover, connectivity
and quality. Climate change and changed landscape
condition decrease resource availability, such as food, shelter,
soil, nutrients, water and other resources necessary for
population survival.

III. QUANTIFYING THE EFFECTS OF HUMAN
PRESSURES ON DEMOGRAPHIC RATES

Here, we parameterized the strength of the linkages
in the conceptual model (Fig. 3) using a representative
set of literature estimates. We quantified the effects of
changed landscape condition and climate variation on

Biological Reviews 90 (2015) 837–853 © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society
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Effects of climate and land-use on demography 841

Fig. 3. Empirical application of the general model of Fig. 2 to effects on population dynamics in terrestrial landscapes; the same
conventions apply. Grey arrows represent relationships reviewed here. Arrow width represents the mean effect size of the relationship
for reviewed studies: low = 0.2 < r < 0.4; medium 0.4 < r < 0.6; high = 0.6 < r < 0.8. No mean effect sizes were <0.2 (very low)
or >0.8 (very high).

demographic rates, which provides an assessment of the
relative importance of changed landscape condition and
climate change on population viability.

(1) Literature search

We searched for papers published between 1970 and 2012
using search terms consisting of descriptors for these pressures
and demographic rates under TOPIC (i.e. title, abstract and
key words) in Thomson–ISI Web of Science (Science Citation
Index Expanded) (see online supporting information, Table
S1), which returned 206 papers. We examined the titles and
abstracts of the papers and retained those that provided
quantitative relationships between pressures arising from
climate or landscape condition and demographic variables,
resulting in the retention of 24 papers. A second search,
including broader terms for demography (see online Table
S2) was conducted to find other studies that measured
variables related to demographic rates. Searching for these
terms within TOPIC returned >75000 papers; a random
selection of 300 of these revealed no studies that provided
quantitative information on the effects of a pressure on
a demographic rate. The search was restricted to titles,
returning 2324 papers, of which 209 were retained. Another
60 studies were found by using the reference lists of the 233
papers found during both searches.

We examined the results of the 294 studies to obtain
statistics that were appropriate for calculating the r
correlation coefficient (Rosenthal, 1994) for relationships
between demographic variables and landscape condition or
climate; this was possible for 147 studies. We used the r
correlation coefficient because of its generality and simplicity

of interpretation and consistency of meaning (Rosenthal,
1994). While r is most appropriate for relationships between
continuous variables, it can also be calculated from pairwise
comparisons (Rosenthal, 1994). We included empirical,
field-based or experimental studies that directly measured
the effects of variables of climate and landscape condition
on demographic variables in native plant and animal
populations. Only 19 studies looked specifically at per
capita demographic rates, so we included studies that
measured variables that were related to these rates, such
as clutch size, fruit production, juvenile survival, and genetic
differentiation.

(2) Quantification of effect sizes

Values of the correlation coefficient r (including linear and
rank correlations: Pearson’s r, Spearman’s r, Kendall’s τ ,
point-biserial r, and phi) range between −1 and +1, and
indicate the strength of the association between variables;
the sign indicates the direction of the monotonic association
(De Veaux, Velleman & Bock, 2008). Where no correlation
coefficient was presented, we calculated r following standard
methods (Rosenthal, 1994; Nakagawa & Cuthill, 2007) from
reported test statistics (t-statistic, F -statistic, χ2, Z -score,
coefficient of determination R2, Hedge’s d ). Where the
P-value was the only statistic reported, we transformed these
to Z -scores using a standard normal variate (De Veaux et al.,
2008).

The correlation coefficient r for each documented
relationship between a climate variable (e.g. rainfall,
temperature) or landscape-condition variable (e.g. vegetation
cover, patch size) and the demographic response was

Biological Reviews 90 (2015) 837–853 © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society
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obtained from all species in each study. If >1 variable
related to a particular demographic rate was measured (e.g.
number of eggs and number of fledglings, or number of seeds
and number of seedlings), we used the variable that would
contribute most to the number of adult individuals in that
population, usually the more advanced life stage (e.g. number
of fledglings or number of seedlings). If >1 variable related
to climate (e.g. rainfall and temperature) or to landscape
condition (e.g. fragment size and isolation) was measured, we
included the variable that had the largest effect size on the
demographic response variable. Details of included studies
and their effect sizes are in Table S3. Thirty-six studies
measured >1 species, demographic rate and/or driver, and
so, contributed >1 datum to the analysis.

For landscape condition, values of r ranged between −1
and +1, with positive values being associated with a positive
effect of measures such as vegetation cover or contiguity on
a demographic rate. For example, if fragmentation had a
negative effect on a measure of birth rates in a study, the
correlation coefficient for landscape condition on birth rates
for that relationship would be positive.

We did not estimate the direction of relationships
between climate variables (e.g. temperature, rainfall) and
demographic rates because there is difficulty in generalizing
the effects of climate variables on population viability given
that directional climate deviations do not uniformly affect
demographic rates (Glenn et al., 2011). Changes in climate
depend on region, so that generalizations are not appropriate.
For example, there may be increases in precipitation in some
regions and decreases in others, so that decreased rainfall
cannot be considered to be a consistent climate-change
effect (IPCC, 2013). The effects of climate variables on
demographic rates may differ among seasons (Reed &
Slade, 2009) and many studies measured within-year climate
measures (e.g. winter rainfall) making it inappropriate to
extrapolate to general trends given the scope of this review.
We considered the correlation coefficient to be an absolute
value for climate variables on demographic rates when
calculating an average effect size, with r ranging from 0
to 1. This provides an indication of the size of the effect
that climate may have on demographic rates rather than
generalizing the effects of climate variables.

We converted all r values to Zr using Fisher’s transfor-
mation, which transforms r to a near-normal distribution,
because the distribution of r values becomes skewed as r

becomes absolutely larger (Rosenthal, 1994). We calculated
the mean effect size and standard error for the effect of
landscape condition and climate on demographic rates using
the Zr values to gauge the size of the effect that climate and
landscape condition have on demographic processes and, in
the case of pressures arising from landscape condition, the
direction of this effect. Means were calculated for plants and
animals separately. The means and upper and lower con-
fidence interval values (95% confidence interval) were then
back-transformed to r, so that the effect size could be between
0 and 1 for the effect of climate, and between −1 and +1 for
the effect of landscape condition (Rosenthal, 1994).

(3) Results

Most studies on climate and landscape condition were from
North America and Europe (see online Table S4). Birds were
the most studied animals, followed by mammals, with other
groups poorly represented (see online Table S3). There were
few studies on the effects of climate on plant demographic
rates (see online Table S3).

Landscape condition had a mean positive effect on
birth rates in plant (r = 0.3) and animal populations
(r = 0.5), a negative effect on death rates in animal
populations (r =−0.6), and a positive effect on plant dispersal
and animal immigration (r = 0.6 for both). Landscape
condition had a mean negative effect on death rates in
plant populations (r = −0.6) and emigration in animal
populations (r = −0.2), but studies were few (N = 2 and
5) and confidence intervals overlapped zero, indicating
that these effects were not significantly different from zero
(Harrison, 2011) (Fig. 4A). The mean absolute effect sizes of
climate on demographic rates were similar, for birth rates in
plants (r = 0.7) and animals (r = 0.6), and plant (r = 0.7) and
animal death rates (r = 0.6) (Fig. 4B).

There was a small mean effect size on animal emigration
(r = 0.2), but there were only three studies, each of which
reported increased measures of emigration with higher tem-
peratures. There was just one study on animal immigration
(r = 0.6) (Fig. 4B). There were no studies that provided statis-
tics for calculating the effect size of climate on plant dispersal.

Studies that measured the effects of temperature and
rainfall used a wide variety of temporal measures of climate
(e.g. week, month, season, year, life-cycle stage), so we cannot
extrapolate to responses to climate change (see online Table
S5). For studies that reported an effect of rainfall, most were
lower birth rates (11 of 13 studies) and increased death rates
(five of eight studies) with decreasing rainfall (see online Table
S5). For those assessing temperature effects, most showed a
negative effect on birth rates (13 of 17 studies) and survival
(five of five studies) with increasing temperatures (see online
Table S5).

Landscape condition and climate appear to have
substantial effects on demographic rates in plant and animal
populations, with absolute effect sizes of 0.5–0.7 for all
demographic rates except animal emigration (Fig. 4B).
Given the large number of studies, there is good support
for the positive effect of landscape condition on plant and
animal birth rates and animal immigration (Fig. 4A). There
were ≤5 studies on the effect of landscape condition on plant
death rates, animal emigration and plant dispersal, but the
directions of the relationships from these studies supported
the conceptual model (Fig. 3).

IV. MECHANISMS AFFECTING DEMOGRAPHIC
RATES

Here, we qualitatively review the mechanisms through which
demographic rates in plant and animal populations are
affected by changed landscape condition and climate change.

Biological Reviews 90 (2015) 837–853 © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society
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Effects of climate and land-use on demography 843

Fig. 4. (A) Mean effect sizes (r) of landscape condition parameters and (B) mean absolute effect sizes (r; values between 0 and 1
only) of climate parameters on measures of birth rates, death rates, immigration, emigration and dispersal in plant and animal
populations. Error bars are 95% confidence intervals. The number of data points (study × species) is shown by N .

(1) Birth rates

Our quantitative review shows strong evidence for a negative
effect of changed landscape condition on birth rates in plant
and animal populations. The most proximate effect on plant
reproduction in changed landscapes is usually pollination
limitation (Aguilar et al., 2006). Changed landscape condition
results in declines in native pollinator populations and
reduced pollinator visitation due to isolation, which reduces
fruit production and seed set (Wilcock & Neiland, 2002;
Gómez et al., 2010). Allee effects, including inbreeding and
genetic erosion, affect mate availability and seed set and
interact with pollen limitation to reduce population viability
(Wagenius, Lonsdorf & Neuhauser, 2007; Young, Broadhurst
& Thrall, 2012). Wind-pollination may be disrupted
by fragmentation, possibly causing inbreeding (Jump &
Peñuelas, 2006). Reduced seed dispersal or increased seed
predation occur in modified landscapes (Benitez-Malvido,
1998; Tallmon et al., 2003). Loss and degradation of
vegetation alters the conditions for germination and seedling
establishment, including light environments (Uriarte et al.,
2010), microclimatic conditions (Jacquemyn et al., 2003;
Werner & Gradstein, 2008), and wind erosion (Li et al., 2009).
Grazing by domestic stock causes trampling and herbivory
of seedlings (Jansen & Robertson, 2001). These declines in
plant recruitment have large effects on population viability
(Bruna & Oli, 2005).

Vegetation loss and fragmentation influence birth rates
in animal populations by affecting access to food resources
(Mbora, Wieczkowski & Munene, 2009) and by reducing
food and resource levels in vegetation remnants (Zanette
et al., 2000). Increased nest predation and parasitism are

common in much-modified landscapes, particularly near
vegetation boundaries (Lampila et al., 2005). Decreased
vegetation connectivity reduces mate availability (Cooper
& Walters, 2002), including through inbreeding avoidance
(Boudjemadi, Lecomte & Clobert, 1999; Stow & Sunnucks,
2004). Some plant and animal populations experience higher
birth rates in changed landscapes, especially those with a
preference for open or edge habitat (Mac Nally et al., 2012),
or through decreased competition for resources such as light
(Neal, Hardner & Gross, 2010).

Climate had a strong effect on birth rates, affecting rates in
several ways. Most studies reported decreased birth rates with
increased temperature and decreased precipitation. Global
temperatures have risen, and the frequency of hot days and
of heat waves is likely increasing (IPCC, 2013). Increased
annual temperatures and short-term heat waves may reduce
germination of plants (Chidumayo, 2008; Shevtsova et al.,
2009). In animals, heat stress of parents may induce declines
in neonatal survival (Griffin et al., 2011) and decreased
fecundity (Neveu, 2009). Higher temperatures may cause
heat stress in young animals, leading to lower survival rates
of young (Steenhof, Kochert & McDonald, 1997). Warm and
dry conditions, such as those associated with El Niño events,
may harm eggs and hatchlings by altering microclimate
conditions in nests (Tomillo et al., 2012), although warmer
temperatures may increase hatching success (Beissinger,
Cook & Arendt, 2005). Warmer temperatures may enhance
the breeding success and survival of young and seedlings by
reducing energy needs (Nielsen & Møller, 2006; Milbau et al.,
2009) and reducing the occurrence of severe winters that limit
reproductive success (McIntyre & Schmidt, 2012). Warming
may lengthen periods suitable for breeding and result in
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844 K. E. Selwood and others

increased birth rates and additional generations within an
annual cycle (Jönsson et al., 2009; Clarke & Zani, 2012).

Lower rainfall and increased drought frequency may affect
plant birth rates through decreased fruit set (Ågren, Ehrlén
& Solbreck, 2008) and seedling survival (Hallett, Standish
& Hobbs, 2011). Reduced food-plant productivity and food
availability during periods of low rainfall, such as in El Niño
events, may depress fecundity (Dunham, Erhart & Wright,
2010), prevent reproductive maturation (Lima et al., 2001),
and lessen offspring survival (Sillett, Holmes & Sherry, 2000).
Limited water availability for lactating females may affect
juvenile survival (Dunham et al., 2010). Lower water levels
at aquatic breeding sites may result in increased ultraviolet
radiation and heat exposure, which can affect hatching
success (Blaustein et al., 2012), increase the vulnerability of
embryos to pathogens (Kiesecker, Blaustein & Belden, 2001),
and desiccate tadpoles (Pechmann et al., 1991). Heavy rains
or snowfalls, which are expected to increase in frequency
even in areas with decreased annual precipitation (IPCC,
2013), stress gestating females (Dunham et al., 2010), and
increase juvenile and egg mortality (Skagen & Adams, 2012).

Phenological changes triggered by climate changes such
as earlier warming, may increase self-fertilization in monoe-
cious plants or cause mistiming in the flowering of dioecious
plants (Miller-Rushing et al., 2010). While earlier breeding
may benefit birth rates of some species (Nielsen & Møller,
2006), advances in breeding and flowering expose flower
buds (Inouye, 2000, 2008), eggs and young (Lehikoinen et al.,
2009) to poor or more variable weather conditions (e.g. frosts
or heavy rain) if seasonal climate patterns do not advance in
concert. Changed climate conditions may delay breeding so
that the young may experience adverse conditions later in
the season (Waite & Strickland, 2006; Senapathi et al., 2011),
and may inhibit breeding altogether (Pankhurst & Munday,
2011). Phenological changes in plants can cause asynchrony
with pollinators, increase exposure to florivores and grani-
vores, and increase synchrony of flowering among species
competing for pollinators (Miller-Rushing et al., 2010). Phe-
nological changes to a population or its biotic resource may
affect birth rates if the two do not change in synchrony. Asyn-
chrony between food needs during breeding and food avail-
ability arises from earlier breeding (Moss, Oswald & Baines,
2001), advancement of peak prey availability (Sanz et al.,
2003), advanced phenology of food and larval host plants
(Parmesan, 2005; Post & Forchhammer, 2008), or changed
timing of food peaks (Wolf et al., 2009). Climate-induced
asynchronies in resource availability and resource needs dur-
ing breeding have caused population extinctions (McLaugh-
lin et al., 2002). For some species, earlier warming may
increase synchrony with food resources, which can increase
birth rates (Vatka, Orell & Rytkönen, 2011).

Spring snow cover is decreasing in the northern
hemisphere (Werner, 2011). Reduction of snow cover may
decrease seedling survival by permitting increased herbivory
(Brodie et al., 2012) and by increasing exposure to frost
(Bannister et al., 2005). Sea levels are rising (IPCC, 2013),
and this can affect birth rates through more frequent

flooding of coastal nesting sites (van de Pol et al., 2010).
Physiological stress from severe weather limits reproductive
success of many animals (Dunham et al., 2010).

Within species, the extents to which birth rates are affected
by climate changes differ depending on the elevational
(Munier et al., 2010; Hargrove & Rotenberry, 2011) or
latitudinal (Ontiveros & Pleguezuelos, 2003; Sanz, 2003)
location of populations, with some populations experiencing
opposite effects of climate on birth rates in different locations
(Gaston, Gilchrist & Hipfner, 2005). Climate effects on other
demographic characteristics, such as death rates or sex ratios
can dampen or counter positive effects (Zani, 2008; Schwanz
et al., 2010).

The effects of both landscape change and climate are
diverse, and it is possible that there will be interactions or
additive effects of these pressures on birth rates. However,
while studies on variables related to birth rates were the
most numerous of the demographic rates, this does not
necessarily reflect the proportional importance of birth rates
to population viability. In many species, rates of adult survival
have a greater influence on population growth rates than do
birth rates (Sæther & Bakke, 2000; Bruna, Fiske & Trager,
2009).

(2) Death rates

Although rates of survivorship in established plants usually
contribute more to plant population growth rates than
reproduction and seedling dynamics, there has been more
focus on the effects of landscape condition on plant
reproduction (Bruna et al., 2009). There have been few studies
on the effects of landscape condition on plant death rates, but
mortality increases in many species due to transformation
of native forest to plantations (Jules, 1998), and increased
wind turbulence and microclimate changes near vegetation
boundaries with agricultural land (Laurance et al., 1998;
Werner, 2011).

Elevated death rates in changed landscapes may reduce
population viability for animal species (Harper et al., 2008;
Li et al., 2009). Diminished availability of resources can
contribute to higher death rates in fragmented landscapes
and in small vegetation remnants (Boudjemadi et al., 1999;
Doherty & Grubb, 2002). Death rates may be affected by
higher predation and desiccation in degraded or cleared
vegetation (Rothermel & Semlitsch, 2002; Harper et al.,
2008), including during dispersal (Cushman, 2006). Mortality
during dispersal through much-modified landscapes affects
sex ratios, birth rates (Banks et al., 2005) and the persistence
of populations (Brooker & Brooker, 2002).

High temperatures and heat waves (Jakalaniemi, 2011;
Andrello et al., 2012) and low rainfall and drought (Toräng,
Ehrlén & Ågren, 2010) increase plant death rates through
physiological stress. Drought increases susceptibility and
exposure to pest species that cause mortality (Kloeppel et al.,
2003). Mortality of trees from increased drought occurs in
many forests around the world and is expected to become
more frequent (Van Mantgem & Stephenson, 2007; Horner
et al., 2009).

Biological Reviews 90 (2015) 837–853 © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society
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Effects of climate and land-use on demography 845

Warmer temperatures and low rainfall can accelerate
water loss and energy expenditure in animals, leading to
chronic stress, desiccation or hyperthermia (Grafe et al., 2004;
Moses, Frey & Roemer, 2012), particularly if these climate
changes occur during energetically demanding phases of a
species annual cycle (Grosbois et al., 2006), or if temperatures
approach or exceed the upper lethal limit of a species (Bale
& Hayward, 2010). High temperatures increase population
death rates (Grosbois et al., 2006; Griffiths, Sewell & McCrea,
2010) and the frequency of catastrophic mortality events
(McKechnie & Wolf, 2010). While increased temperatures
may improve survival rates in some animals that experience
cold stress, earlier melting of protective snow layers increases
death rates by exposing animals to deleterious weather
conditions, such as freezing rain and cool air temperatures
(Bale & Hayward, 2010; Fisher & Davis, 2011) and increases
predation risk (Lindström & Hörnfeldt, 1994). In cooler
climates, elevated temperatures may increase survival rates
for organisms near their lower thermal limits (Walther et al.,
2002; Frenot et al., 2005). Asynchronies in the life cycles of
predator and prey may increase the survival of the prey
species, particularly if the prey is limited by predation rather
than by food availability (Miller-Rushing et al., 2010).

Increased frequency of high-energy weather events, such
as hurricanes, storms and heavy rainfall, increase death
rates in plants (Van Mantgem & Stephenson, 2007) and
animals (Langtimm & Beck, 2003). Severe rain, snow or wind
events cause mass mortality events (Newton, 2008a). Death
rates increase with fewer food and foraging resources in the
aftermath of intense weather events (Wiley & Wunderle,
1993).

Drought and much reduced rainfall can increase death
rates through decreased food availability for terrestrial
animals (Sillett et al., 2000; Frick, Reynolds & Kunz,
2010), particularly when these occur during crucial times
of breeding and survival. Climate oscillations affect food
availability, and therefore death rates (Sandvik et al., 2005;
Morrison et al., 2011).

While we have detailed several predicted and observed
effects of both landscape condition and climate change
on mortality, there has been relatively little research that
measures the effects of these processes on death rates, and
their subsequent effect on population viability. A better
understanding of the effects of major anthropogenic pressures
on death rates will be particularly important for those species
whose population viability is most acutely affected by death
rates, such as long-lived species (Sæther & Bakke, 2000).

(3) Emigration and immigration

Given that adult terrestrial plants are sedentary, emigration
and immigration mostly is through the transport of seeds,
fruits or vegetative propagules by animals, wind or water
(Raulings et al., 2011) and does not constitute the loss of an
adult from the donor population per se. Increased isolation of
plant populations and declines in seed-disperser populations
(Cordeiro & Howe, 2003) inhibit biotic and abiotic seed
dispersal, particularly for heavy-seeded species (Hewitt &

Kellman, 2002; McEuen & Curran, 2004), with potentially
substantial effects on population viability (Hewitt & Kellman,
2002). Gene flow of plants predominantly is through the
dispersal of pollen by biotic vectors and physical transmission
(Ellstrand, 1992), which can be impeded by declines in
landscape condition and climate change (Section IV.1).

The loss, fragmentation and degradation of native vege-
tation increase emigration rates and decrease immigration
rates in animal populations, which affect population size
and hence population viability, but the evidence for these
expectations is weak (Section III). Reduced immigration
can lead to skewed sex ratios (Harrisson et al., 2012),
inbreeding (Daniels, Priddy & Walters, 2000), disruption
of mating systems (Pavlova et al., 2012) and mate limita-
tions (Stow & Sunnucks, 2004), which decrease population
viability.

Low emigration rates generally occur when habitat and
resources are ample (Baguette, Petit & Queva, 2000). If a
site is rich in resources, immigration is likely to be higher
because the immigrants are attracted by the presence of
numerous conspecifics (Buechner, 1987) and highly suitable
habitat (for the species) increases the ‘attractiveness’ of sites
for recolonizing individuals (Doerr, Doerr & Jenkins, 2006).

Populations in high-intensity human land-use areas or that
are experiencing low resource availability are more likely
to experience emigration, and, in extreme circumstances,
this can cause extinction (Lin & Batzli, 2001; Mac Nally
et al., 2009). Individuals are more likely to emigrate if they
experience low reproductive or pairing success (Bayne &
Hobson, 2002; Zitske, Betts & Diamond, 2011).

Small and isolated vegetation remnants generally attract
fewer immigrants (Wauters et al., 1994; Holland & Bennett,
2010). Decreased dispersal success caused by death
during dispersal or the inability to locate appropriate
habitat in high-intensity land-use areas lowers immigration
rates (Matthysen, 1999; Püttker et al., 2011) and reduces
population viability, even in mobile animals, such as birds
(Cooper & Walters, 2002; Robles et al., 2008). Measurements
of genetic connectivity among populations suggest decreases
in dispersal in fragmented landscapes (Vos et al., 2001).
These measures, when combined with direct measures of
movement, have the potential to help tease out the effects
of landscape condition and other pressures on immigration
and emigration rates (Lowe & Allendorf, 2010).

Warmer temperatures can increase animal emigration
rates (Pärn et al., 2011; Franzén & Nilsson, 2012) and
dispersal distances (Cormont et al., 2011), but may cause
disparities in dispersal between the sexes (Merckx, Karlsson
& Van Dyck, 2006). Increased atmospheric instability
caused by warmer temperatures induces long-distance
wind dispersal of seeds (Kuparinen et al., 2009) and small
invertebrates (Coulson et al., 2002) by increasing convective
turbulent airflow. Warmer temperatures may discourage
juvenile dispersal (Massot, Clobert & Ferrière, 2008) and
increase dispersal mortality due to heat stress (Henry, Sim
& Russello, 2012). Lower rainfall can decrease vegetation
quality in high-intensity land-use areas, discouraging

Biological Reviews 90 (2015) 837–853 © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society

 1469185x, 2015, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.12136 by U

niversity O
f C

entral Florida, W
iley O

nline L
ibrary on [16/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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emigration between fragments of native vegetation (Blaum
et al., 2012). Climatic events such as El Niño Southern
Oscillation (ENSO) phases and consequent declines in
food resources may trigger irruptive migrations of animals
(Holmgren et al., 2006; Lindén et al., 2011).

Studies that use niche models to predict changes in
species distributions predict elevational and latitudinal shifts
in response to climate exposure, assuming colonization of
newly suitable climate conditions (Fordham et al., 2012).
The structure and condition of many human-dominated
landscapes are likely to impede colonization (Opdam &
Wascher, 2004). Although organisms have responded to
climate changes through migration and adaptation in the
past, the barriers imposed by human land use and the
unprecedented rate of climate change are unlikely to allow
the predicted range shifts in many species to occur (Davis
& Shaw, 2001). Range shifts are inhibited in much-modified
landscapes, and may stall where the amount or cohesion
of habitat is below thresholds necessary for population
persistence (Opdam & Wascher, 2004). Fragmented
vegetation may be disproportionately affected (higher
mortality or die-back) by climate change (Bennett et al., 2013),
creating further barriers to climate-induced range shifts.
Some species may be unimpeded by modified landscapes
and this will affect species interactions in receiving habitats
(Menéndez et al., 2008). For example, landscape and climate
change have increased the distribution and abundance of
the despotic noisy miner (Manorina melanocephala) in eastern
Australia. This has caused local emigration and a lack of
immigration of small-bodied birds in fragmented vegetation
where the species is present (Maron et al., 2013).

To gauge the effects of climate change on species
distributions, an understanding of the effects of climate
on immigration and emigration rates and the processes of
dispersal is vital, particularly in changed landscapes where
these rates are already affected.

V. SYNTHESIS AND FUTURE WORK

Demographic rates are rarely the focus of studies on the
effects of human pressures on native populations of plants
and animals. However, these effects can be substantial and
their identification enables a better understanding of the
mechanisms through which pressures affect population via-
bility. That vegetation loss, fragmentation and degradation
affect demographic rates in plant and animal populations is
not unexpected given the widespread declines in biodiversity
that have been seen as a result of these pressures (Foley et al.,
2005; Butchart et al., 2010). Our finding that the mean effect
of climate on demographic rates is of comparable magnitude
to changes in landscape condition is significant and supports
recent assertions that climate change will become as, or
more, important in species declines and extinctions in
coming decades (e.g. Mantyka-Pringle et al., 2012).

The relative effects of climate on demographic
rates probably are underestimates. Most studies assess

relationships between general climate measures, such as
annual temperature or seasonal precipitation within average
ranges of year-to-year variation. The characteristics of
relationships between demographic variables and climate
variations are likely to change once changes in climate fall
outside the average range. The effects of climate variables
on demographic rates may become greater, new effects
may emerge, or the direction of relationships may change.
There are likely to be critical windows of climate effects
on population parameters, where climate conditions at very
specific times in species life cycles are disproportionally
important to population viability (Lada et al., 2013). Assessing
general trends in climate and demographic rates may not
detect the true size of the effects on population viability
that will occur if changes in climate occur during critical
windows. Critical thresholds may exist, such as where
temperatures exceed lethal limits (Somero, 2010). Studies
that measure demographic responses to climate conditions
within the average range are unlikely to detect such
responses. While the studies we reviewed assumed monotonic
relationships between pressures and demographic variables,
physiological responses to temperature are commonly
asymmetric, such that a positive response to temperature
may be reversed once an optimal level is reached (Sinclair &
Chown, 2003).

Climate change may introduce new pressures to otherwise
viable populations, or may cause the decline of populations
in changed landscapes faster than otherwise expected.
Decreases in rainfall and increases in temperature probably
will have deleterious effects on many populations, although
some taxa almost certainly will benefit. Small populations
have less capacity to evolve rapidly to changed conditions
(Willi, Buskirk & Hoffmann, 2006), so climate change may
have a cascading effect on the viability of populations that
have been affected by changed landscape condition. Some
species will have increased population viability with the
amelioration of limiting climate conditions. Changes in
population viability in either direction will affect species
interactions, with disruptions for communities (Sorte &
White, 2013). A greater focus on the relationships between
climate conditions and demographic rates is needed to
produce better predictions for likely impacts of climate
changes on animal and plant populations. A more complete
understanding of the effects on immigration and emigration
must improve predictions of range shifts. Identification
of the demographic rates most affected by projected
climate changes will assist with better planning for climate
adaptation.

Populations in changed landscapes may decline faster
than expected with the added pressures arising from climate
change. This is important in making predictions about
population size in response to pressures such as habitat
loss, including considerations of critical thresholds (Swift
& Hannon, 2010), which could be reached earlier than
expected with the added imposts of climate pressures and
their effects may be synergistic (Mantyka-Pringle et al., 2012).
Landscape modification may hinder or reverse the expected
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Effects of climate and land-use on demography 847

population growth in response to changed climate conditions
(Warren et al., 2001). Whether the effects of landscape
condition and climate on demographic rates are additive
or multiplicative (or for some species, opposing), is a core
question.

While our review highlights some mechanisms through
which the major anthropogenic pressures affect population
viability, there is a clear need for more data. A
more comprehensive understanding of these relationships
will contribute greatly to improving the effectiveness of
conservation policies and management actions. Specifically,
there is a need for expanding research beyond North
America and Europe, and we suggest that the most
important areas for conducting this research are those
that are predicted to experience the greatest changes in
climate conditions. Warming is likely to occur most rapidly
in the polar regions, while mid-latitude and sub-tropical
dry regions are likely to be most affected by decreased
precipitation (IPCC, 2013). There is a dearth of research
into the effects of climate on plant demographic rates despite
climate change being the most commonly cited factor in
the extinction and endangerment of plant species (Mora &
Zapata, 2013).

VI. CONCLUSIONS

(1) Given their intimate connection with population
viability, demographic responses provide a critical indication
of likely changes in extinction risk in response to human
pressures.

(2) Changes in landscape condition generally have a
negative effect on birth and immigration rates in plant and
animal populations, and increase death and emigration rates.
We predict that climate change will have a negative effect on
birth and immigration rates, and a positive effect on death
and emigration rates, although we did not quantitatively
assess this.

(3) Despite the recognition of landscape change as the
major driver of biodiversity loss, the effects of climate on
demographic rates in plant and animal populations are of
equivalent magnitude. This supports consideration of climate
change as a major driver of population viability, of similar
importance to human land-use change.

(4) A more comprehensive understanding of the rate and
size of the effects of pressures on demographic rates among
taxa and regions will greatly assist management attempts to
arrest species declines and extinctions.
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irruptions and population dynamics of the great spotted woodpecker – joint effects
of density and cone crops. Oikos 120, 1065–1075.

Lindström, E. R. & Hörnfeldt, B. (1994). Vole cycles, snow depth and fox
predation. Oikos 70, 156–160.

*Lloyd, P., Martin, T. E., Redmond, R. L., Langner, U. & Hart, M. M.
(2005). Linking demographic effects of habitat fragmentation across landscapes to
continental source-sink dynamics. Ecological Applications 15, 1504–1514.

Lowe, W. H. & Allendorf, F. W. (2010). What can genetics tell us about population
connectivity? Molecular Ecology 19, 3038–3051.

*Luijten, S. H., Dierick, A., Oostermeijer, J. G. B., Raijmann, L. E. & den
Nijs, H. C. M. (2000). Population size, genetic variation, and reproductive success in
a rapidly declining, self-incompatible perennial (Arnica montana) in the Netherlands.
Conservation Biology 14, 1776–1787.

Mac Nally, R., Bennett, A. F. & Horrocks, G. (2000). Forecasting the impacts
of habitat fragmentation. Evaluation of species-specific predictions of the impact
of habitat fragmentation on birds in the box–ironbark forests of central Victoria,
Australia. Biological Conservation 95, 7–29.

Mac Nally, R., Bennett, A. F., Thomson, J. R., Radford, J. Q., Unmack, G.,
Horrocks, G. & Vesk, P. A. (2009). Collapse of an avifauna: climate change
appears to exacerbate habitat loss and degradation. Diversity and Distributions 15,
720–730.

Mac Nally, R., Bowen, M., Howes, A., McAlpine, C. A. & Maron, M. (2012).
Despotic, high-impact species and subcontinental scale control of avian assemblage
structure. Ecology 93, 668–678.

Mac Nally, R., Cunningham, S. C., Baker, P. J., Horner, G. J. & Thomson, J.
R. (2011). Dynamics of Murray-Darling floodplain forests under multiple stressors:
the past, present, and future of an Australian icon. Water Resources Research 47(12),
1–11.

Mace, G., Masundire, H. & Baillie, J. (2005). Biodiversity. In Ecosystems and Human

Well-Being: Current State and Trends: Findings of the Condition and Trends Working Group.

The Millennium Ecosystem Assessment Series, Chapter 4 (eds R. Hassan, R. J. Scholes
and N. Ash). Island Press, Washington, DC.

Mantyka-Pringle, C. S., Martin, T. G. & Rhodes, J. R. (2012). Interactions
between climate and habitat loss effects on biodiversity: a systematic review and
meta-analysis. Global Change Biology 18, 1239–1252.

Maron, M., Grey, M. J., Catterall, C. P., Major, R. E., Oliver, D. L., Clarke,
M. F., Loyn, R. H., Mac Nally, R., Davidson, I. & Thomson, J. R. (2013).
Avifaunal disarray due to a single despotic species. Diversity and Distributions 19,
1468–1479.

Martinez-Meyer, E. (2012). Advances, limitation, and synergies in predicting
changes in species’ distribution and abundance under contemporary climate change.
In Ecological Consequences of Climate Change: Mechanisms, Conservation and Management (eds
E. A. Beever and J. L. Belant), pp. 67–84. CRC Press, Boca Raton.

Massot, M., Clobert, J. & Ferrière, R. (2008). Climate warming, dispersal
inhibition and extinction risk. Global Change Biology 14, 461–469.

Matthysen, E. (1999). Nuthatches (Sitta europaea : Aves) in forest fragments:
demography of a patchy population. Oecologia 119, 501–509.

*Mavraganis, K. & Eckert, C. G. (2001). Effect of population size and isolation on
reproductive output in Aquilegia canadensis (Ranunculaceae). Oikos 95, 300–310.

Mbora, D. N. M., Wieczkowski, J. & Munene, E. (2009). Links between habitat
degradation, and social group size, ranging, fecundity, and parasite prevalence in
the Tana River mangabey (Cercocebus galeritus). American Journal of Physical Anthropology

140, 562–571.
McEuen, A. B. & Curran, L. M. (2004). Seed dispersal and recruitment limitation

across spatial scales in temperate forest fragments. Ecology 85, 507–518.
McGarigal, K. & Cushman, S. A. (2002). Comparative evaluation of experimental

approaches to the study of habitat fragmentation effects. Ecological Applications 12,
335–345.

McIntyre, C. L. & Schmidt, J. H. (2012). Ecological and environmental correlates
of territory occupancy and breeding performance of migratory Golden Eagles Aquila

chrysaetos in interior Alaska. Ibis 154, 124–135.
McKechnie, A. E. & Wolf, B. O. (2010). Climate change increases the likelihood

of catastrophic avian mortality events during extreme heat waves. Biology Letters 6,
253–256.

McLaughlin, J. F., Hellmann, J. J., Boggs, C. L. & Ehrlich, P. R. (2002).
Climate change hastens population extinctions. Proceedings of the National Academy of

Sciences of the United States of America 99, 6070–6074.
Memmott, J., Craze, P. G., Waser, N. M. & Price, M. V. (2007). Global warming

and the disruption of plant–pollinator interactions. Ecology Letters 10, 710–717.
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IX. SUPPORTING INFORMATION

Additional supporting information may be found in the
online version of this article.
Table S1. Search terms used to locate studies that measured
the effect of climate and landscape condition on demographic
rates.

Table S2. Search terms used to locate studies that measured
the effect of climate and landscape condition on variables
related to demographic rates.

Table S3. List of species used for the calculation of mean
effect sizes for climate and landscape condition on population
vital rates.

Table S4. Breakdown of individual studies (December
2012 and earlier) that measured demographic responses
to landscape condition and climate by region and taxonomic
group.

Table S5. Subset of studies (from online Table S3) that
showed effects of temperature and rainfall variables on birth
or death rates.
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