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Abstract
Rapid human- driven environmental changes are impacting animal populations around 
the world. Currently, land- use and climate change are two of the biggest pressures 
facing biodiversity. However, studies investigating the impacts of these pressures on 
population trends often do not consider potential interactions between climate and 
land- use change. Further, a population's climatic position (how close the ambient tem-
perature and precipitation conditions are to the species’ climatic tolerance limits) is 
known to influence responses to climate change but has yet to be investigated with 
regard to its influence on land- use change responses over time. Consequently, im-
portant variations across species’ ranges in responses to environmental changes may 
be being overlooked. Here, we combine data from the Living Planet and BioTIME 
databases to carry out a global analysis exploring the impacts of land use, habitat loss, 
climatic position, climate change and the interactions between these variables, on 
vertebrate population trends. By bringing these datasets together, we analyse over 
7,000 populations across 42 countries. We find that land- use change is interacting 
with climate change and a population's climatic position to influence rates of popula-
tion change. Moreover, features of a population's local landscape (such as surround-
ing land cover) play important roles in these interactions. For example, populations in 
agricultural land uses where maximum temperatures were closer to their hot thermal 
limit, declined at faster rates when there had also been rapid losses in surrounding 
semi- natural habitat. The complex interactions between these variables on popula-
tions highlight the importance of taking intraspecific variation and interactions be-
tween local and global pressures into account. Understanding how drivers of change 
are interacting and impacting populations, and how this varies spatially, is critical if we 
are to identify populations at risk, predict species’ responses to future environmental 
changes and produce suitable conservation strategies.
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1  |  INTRODUC TION

Global animal populations are facing rapid human- driven environ-
mental changes (IPBES, 2019). According to the Living Planet Index 
(LPI), average vertebrate population abundance has fallen by two- 
thirds in the last 50 years (WWF, 2020), with declines being clustered 
in certain locations around the world (Leung et al., 2020). However, 
studies of different time- series data, such as the BioTIME database, 
report little change in abundance over time for the majority of popu-
lations (Dornelas et al., 2019). Many reasons have been put forward 
as to why the conclusions drawn regarding global populations trends 
differ between the datasets, including selection biases, publication 
biases, monitoring methods (population-  or assemblage- level), ex-
treme clusters within the datasets and geographic biases (Dornelas 
et al., 2019; Gonzalez et al., 2016; Leung et al., 2020). Whatever the 
overall trend, we need to understand the drivers underlying pop-
ulation fluctuations. Furthering our understanding as to why, and 
which, populations are changing or staying constant may help us to 
identify why we see such differences in trends between time- series 
datasets.

Recent studies investigating the influence of drivers of change 
on biodiversity have primarily focused on the impacts of climate 
and land- use change (Antão et al., 2020; Daskalova et al., 2020; 
Northrup et al., 2019; Spooner et al., 2018). Using BioTIME assem-
blage time- series data, Antão et al. (2020) found that the abundance 
trends of temperate terrestrial biodiversity were not coupled to 
temperature changes. However, this study did not account for land- 
use changes, and changes in forest cover have been found to impact 
population changes, with both declines and increases observed to 
intensify after forest loss (Daskalova et al., 2020). Neither of these 
studies accounted for interactions between land- use change and cli-
mate change. Drivers of change are not occurring in isolation, and as 
such interactions between land- use and climate change are critical 
to take into account when studying how populations are changing 
(Mantyka- Pringle et al., 2012; Oliver & Morecroft, 2014; Sirami et al., 
2017; Williams & Newbold, 2020). Indeed, when interactions are ac-
counted for, a different picture is drawn as to the influence of global 
drivers on populations. For example, a global- level analysis using the 
Living Planet database (LPD) not only found that declines in endo-
thermic vertebrate populations were greater at sites where there 
had been rapid increases in temperature, but also, for mammals, that 
this effect interacted with land- use change, with declines due to 
rapid warming amplified in areas with high rates of conversion from 
natural to agricultural land uses (Spooner et al., 2018). Interestingly 
though, unlike forest loss (Daskalova et al., 2020), land- use change 
on its own did not influence population changes (Spooner et al., 
2018). At a more local scale, climatic changes (warming and drying) 
have also been found to interact synergistically with forest loss to 
influence bird declines in the northwest forests of the United States 
(Northrup et al., 2019).

One route by which land- use change and climate change could 
interact to impact how vertebrate populations respond to global 
drivers of change is through the local- scale climatic changes that 

occur due to land- use change (De Frenne et al., 2019; Frishkoff et al., 
2016; Williams et al., 2020; Williams & Newbold, 2020). Human- 
altered land uses (such as agricultural and urban areas) are, on av-
erage, hotter and drier than natural habitats (De Frenne et al., 2019; 
Frishkoff et al., 2016). In addition, the removal of canopy layers, such 
as through conversion from forest to croplands, leads to greater 
temperature extremes (De Frenne et al., 2019; Senior et al., 2017). 
For example, the average maximum daily temperatures in pastures 
and pineapple farms have been recorded to be around 6°C and 9°C 
higher than that in forests (Nowakowski et al., 2017). These local 
climatic differences between land uses have been associated with 
community shifts: At both local and global levels, human- altered 
land uses have been observed to favour species that can tolerate 
greater hot and cold extremes of temperature, and greater wet and 
dry extremes of precipitation (Frishkoff et al., 2015; Nowakowski 
et al., 2017; Waldock et al., 2020; Williams et al., 2020). As these 
local- scale climatic changes are occurring alongside global climatic 
changes, this has the potential to lead to complex interactions 
(Williams & Newbold, 2020).

Populations, however, do not respond to environmental changes 
uniformly across their species’ ranges (Orme et al., 2019; Soroye 
et al., 2020; Spooner et al., 2018). Recent analyses are highlight-
ing that ambient climate and, more specifically, how close the local 
temperature and precipitation conditions are to a species’ climatic 
tolerance limits (climatic position), may impact how populations re-
spond to land- use change, leading to variation in responses across 
species’ ranges (Srinivasan et al., 2019; Williams & Newbold, 2021). 
At a regional level, across the Himalayas, bird species common to 
locations across the region were more forest- dependent (using ag-
ricultural sites less) in relatively aseasonal compared to highly sea-
sonal locations (Srinivasan et al., 2019). At a global level, populations 
in environments where extreme temperatures were closer to their 
hot or cold thermal limits were filtered out of human- altered land 
uses (Williams & Newbold, 2021). Further, despite human- altered 
land uses being drier on average (Frishkoff et al., 2016), populations 
experiencing precipitation levels close to their dry tolerance limits 
had similar abundances in human- altered land uses and natural hab-
itats (Williams & Newbold, 2021). In comparison, populations with 
a larger buffer between their dry limit and the location's minimum 
precipitation levels did worse (had lower abundances relative to that 
in natural habitat; Williams & Newbold, 2021). This variation across 
species’ ranges has been suggested to be due, at least in part, to 
the local climatic changes following land- use change (Williams & 
Newbold, 2021). However, climatic position and its interaction with 
land- use have yet to be considered when analysing global population 
trends.

Here, we combine time- series data from the LPD and BioTIME 
database, with the aim to investigate whether changes in vertebrate 
population abundances are influenced by their climatic position, 
the habitat they are found within, the rates of climate change and 
changes in surrounding land use and, importantly, interactions be-
tween these variables. Based on the fact that conversion of natural 
habitat to agriculture or urban areas leads to more extreme local 
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    |  799WILLIAMS et AL.

temperatures (De Frenne et al., 2019), that responses to land use 
vary across species ranges due to the population's climatic posi-
tions (Williams & Newbold, 2021), and that past work has suggested 
synergistic interactions between land- use and climate change (eg, 
Spooner et al., 2018), we make three specific hypotheses:

1. Populations experiencing maximum or minimum temperatures 
closer to their upper or lower thermal tolerance limits, respec-
tively, will decrease more rapidly in human- altered land uses 
compared to populations in more natural habitats, particularly 
in areas that have experienced greater increases in surrounding 
human- altered land uses.

2. For those populations experiencing maximum or minimum tem-
peratures closer to their upper or lower thermal tolerance limits, 
respectively, greater rates of decline will be observed in places 
where hot maxima and cold minima have got more extreme over 
time, and this will be more pronounced in human- altered land 
uses compared to natural habitats.

3. Populations experiencing rapid increases in surrounding human- 
altered land uses as well as hotter maximum or colder minimum 
temperatures over time will decrease at a faster rate compared 
to populations not facing such changes or not experiencing these 
changes in tandem, particularly in human- altered land uses.

We also look at a population's climatic position with regard to 
their species- level precipitation limits, as precipitation affiliations 
have been found to have an important impact on responses to land- 
use change (Frishkoff et al., 2016; Williams et al., 2020). However, we 
do not have clear predictions regarding how populations over time 
will be influenced by their minimum and maximum precipitation po-
sition, due to previous mixed results and the complex effects of land 
use on moisture availability (Williams & Newbold, 2020). Previous 
work found that species from areas with lower mean annual precip-
itation (ie, dry- affiliated species) were more likely to persist within 
agricultural areas compared to those from areas with, on average, 
wetter climates (Frishkoff et al., 2016). Yet, other studies focusing 
on extreme precipitation conditions have reported shifts towards a 
higher proportion of species affiliated with greater extremes of pre-
cipitation (both drier and wetter) in communities in human- altered 
land uses compared to natural habitats (Williams et al., 2020). 
Species also alter their use of natural versus human- altered land uses 
across precipitation gradients (Frishkoff et al., 2016). For example, 
relative to populations in more natural habitats, tropical populations 
in plantations and croplands experiencing minimum precipitation 
levels further from their dry tolerance limit had lower abundances 
than populations experiencing minimum precipitation levels closer 
to their dry limit (Williams & Newbold, 2021). Further, populations 
experiencing precipitation levels closer to species’ wet tolerance 
limit have been found to have a lower probability of occurrence in 
human- altered land uses relative to that in natural habitats (Williams 
& Newbold, 2021). However, the biological mechanisms underly-
ing these results are unclear. On top of this, habitat conversion and 
the ongoing drying trends in certain parts of the world, such as the 

tropics (Lau & Kim, 2015), are favouring the same, dry- affiliated spe-
cies (Frishkoff et al., 2016; Karp et al., 2017), which will likely further 
complicate how populations’ precipitation positions interact with 
these variables to influence population trends. Consequently, we 
do not make specific hypotheses as to the impact of maximum and 
minimum precipitation position (ie, how close the maximum and min-
imum precipitation levels a population experiences are to the spe-
cies’ wet and dry tolerance limits, respectively) on population trends.

By bringing together these two global databases and incorporat-
ing previously overlooked variables and interactions, we complete 
the most comprehensive analysis to date to further our under-
standing of how vertebrates are being influenced by environmental 
changes around the world, how drivers of change are interacting, 
and which populations may be at higher risk from human- induced 
changes.

2  |  METHODS

2.1  |  Population time- series data

We acquired population time- series data for terrestrial vertebrates 
from the Living Planet database (LPD; LPI database, January 2020) 
and the BioTIME database (Dornelas et al., 2018; see Supplementary 
information, Appendix 14, for the original data citations), for the pe-
riod covering 1992– 2015 (to match the land- cover data, see below). 
These two databases together contain time- series of population 
estimates for over 100,000 terrestrial vertebrate populations from 
around the globe within our timeframe. Here, we use the term ‘pop-
ulation’ to refer to a group of individuals of the same species at the 
same location. We focused on vertebrates due to the reasonably 
comprehensive data available on their distributions, which was nec-
essary in order to estimate species’ realized climatic tolerance limits 
(see below).

From both the LPD and BioTIME database, we extracted annual 
population estimates for non- migratory terrestrial vertebrate popu-
lations whose specific locations were known (so that we could assign 
land- use and environmental data to the site). In the BioTIME data-
base, if there were multiple population estimates per year, we took 
the mean of these. We further removed any birds or mammals classed 
as migratory according to data obtained from BirdLife International 
(2018) and Gnanadesikan et al. (2017). From the BioTIME database, 
we also excluded studies looking at biomass, and populations that 
were part of treatment studies such as burning, harvesting or pred-
ator exclusion experiments. Finally, we excluded studies that were 
within the Arctic Circle, spanned less than 6 years, or had 5 or fewer 
population estimates over the time- series (following Spooner et al., 
2018). This left us with a dataset comprised of 9,601 populations, 
consisting of 423 species (147 mammals, 224 birds, 30 reptiles and 
22 amphibian species) in 1,669 locations across 48 countries.

For each population, we calculated the average logged an-
nual rate of population change (�Y ), following the method used 
by Spooner et al. (2018). In brief, we first took the log (base 10) of 
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each population estimate (if an estimate was zero, we instead took 
the log of 1% of the mean estimate from the entire time- series, 
including the zeros). Second, in order to impute values for missing 
annual population estimates, each time- series was fit with a gen-
eralized additive model (GAM), with a smoothing parameter set to 
half the number of population estimates in the time- series (Collen 
et al., 2009). Then, �Y  was calculated for each time- series using 
the following equation:

in which n is the population estimate for year y, and Y is the num-
ber of years from the first to the last estimate for a population.

2.2  |  Land- cover data

We obtained global land- cover maps from the European Space 
Agency Climate Change Initiative (ESA CCI; ESA Land Cover CCI 
project team, Defourny, 2019). These maps are available for the 
years 1992– 2015, at a spatial resolution of 300 m and catego-
rize land into 37 land- cover classes (Defourny et al., 2017). We 
grouped these land- cover classes into the broader categories of 
agriculture, forest, grassland, wetland, urban, and other (we did 
not include the water or permanent snow and ice categories, so re-
moved populations located in these categories; Appendix 1, Table 
S1), closely following the groupings used by the Intergovernmental 
Panel on Climate Change for change detection (Defourny et al., 
2017). The land- cover category that each population was located 
in when the population was first recorded within the 1992– 2015 
timescale was recorded as it's starting land- use type (there were 
not enough populations starting in urban or wetland land- use 
types to include in the analysis, so the populations in these cat-
egories were removed, leaving forest, grassland, agriculture, and 
other as starting land- use types).

To calculate the rate of change in land cover each population 
experienced over time, we first extracted the percentage of semi- 
natural habitat (SNH) within a 1- km radius of the population's lo-
cation for each year between its first and last estimate. A radius 
of 1 km has previously been used when assessing the impact of 
land- use change on local biodiversity (Le Provost et al., 2020), 
and due to our focus on the local climatic changes brought about 
by land- use change, we felt that concentrating on the changes in 
SNH within a 1- km radius surrounding a population was appro-
priate (however, to check the sensitivity of our results, we also 
calculated the percentage change in SNH within a 5- , 10-  and 
50- km radius). Land- cover categories included as SNH were for-
est, grassland, wetland, and shrubland (Appendix 1, Table S1). 
We also incorporated a weighting system, in which we used the 
maximum percentage cover of a specific land- use (detailed in the 
ESA’s land- use categories) to weight each category. For example, 
the category ‘Tree cover, broadleaved, deciduous, closed to open 

(>15%)’ was given a weighting of 1, as it could cover 100% of the 
300 × 300- m area, whereas the category ‘Tree cover, broadleaved, 
deciduous, open (15– 40%)’ was given a weighting of 0.4, as this 
could cover a maximum of 40% of the 300 × 300 m (see Appendix 
1, Table S1 for a full listing of the weightings; non- SNH categories 
were given a weighting of 0). Then, for each location with a pop-
ulation time- series, a linear regression was fit to the percentage 
of SNH within the surrounding 1- km radius over the length of the 
population time- series, with the resulting slope extracted to give 
the average annual rate of change in SNH.

2.3  |  Climatic tolerance limits

We estimated species’ realized climatic tolerance limits, that is, the 
maximum and minimum temperature and monthly precipitation that 
a species’ experiences across its geographic distribution. We ob-
tained expert- informed species distribution maps (extent of occur-
rence maps) from BirdLife International (2012) and the International 
Union for Conservation of Nature (IUCN, 2016a, 2016b, 2017a, 
2017b, 2017c, 2018a, 2018b, 2019a, 2019b, 2019c). For each spe-
cies, we extracted their native historical ranges (where they were 
resident, present during breeding or non- breeding seasons) and 
areas the species had been introduced or reintroduced (ie, excluding 
areas where the presence or seasonal occurrence is uncertain, spe-
cies are possibly extant or vagrant, or areas classed as passages, such 
as areas used for short periods of time during migration). Breeding 
and non- breeding areas were included within species’ native histori-
cal ranges because, despite being non- migratory, parts of some spe-
cies’ ranges were classified as, for example, extant (non- breeding). 
These extracted areas were then rasterized into 500 × 500- m 
equal- area grids (Behrmann projection). We chose this resolution so 
that we could include as many species as possible with very narrow 
ranges. Areas outside of species’ elevation limits, if known (BirdLife 
International, 2018; IUCN, 2016a, 2016b, 2017a, 2017b, 2017c, 
2018a, 2018b, 2019a, 2019b, 2019c), were removed from their dis-
tribution maps.

We obtained climate maps for the average monthly maximum 
temperature of the warmest month, average monthly minimum tem-
perature of the coldest month, and precipitation of the wettest and 
driest months from WorldClim Version 1.4 (Hijmans et al., 2005). 
These maps had a resolution of 30 arc seconds and encompassed 
averaged yearly values from 1960 to 1990. We resampled these cli-
mate maps using bilinear interpolation to 500 × 500- m equal- area 
grids (Behrmann projection) to match the projection of the species’ 
distribution maps. We overlaid the species’ distribution map on 
these four climatic variables and extracted the highest maximum 
temperature of the warmest month and precipitation of the wettest 
month, and the lowest minimum temperature of the coldest month 
and precipitation of the driest month across each species’ distri-
bution (ArcGIS 10.4). These values provided our estimates of each 
species’ realized upper and lower temperature and precipitation tol-
erance limits (Figure 1).
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    |  801WILLIAMS et AL.

2.4  |  Climate change and starting climatic position

Monthly average daily maximum and minimum temperature, 
and monthly precipitation data were acquired from the gridded 
(0.5° × 0.5°) Climatic Research Unit (CRU) Time- series data v. 4.03 
(Harris & Jones, 2020). From these, we found the highest monthly 
average daily maximum temperature, lowest monthly average daily 
minimum temperature, and maximum (wettest) and minimum (dri-
est) monthly precipitation per year at the location of each observed 
population within our dataset. For each population, values for the 
four climatic variables were extracted for each year between the 
first and last population estimate. Linear regressions were fit to each 
set of climatic variables for each population, with the slopes of these 
extracted to give the average annual rate of change in maximum 
temperature of the warmest month, minimum temperature of the 
coldest month and precipitation of the wettest and driest months 
over the length of the population time- series.

For each population, we calculated their starting climatic position 
with regard to the maximum temperature of the warmest month (Tmax 
position), minimum temperature of the coldest month (Tmin position), 
precipitation of the wettest month (Ppmax position) and precipitation 
of the driest month (Ppmin position). These positions describe the ther-
mal and precipitation conditions (CRU Time- series data v. 4.03; Harris 

& Jones, 2020) a population experienced in the first year they were 
measured at a site, standardized to range between 0 and 1 relative to 
the lower and upper realized temperature or precipitation tolerance 
limits of the species (where, for thermal tolerance limits, 0 = minimum 
realized temperature tolerance limit and 1 = maximum realized tem-
perature tolerance limit and for precipitation tolerance limits, 0 = min-
imum (dry) realized precipitation tolerance limit and 1 = maximum 
(wet) realized precipitation tolerance limit; Figure 1). We chose to use 
the temperature and precipitation conditions a population experi-
enced in the first year of their time- series because we wanted a mea-
sure of where each population started in relation to their species- level 
climatic limits. However, to check the sensitivity of our results, we also 
calculated starting climatic position using the average maximum and 
minimum temperature and precipitation conditions (CRU Time- series 
data v. 4.03; Harris & Jones, 2020) in the three years up to and includ-
ing the first year of a population's time- series and ran a model (see 
below) using this measure (Appendix 4).

2.5  |  Distance to range edge

Within our analyses, we also accounted for a population's location 
relative to their species’ range edge. For each population in our 

F I G U R E  1  A visual example of how the starting climatic positions (Tmax, Tmin, Ppmax and Ppmin position) were calculated for each 
population. 0 and 1 represent the species- level realized minimum and maximum, respectively, thermal or precipitation tolerance limits, 
extracted from species’ distribution maps overlaid on climatic data from WorldClim Version 1.4 (denoted by the *; Hijmans et al., 2005). The 
starting climatic positions were calculated by standardizing the population's site- level temperature and precipitation data (obtained from 
the Climatic Research Unit, denoted by +; Harris & Jones, 2020) in the year that the population was first recorded to range between 0 and 
1 relative to the species- level climatic tolerance limits. For example, a Tmax position closer to 1 means that the maximum temperature of the 
warmest month experienced by a population was closer to the highest maximum temperature of the warmest month across the species’ 
range. Similarly, a Ppmin position closer to 0 describes a population that experienced precipitation levels in their driest month that were 
closer to the lowest precipitation of the driest month across the species’ range. This figure is adapted from Williams and Newbold (2021) 
[Colour figure can be viewed at wileyonlinelibrary.com]
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802  |    WILLIAMS et AL.

dataset, we found the shortest distance from their location to their 
species’ range edge and, to account for range size, divided it by the 
greatest distance a population of that species could be from their 
range edge (calculated by transforming species distribution maps 
into spatial points dataframes). Therefore, each population had a 
standardized (between 0 and 1) distance to range edge measure, 
where a value of 0 meant the population was located at the spe-
cies’ range edge, and values closer to 1 meant the population was 
closer to the range centre. Populations that were recorded outside 
of their distributions as stated by the distribution maps (BirdLife 
International, 2012; IUCN, 2016a, 2016b, 2017a, 2017b, 2017c, 
2018a, 2018b, 2019a, 2019b, 2019c), were removed.

The final dataset comprised of 7,123 populations, consisting of 
341 species (126 mammals, 186 birds, 12 reptiles and 17 amphibian 
species) in 1,151 locations across 42 countries (Appendix 2, Figure 
S1; the final dataset is available in a figshare repository, Williams 
et al., 2021; https://doi.org/10.6084/m9.figsh are.16895851).

2.6  |  Statistical analyses

We used linear mixed- effects models to investigate how the rate 
of population change was affected by land- use type and change, 
the population's climatic position and the rate of climate change ex-
perienced. We constructed 42 candidate models, with the average 
logged annual rate of population change (�Y ) as the response vari-
able (see Appendix 3, Tables S2– S3, for information on the choice 
of candidate models). The ‘full’ model included all of the following 
variables and interactions, with the other 41 candidate models 
including a subset, based on our hypotheses and the aims of this 
study. Fixed effects included: (a) the population's starting land- use 
type, (b) the rate of change in SNH the population experienced, (c) 
their starting Tmax, Tmin, Ppmax and Ppmin positions and (d) the rate 
of change in climate experienced (for the four climatic variables 
detailed above; Table 1; correlations between continuous variables 
were checked, Appendix 3, Table S4). Following our hypotheses, 
three 3- way interactions were considered: (a) starting land- use 
type × rate of change in SNH × starting climatic position, to look 
at whether populations in human- altered land uses experiencing 
temperatures and precipitation closer to their climatic limits as well 
as greater rates of decreases in SNH have larger negative rates of 
population change, (b) starting land- use type × starting climatic 
position × rate of change in climate (with the same focal climatic 
variable as the climatic position, for example, starting land- use type 
× starting Tmax position × rate of change in maximum temperature 
of the warmest month), to explore whether populations in human- 
altered land uses experiencing temperatures and precipitation 
closer to their climatic limits on top of greater increases in climatic 
extremes have larger negative rates of population change and (c) 
starting land- use type × rate of change in SNH × rate of change in 
climate, to look at whether populations in human- altered land uses 
experiencing greater decreases in SNH as well as increases in ex-
treme climatic conditions have larger negative rates of population 

change. Any lower- order two- way interactions between the vari-
ables in each three- way interaction were also included (Table 1, 
Table S2). Covariates included the distance of a population from 
its species’ range edge, and its interaction with starting land- use 
type and with the rate of change in SNH (as well as the three- way 
interaction between these variables), to account for potential re-
sponse or behavioural differences due to proximity to range edge 
(Liebl & Martin, 2012; Orme et al., 2019). In all models, we included 
four random intercept terms: species name, vertebrate class, study 
site and database (LPD or BioTIME; Table 1). We compared candi-
date models using AIC values and Akaike weights (using the MuMIn 
package v.1.43.17 in R 3.6.0; Barton, 2020; R Core Team, 2019). 
From the selection of candidate models, the full model (which in-
cluded all of the considered terms) received overwhelming support 
(Akaike weight ≈ 1; Appendix 3, Table S3). We, henceforth, present 
the results from this ‘final model’. We ensured our model was not 
overfitted by splitting the final model (a) per each three- way inter-
action (and then including the lower- order interactions and main ef-
fects included) and (b) per each climatic variable (ie, running a model 
in which the only climatic variables considered were those including 
the maximum temperature of the warmest month, minimum tem-
perature of the coldest month, precipitation of the wettest month 
or precipitation of the driest month) and then checking to see if the 
resulting effects were similar to those produced by the final model. 
All of the above was completed in ArcGIS 10.4 (ESRI 2015) and R 
3.6.0 (R Core Team, 2019) using packages dplyr v.0.8.3 (Wickham 
et al., 2019), lme4 v.1.1.26 (Bates et al., 2015), MuMIn v.1.43.17 
(Barton, 2020), ncdf4 v.1.17 (Pierce, 2019), plyr v.1.8.6 (Wickham, 
2011), raster v.2.8– 19 (Hijmans, 2019) and tidyr v.1.0.0 (Wickham 
& Henry, 2019).

2.7  |  Sensitivity tests

We compared the ESA land cover maps to recently produced global 
maps of terrestrial habitat types (Jung et al., 2020), to check the con-
sistency of land- use types across data sources. These latter maps 
are only available for 2015– 2019, so for each site in our final data-
set (n = 1,151), we compared the land- use types between the 2015 
ESA land cover map and Jung et al.’s (2020) global map of terrestrial 
habitat types for 2015. In particular, we wanted to ensure that there 
were not a large number of plantations or pastures at sites that we 
classed as forest or grasslands, respectively, as land- cover maps may 
miss these land uses.

The IUCN and BirdLife International species’ distribution maps 
(BirdLife International, 2012; IUCN, 2016a, 2016b, 2017a, 2017b, 
2017c, 2018a, 2018b, 2019a, 2019b, 2019c) provide data for a 
wide range of vertebrates from around the world, and as such have 
been used extensively (Allan et al., 2019; Herkt et al., 2017; Khaliq 
et al., 2017; Shackelford et al., 2015). However, they do contain in-
accuracies as they tend to overestimate the area of occupancy and 
underestimate species’ extent- of- occurrence (Herkt et al., 2017; 
Hurlbert & Jetz, 2007). Therefore, to check the robustness of our 
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climatic position measure, we also calculated species’ climatic limits 
using occurrence records from the Global Biodiversity Information 
Facility (GBIF; GBIF.org, 2015), rather than species’ distribution 
maps (Appendix 4). Further, to ensure that our climatic position mea-
sure was robust to the climatic data used to estimate climatic limits, 
we calculated another estimate of a population's climatic position, 
this time using the CRU Time- series data v. 4.03 (Harris & Jones, 
2020), extracting temperature and precipitation data from 1992, to 
calculate species’ climatic limits (rather than using WorldClim data). 
Additionally, we calculated a fourth estimate of climatic limits, using 
both GBIF occurrence records (rather than species’ distribution 
maps) and CRU Time- series data (rather than WorldClim data). We 
compared both the resulting climatic positions themselves and the 
results of models run (with the same structure as the final model) 

using the climatic positions calculated through these different meth-
ods of estimating climatic limits (Appendix 4).

Further, using the same structure as the final model, we also 
ran models that (a) included the average annual rate of change in 
the percentage of forest (instead of SNH) within a 1- km radius of 
the population's location (calculated in the same way as for SNH, 
but only including the forest category; Appendix 1, Table S1), to 
investigate whether it was change in forest specifically, rather 
than semi- natural habitat, driving differences in population trends 
(Daskalova et al., 2020); (b) included percentage of SNH within a 
1- km radius of the population in the first year they were recorded, 
rather than starting land- use type, to see if this explained more 
variance in the data (Appendix 5); (c) only included time- series with 
R2 ≥ 0.5 when fit to the GAM, to remove populations with more 

TA B L E  1  Parameters included in the final model. Symbols represent variables within the same two-  or three- way interaction (for 
example, starting land- use type and rate of change in semi- natural habitat both have a ♦ symbol, indicating that we included a two- way 
interaction between these variables –  starting land- use type × rate of change in semi- natural habitat –  in the final model). Interactions 
combining both starting climatic position and rate of change in climate included the same climatic variable (eg, starting Tmax position × rate 
of change in maximum temperature of the warmest month, or starting Ppmin position × rate of change in precipitation of the driest month). 
Interactions between starting positions with respect to different climate variables, or between rates of change in different climatic variables 
were not included

Parameter Description Type of effect

Included in an 
interaction?

2- way 3- way

Starting land- use type The land- use type (forest, grassland, agriculture, or other) the 
population was within in the first year of its time- series

Fixed, categorical ♦ ♠ ≡ ⊂ ∞ ⊗ ∗ ⇔

Rate of change in semi- 
natural habitat

The average annual rate of change in the percentage of semi- natural 
habitat (which included forest, grassland, wetland and shrubland) 
within a 1- km radius of the population, over the length of the 
population time- series

Fixed, continuous, 
quadratic

♦ ♣ ⊕ ∇ ∞ ⊗ ⇔

Starting climatic 
position

The
a. maximum temperature of the warmest month (Tmax),
b. minimum temperature of the coldest month (Tmin),
c. precipitation of the wettest month (Ppmax), and
d. precipitation of the driest month (Ppmin),

a population experienced in the first year they were measured, 
relative to the species- level upper and lower realized thermal 
(for a and b) or precipitation (for c and d) tolerance limits

Fixed, continuous, 
quadratic

♠ ♣ § ∞ ∗

Rate of change in 
climate

The average annual rate of change in
a. maximum temperature of the warmest month,
b. minimum temperature of the coldest month,
c. precipitation of the wettest month, and
d. precipitation of the driest month,

over the length of the population time- series

Fixed, continuous, 
quadratic

≡ ⊕ § ⊗ ∗

Distance to range edge The distance of a population from their species’ geographic range 
edge, standardized to account for overall range size

Fixed, continuous, 
linear

⊂ ∇ ⇔

Species name Species binomial, to account for interspecific differences in responses. Random intercept

Class The vertebrate Class (Mammalia, Aves, Reptilia or Amphibia), to 
account for broad taxonomic differences in population trends

Random intercept

Study site ID based on the population's location (latitude and longitude), 
included to account for site- specific effects

Random intercept

Database The database the population's time- series data were acquired from 
(Living Planet database or BioTIME database), to account for 
differences between the databases (differences in inclusion 
criteria or sampling method, for example)

Random intercept
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804  |    WILLIAMS et AL.

variable estimates over the years, for which interpolated values 
may not be as accurate (Appendix 8); (d) excluded time- series with 
�Y  above and below the upper and lower 97.5th and 2.5th percen-
tile, respectively, to ensure results were not being influenced by 
extreme positive or negative rates of population change (we do 
not remove extreme values in our final model, following Daskalova 
et al., (2020) and Spooner et al., (2018); Appendix 9); (e) excluded 
populations from the genus Gyps, as a previous study using the 
LPD found that they had a big influence on model estimates (Green 
et al., 2020; Appendix 10); and (f) excluded ectotherms, to check 
these taxa were not driving any observed declines (Appendix 11). 
Further, to ensure that removing populations outside of their spe-
cies’ ranges did not affect our results, we ran two more models 
(with the same structure as the final model but excluding all terms 
containing distance to range edge), one including and one exclud-
ing populations beyond their species ranges as stated by BirdLife 
International (2012) and IUCN (2016a, 2016b, 2017a, 2017b, 
2017c, 2018a, 2018b, 2019a, 2019b, 2019c; Appendix 12). We also 
carried out cross- validation tests to ensure there were no overly 
influential locations or species in our dataset (Appendix 13). We 
checked to see if we could run models separately for each ver-
tebrate class (Mammalia, Aves, Reptilia and Amphibia), but there 
were insufficient data.

3  |  RESULTS

The 7,123 populations analysed had an average time- series length 
of 15 years, covered a variety of starting land- use types and climatic 
positions and, across these populations, there were both increases 
and decreases experienced in surrounding SNH and all climatic vari-
ables (Table 2).

In summary, our results highlight the complexity of the im-
pact that climatic position, land- use type and change, and climate 
change have on populations over time, with all these variables 
interacting with each another in complex ways (see Appendix 3, 
Table S5 for the fixed- effects included in the final model, and 
Table S6 for more details on the continuous variables). Notably, 
the rate of change in SNH surrounding a population affected the 
rate of population change, with this differing slightly depending 
on a population's starting land- use type: For populations starting 
in the forest, the average annual rate of population change was 
relatively consistent across different rates of change in surround-
ing SNH (although it decreased slightly under rapid increases and 
decreases in surrounding SNH), whereas in grassland and agricul-
ture, rates of population change increased as rates of change in 
surrounding SNH got higher (Figure 2). In general, starting land- 
use type appeared to play an important role within interactions, 
particularly in its influence on how populations were affected by 
rates of change in climate and their starting climatic position. The 
fixed effects that were included in the final model (Appendix 3, 
Table S5) explained almost 5% of the variation in the rate of popu-
lation change (marginal pseudo- R2, sensu Nakagawa & Schielzeth, 

2013) and together with the random effects, explained 68% of the 
variation (conditional pseudo- R2).

Whilst testing the sensitivity of our results, we included the per-
centage of SNH within a 1- km radius of the population in the first 
year they were measured (rather than starting land- use type); the 
results indicated that populations surrounded by a higher percent-
age of human- altered habitats at the start of recording often had 
greater negative rates of population change (Appendix 5, Figures 
S13– S16). This is another very interesting result and we present it 
in the Supplementary information (due to it being a post hoc test, as 
well as having a higher AIC value and lower marginal R2 compared 
to our final model, and not capturing the difference between pop-
ulations starting in forest versus grassland). Below we do not plot 
the results for populations that started in habitats classed as ‘other’ 
because, following our hypotheses, we want to focus on how the im-
pact of climatic position, land- use and climate change on the rate of 
population change differs between those starting in human- altered 
habitats (agriculture) compared to those in more natural habitats 

TA B L E  2  Summary statistics for the population time- series 
analysed, split by the originating database (the Living Planet 
database or BioTIME database). The average annual rate of change 
in semi- natural habitat refers to change within a 1- km radius 
surrounding each population. Fitted values were based on fixed 
effects only

Living Planet 
database

BioTIME 
database

Number of populations analysed 367 6756

Average annual rates of population change (% / year)

Mean of observed (and fitted) 
values

−2.83 (1.09) −0.03 (0.42)

Median of observed (and 
fitted) values

−0.53 (0.86) 0 (0.47)

Number of populations with 
positive (↑) or negative (↓) 
values

↑ 152
↓ 215

↑ 3299
↓ 3319

Mean length of population 
time- series (years)

13 15

Number of countries from 
which populations 
originated

42 4

Average annual rates of change in semi- natural habitat

Range (% / year) −7.75 to 3.97 −7.27 to 9.24

Mean (% / year) −0.17 0.02

Median (% / year) 0 0.03

Number of populations with 
a positive (↑) or negative 
(↓) values

↑ 137
↓ 168

↑ 3882
↓ 2592

Percentage of populations starting in each starting land- use type (%, 
to 1 decimal place)

Forest 58.9 54.2

Grassland 3.5 11.6

Agriculture 17.7 28.3

Other 19.9 5.8
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    |  805WILLIAMS et AL.

(forest and grasslands). We use heat maps to display the results of 
each focal three- way interaction –  (a) starting land- use type × rate 
of change in SNH × starting climatic position, (b) starting land- use 
type × starting climatic position × rate of change in climate and (c) 
starting land- use type × rate of change in SNH × rate of change in 
climate –  see Figure 3 for guidance on how to interpret these heat 
maps. We also present a series of line graphs in the Supplementary 
information to provide an alternative presentation of the three- way 
interaction results (Appendix 3, Figures S2- S4).

We found support for our first hypothesis. With regard to Tmax 
position, populations experiencing maximum temperatures closer to 
their upper thermal tolerance limits (high Tmax position) decreased 
more rapidly in human- altered land uses (especially in areas that 
experienced greater decreases in surrounding semi- natural habi-
tat), compared to populations in more natural habitats (Figure 4a). 
Interestingly, however, populations starting in agricultural land uses 
with lower starting Tmax positions (indicating they initially experi-
enced maximum temperatures further from their hot thermal limit) 
also had more negative rates of population change in areas that had 
experienced more rapid increases in SNH in the surrounding land-
scape (Figure 4a). With regard to Tmin position, despite populations 
in the forest, grassland and agriculture that experienced minimum 
temperatures closer to their lower thermal tolerance limits (low Tmin 
position) having similar rates of population change, agricultural pop-
ulations experiencing more rapid increases in surrounding SNH were 
increasing fastest (Figure 4b).

Support for our second and third hypotheses was mixed. 
Unexpectedly, and not in line with these hypotheses, popula-
tions in agricultural areas that experienced more negative rates of 
change in maximum temperature (ie, hot extremes got cooler over 
time), also often had negative rates of population change (and vice 
versa, with agricultural populations experiencing warmer maximum 

temperatures having higher rates of population increase; Figures 5a 
and 6a). With regard to Tmin position, and in contradiction to our sec-
ond hypothesis, populations in agriculture with lower starting Tmin 
positions (experiencing minimum temperatures closer to their cold 
thermal limit), had more positive rates of population change com-
pared to populations with higher Tmin positions in areas that expe-
rienced decreases in minimum temperature (Figure 5b). However, 
in support of our third hypothesis, agricultural populations in areas 
where minimum temperatures had got colder and there had been 
rapid declines in surrounding SNH often had lower rates of popula-
tion change (Figure 6b); although unexpectedly, under the same con-
ditions, greater negative rates of population change were observed 
in grasslands (Figure 6b).

In terms of precipitation, for those populations experiencing 
minimum precipitation levels close to their dry tolerance limit (low 
Ppmin position), those that started in agriculture were decreasing 
more rapidly (Figure 4d). Notably, we found that for populations 
with a low Ppmin position, those also experiencing rapid decreases 
in minimum precipitation had negative rates of population change, 
the lowest of which was observed for those populations starting in 
agriculture (Figure 5d). A populations’ starting Ppmax position also 
interacted with the rate of change in SNH, with this effect differing 
between starting land- use types (Figure 4c). Effects of Ppmax posi-
tions and rate of change in SNH were stronger for populations start-
ing in grassland sites compared to forest or agriculture, with rapid 
declines observed for populations experiencing maximum precipi-
tation closer to their wet tolerance limit on top of swift decreases in 
surrounding SNH (Figure 4c).

Further, it was interesting to observe that, across climatic posi-
tions and different rates of change in climate and surrounding SNH, 
the average annual rates of population change for populations start-
ing in forested sites were relatively similar (increasing at a rate of 

F I G U R E  2  The average annual rate 
of population change depending on the 
average annual rate of change in semi- 
natural habitat, split by the land- use 
type a population was in when the first 
population measure was recorded. Error 
margins denote ±1 standard error
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806  |    WILLIAMS et AL.

around 1%). Conversely, often the most variation in the rate of pop-
ulation change was observed for populations that started in grass-
lands (Figures 4– 6).

3.1  |  Sensitivity tests

Land- use types extracted from the 2015 ESA land cover map (ESA 
Land Cover CCI project team, Defourny, 2019) and the 2015 global 
map of terrestrial habitat types (Jung et al., 2020) were the same for 
over 70% of sites in our dataset (Appendix 6, Table S8 and S9 ). Out 
of the sites that differed, there were a low number of discrepan-
cies between forest and plantation (n = 24, 2.1% of all sites in the 

dataset) and between grassland and pasturelands (n = 6, 0.5% of all 
sites in the dataset).

Using the average temperature and precipitation conditions in 
the three years up to and including the first year of a population's 
time- series to calculate the climatic position (rather than the tem-
perature and precipitation in the first year) explained almost the 
same proportion of variation in the rate of population change but the 
model had a higher AIC (ΔAIC = 25.9). Overall, the model produced 
very similar results to those presented above (Appendix 4, Figures 
S5 and S6). The climatic positions calculated using CRU Time- series 
data (instead of WorldClim climate maps) to estimate species’ cli-
matic limits were strongly correlated to the climatic positions used 
in the final model (r > 0.9), and the results of the models run using 

F I G U R E  3  Guidance on how to 
interpret the heat maps used to display 
the modelled results for the three focal 
interactions –  (a) starting land- use type × 
rate of change in SNH × starting climatic 
position (Figure 4), (b) starting land- use 
type × starting climatic position × rate 
of change in climate (Figure 5) and (c) 
starting land- use type × rate of change 
in SNH × rate of change in climate 
(Figure 6). The colours within the heat 
maps represent the average annual rate 
of population change (%/year). Blues 
represent population increases (+), and 
reds represent population declines (- ), 
with darker colours representing faster 
rates of change in both directions. The 
figures below also display contour lines 
(and labels), indicating conditions that 
share the same rates of population 
change. The panels in the figures below 
are also split into the starting land- use 
type (forest, grassland, and agriculture), 
which is indicated at the top of each 
column [Colour figure can be viewed at 
wileyonlinelibrary.com]
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these climatic position estimates were very similar to those above 
(Appendix 4, Table S7, Figures S7 and S8). We were able to calculate 
climatic positions using GBIF occurrence data (instead of species’ 
distribution maps) for 324 of the species found in our final dataset 
(6,681 populations), and these were also strongly correlated to the 
climatic positions reported here (r > 0.78; Appendix 4, Table S7). 
The overall patterns of results using climatic positions derived from 
GBIF data (with either WorldClim or CRU Time- series climate data) 
were on the whole similar to the results reported above (Appendix 
4, Figures S9- S12). The key differences included that, unlike above, 
negative rates of population change were observed for populations 
(a) in agriculture where thermal extremes had got warmer and pop-
ulations had high starting Tmax positions or high starting Tmin posi-
tions; Figures S10 and S12) and (b) in grasslands where populations 
had rapidly lost surrounding SNH and had low starting Tmin positions 
or low starting Ppmax positions (Figure S9 and S11). Further, when 
GBIF data were used with WorldClim data to estimate climatic limits, 
other differences included (a) the negative rates of change observed 
above for populations in agriculture with lower starting Ppmin posi-
tions under different rates of change in SNH and minimum precip-
itation (Figures 4d and 5d) were not observed (instead the rate of 
change varied around 0%– 1% per year; Figures S9 and S10) and (b) 
the negative rates of change observed above for populations start-
ing in grasslands with high Ppmax positions and experiencing low 
negative rates of change in SNH (Figure 4c) were dampened to less 
negative rates of population change (between −1% and 0% per year; 
Figure S9).

Including the average annual rate of change in the percentage 
of SNH within a 1- km radius of each population, as in the model re-
ported above, explained more variance (higher marginal R2 values) 
than using rates of change within a 5- km radius. The model including 
the rate of change in SNH within a 10-  or 50- km radius explained 
around the same amount of variance as within a 1- km radius, but 
as our hypotheses were focused on local climatic changes following 
land- use change, the 1- km radius was more appropriate. The model 
that included the average annual rate of change in the percentage 
of forest within a 1- km radius, rather than SNH, explained a very 
similar proportion of variation in the rate of population change and 
produced similar overall patterns to those observed above (although 
positive rates of change in grassland were often more extreme; 
Appendix 7, Figures S17 and S18). We also observed more negative 
rates of change for populations starting in agriculture with high Tmax 
positions when they experienced rapid increases in surrounding for-
est compared to SNH (Figure S17). We present the results of the 
model including SNH above, and that including rate of change in for-
est in the Supplementary information, due to our hypotheses focus-
ing on the conversion of natural habitats (including both forest and 
grassland) to human- altered land uses.

Excluding populations whose time- series did not have a GAM R2 
≥ 0.5 removed around three- quarters of populations. The resulting 
model had a higher marginal R2 and predicted more extreme rates of 
population change (in both the positive and negative direction) than 
those reported above, but patterns with respect to the environmental 

variables discussed in the main findings above were similar (although 
a few differences in the pattern of the rate of change in population 
were observed for those starting within grassland, which may be due 
to the lower number (n = 201) of populations starting in grassland in-
cluded in this model; Appendix 8, Figures S19- S21). Excluding time- 
series with �Y  above and below the upper and lower 97.5th and 2.5th 
percentile, respectively, resulted in a model that explained slightly 
more variation (0.7%) than the final model, but overall patterns 
were similar (Appendix 9, Table S10, Figures S22– S24). Excluding 
species from the genus Gyps produced a model with a similar mar-
ginal R2 value and very similar results to the model presented above 
(Appendix 10, Figures S25- S27). Running models without ectother-
mic species produced very similar results to those presented above, 
although rates of population change were shifted towards lower and 
more negative values (Appendix 11, Figures S28- S30). The models 
that excluded variables including the distance to range edge mea-
sure were very similar whether populations recorded outside of their 
species’ ranges as stated by BirdLife International (2012) and IUCN 
(2016a, 2016b, 2017a, 2017b, 2017c, 2018a, 2018b, 2019a, 2019b, 
2019c) were included or excluded (Appendix 12, Figures S31- S36). 
The majority of populations recorded outside of their species’ ranges 
were relatively close to the range edge (70% were within 82km), with 
those further away generally being species invasive to the recorded 
location. Finally, cross- validation tests showed that there were no 
overly influential locations or species within our dataset (Appendix 
13, Figures S37- S40).

4  |  DISCUSSION

Vertebrate populations are not responding uniformly to land- use 
change across their distributions. Rather, we show that land- use 
change is interacting with climate change and climatic position 
to influence rates of population change. In particular, our results 
highlight the importance of taking a population's climatic posi-
tion and the habitat they are within into account, as this led to 
large variation in the impact of the environmental changes we 
considered.

We show for the first time that a population's climatic position 
has an important influence on the rate of change in populations over 
time, in particular through its interactions with land- use type and 
environmental changes. Our results provided support for our first 
hypothesis regarding Tmax position: For populations initially in envi-
ronments where maximum temperatures were closer to the species’ 
hot thermal limit, those that were in agriculture and experienced 
more rapid losses in surrounding SNH (ie, high Tmax position + agri-
culture + SNH loss, Figure 4a) had more negative rates of population 
change compared to populations in forest or grassland. Again in line 
with our first hypothesis, we found that, within agriculture, for pop-
ulations initially in environments with minimum temperatures close 
to their species’ cold thermal limit, those that experienced increases 
in surrounding SNH (ie, low Tmin position + agriculture + SNH 
gain, Figure 4b) had positive rates of population change (whereas 
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F I G U R E  4  The average annual rate of population change across different starting land- use types, depending on: (i) the average annual 
rate of change in the percentage of semi- natural habitat within a 1- km radius; and (ii) a population's starting climatic position with regard 
to maximum temperature of the warmest month (Tmax, a), minimum temperature of the coldest month (Tmin, b), precipitation of the wettest 
month (Ppmax, c) or precipitation of the driest month (Ppmin, d). The x-  and y- axes are truncated at the 10th and 90th percentile of sampled 
values of each variable. Contour lines (and labels) indicate changes in the average annual rate of population change [Colour figure can be 
viewed at wileyonlinelibrary.com]
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populations experiencing declines in SNH had lower rates of popu-
lation change). These results highlight the need to, first, account for 
the population's climatic positions when investigating the impacts 
of land- use change (not just climate change) and second, include 
interactions occurring between drivers of change. These should be 
incorporated in both global biodiversity models, such as the one we 
present here, as well as local- scale conservation and management 
plans –  these interactions and differences across species’ ranges in 
responses to environmental changes cannot be overlooked if we are 
to mitigate the impact of anthropogenic changes on vertebrate pop-
ulations around the world.

There were also unexpected results that were not in line with 
our hypotheses. For example, contrary to our second hypothesis, 
populations starting in agriculture that experienced rapid decreases 
in hot extremes had negative rates of population change, especially 
if they had high starting Tmax positions (ie, high Tmax position + agri-
culture + cooler hot extremes). Additionally, we observed that pop-
ulations in agriculture, and initially in environments where maximum 
temperatures were further from the species’ hot thermal limit, had 
more negative rates of population change in areas that had more 
rapid increases in surrounding SNH (ie, low Tmax position + agri-
culture + SNH gain). These observations may be due to individuals 

recolonizing surrounding areas, which may have been restored 
(Nichols & Grant, 2007), and so moving out of agricultural areas. 
Whilst our analyses reveal several very important results, one limita-
tion is that we are not able to determine how our focal variables are 
influencing population trends, whether it is through effects on birth, 
death, immigration or emigration rates. The mechanisms underlying 
how populations are influenced by climatic changes, and how their 
climatic positions may interact with the local climatic changes fol-
lowing land- use change are complex (Williams & Newbold, 2020). 
Further work is needed to explore the mechanisms underlying the 
influence of climatic position and interactions with land- use and cli-
mate change on population trends.

Regarding populations’ precipitation positions, we found that 
our results using population time- series data contrasted in some 
respects when compared to a past space- for- time analysis (using 
data from the PREDICTS Project database; Williams & Newbold, 
2021). The space- for- time analysis suggested that agricultural land 
uses had little impact on population abundance (relative to that in 
natural habitat) in environments where precipitation in the driest 
month was close to the species’ dry limit (Williams & Newbold, 
2021). However, here we observed that agricultural populations 
initially in environments where precipitation in the driest month 

F I G U R E  5  The average annual rate 
of population change across different 
starting land- use types, depending on: 
(i) the average annual rate of change in 
climate; and (ii) a population's starting 
climatic position. Climatic variables 
considered were maximum temperature 
of the warmest month (Tmax, a), minimum 
temperature of the coldest month (Tmin, b), 
precipitation of the wettest month (Ppmax, 
c) and precipitation of the driest month 
(Ppmin, d). The x-  and y- axes are truncated 
at the 10th and 90th percentile of sampled 
values of each variable. Contour lines (and 
labels) indicate changes in the average 
annual rate of population change [Colour 
figure can be viewed at wileyonlinelibrary.
com]
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F I G U R E  6  The average annual rate of population change across different starting land- use types, depending on: (i) the average annual 
rate of change in the percentage of semi- natural habitat within a 1- km radius; and (ii) average annual rate of change in climate with regard 
to maximum temperature of the warmest month (°C/year, a), minimum temperature of the coldest month (°C/year, b), precipitation of the 
wettest month (monthly mm/year, c) and precipitation of the driest month (monthly mm/year, d). The x-  and y- axes are truncated at the 10th 
and 90th percentile of sampled values of each variable. Contour lines (and labels) indicate changes in the average annual rate of population 
change [Colour figure can be viewed at wileyonlinelibrary.com]
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was closer to the species’ dry limit (ie, low Ppmin position + agri-
culture) had more negative rates of population change relative to 
populations in more natural habitats. The two types of analysis are 
capturing different attributes of population abundance (a snapshot 
in time vs. temporal trends), and resulting differences may be due 
to the influence of temporal lags, an interaction with global cli-
mate change or the locations of populations in the analyses. First, 
lags in responses to environmental changes (Lira et al., 2019) may 
mean that populations with lower Ppmin positions are initially able 
to tolerate local changes towards drier conditions following land- 
use change, due to drought adaptations for example, but they may 
not be able to sustain numbers if the conditions continue. Lagged 
responses are not captured in most space- for- time analyses (De 
Palma et al., 2018). Second, ongoing drying trends in the tropics 
(Lau & Kim, 2015) may interact with precipitation position to lead 
to more rapid declines for populations with lower Ppmin positions 
(indeed, we observe this in our results above, Figure 5d), a trend 
which may be hidden if the rate of climate change is not consid-
ered. Finally, and perhaps most importantly, most populations in 
our temporal analysis were found at temperate latitudes, and in 
the space- for- time analysis, the pattern regarding Ppmin position 
was much stronger for agricultural populations at tropical latitudes 
(Williams & Newbold, 2021). This emphasizes the need to collect 
more time- series data for tropical populations (discussed further 
below), in order to explore geographic differences. Ultimately, ex-
ploring similar questions using both space- for- time and temporal 
analyses is key.

The land- use type a population was within when their popula-
tion was first measured (starting land- use type: forest, grassland, 
agriculture, or other), and the percentage of surrounding SNH at 
the start of recording, also played vital roles within interactions. 
For example, we observe that, although populations starting in 
forests were generally increasing by around 1% per year, this rate 
was similar for populations with different starting climatic positions 
and experiencing different rates of land- use and climate change. 
This suggests that forests may act as buffers, providing climatic 
conditions and/or habitat quality (eg, due to the thermal buffering 
properties of a canopy layer and the complexity of microhabitats; 
De Frenne et al., 2019; González del Pliego et al., 2016) that pro-
tect populations from surrounding landscape- level (change in SNH) 
and global- level (climate change) environmental changes. Similarly, 
those populations surrounded by higher percentages of SNH at the 
start of recording generally had weaker and less negative popula-
tion trends, suggesting that surrounding SNH can also help buffer 
populations from land- use and climatic changes, across different cli-
matic positions. Conversely, we observed that variation in the rate 
of population change across different climatic positions and rates 
of land- use and climate change was often greater in grassland habi-
tats compared to forest or agriculture. This suggests that grassland 
populations may be especially sensitive to environmental changes. 
The majority of grassland populations were birds, and it has previ-
ously been found that grassland birds respond more strongly than 
forest birds to climatic changes (Jarzyna et al., 2016). In addition, it 

has been highlighted that many grassland bird species may be partic-
ularly sensitive to habitat loss due to being area- sensitive (Herkert, 
1994; Vickery et al., 1994). Overall, this emphasizes that habitat type 
needs to be accounted for within large- scale models analysing the 
impacts of drivers of change across multiple land uses –  otherwise, 
the weight of any driver's influence may be dampened or obscured 
due to the buffering effects of natural habitats.

By analysing time- series data from both the LPD and BioTIME 
database together, not only were we able to analyse over 7,000 
vertebrate populations, but we could also highlight some of the 
differences between the databases, which may contribute to the 
conflicting results between previous studies analysing these da-
tabases separately (eg, Dornelas et al., 2019; WWF 2020). After 
filtering, there were roughly the same number of populations from 
tropical (n = 174) and temperate (n = 193) latitudes from the LPD, 
whereas all BioTIME populations (n = 6,756) came from temper-
ate latitudes. Even though abiotic factors are suggested to have a 
greater impact on species distributions at higher latitudes (Khaliq 
et al., 2017; MacArthur, 1972), the tropics have continuously been 
identified as particularly vulnerable to drivers of change such as 
land- use and climate change (Brook et al., 2008; Newbold et al., 
2020). Further, previous global studies examining the impact of 
local climatic changes following land- use change have found 
greater differences in communities between natural and human- 
altered land uses in tropical than temperate latitudes (Williams 
et al., 2020). Reasons for this include the relative stability (past 
and present) of the tropical climate (Janzen, 1967; Pacifici et al., 
2017), the smaller average range sizes of species within the tropics 
(Stevens, 1989; Thuiller et al., 2005), the fact that tropical spe-
cies are often living closer to their maximum thermal tolerance 
limits (Deutsch et al., 2008; Sunday et al., 2014), and the larger 
proportion of specialist species (habitat and dietary specialists) in-
habiting the tropics (Forister et al., 2015). Consequently, the skew 
of BioTIME data towards temperate assemblages may not give 
an accurate representation of global population trends. Indeed, 
analyses of vertebrate populations of forest specialists from the 
LPD found that the average abundance trends were positive in 
temperate biomes and negative in tropical biomes (Green et al., 
2020). Ideally, we would test whether population trends were in-
fluenced differently by our focal variables depending on whether 
the population was at a tropical or temperate latitude. However, 
there were insufficient tropical data to do so. In our final dataset, 
the LPD contributed populations from 42 countries, whereas the 
BioTIME database contributed populations from just 4 countries 
(the United States of America, Canada, South Africa and Brazil; 
Appendix 2, Figure S1). Historical pressures on biodiversity can 
impact vulnerability to present- day environmental changes 
(Balmford, 1996). Therefore, analyses based on data from a small 
number of countries need to take this into account and, in the case 
of the BioTIME database, the countries contributing data all have 
long histories of environmental changes (although, in the case of 
Brazil, this varies spatially within the country; Goldewijk, 2001; 
Goldewijk et al., 2011; Nehren et al., 2013). Consequently, this 
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may be another reason for disparities between previous studies 
using data from the LPD versus BioTIME database.

Using species’ distribution maps and climate data from 
WorldClim to estimate species’ realized climatic tolerance limits 
meant that we were not able to take into account climatic adapta-
tions over time, intraspecific differences in climatic tolerances, or 
microclimatic conditions. In addition, despite excluding migratory 
species from our dataset, populations may still utilize different local 
habitats (eg, different microhabitats or move across local- scale el-
evations) throughout the year. However, at present, the data are 
not available to include/account for these variables, especially for 
the large number of populations (over 7,000 populations, covering 
almost 350 species) that were included in this analysis. Hopefully, 
it will be possible to account for these variables in future. Further, 
we use estimates of realized climatic tolerance limits, which can be 
influenced by factors other than climate, such as dispersal barriers 
and biotic interactions (HilleRisLambers et al., 2013; Peterson et al., 
2011). Nevertheless, we use these rather than physiological climatic 
tolerance limits because physiological data are available for very few 
species, the metrics produced in laboratory tests are often incom-
parable to one another (due to different measurement procedures), 
and laboratory tests have been criticized for not being reflective 
of real- world conditions (Araújo et al., 2013; Rezende et al., 2014; 
Sunday et al., 2012).

In conclusion, local land- use changes and global climate 
changes are interacting to impact vertebrate population trends 
around the world. Further, these interactions do not impact pop-
ulations uniformly across species’ ranges. Rather, a population's 
climatic position is key within these interactions and can lead to 
the impacts of land- use and climatic changes being intensified or 
dampened, especially within grassland and agricultural land uses. 
Consequently, we highlight the importance of taking a popula-
tion's climatic position into account, not just when studying the 
impacts of climate change (Soroye et al., 2020), but also land- use 
change. Even though the effects of these interactions are com-
plex, and further work is needed on the mechanisms underlying 
how these variables influence populations, our results allow us to 
identify populations that may be at more risk of decline. For ex-
ample, our results highlight that populations in agricultural land 
uses where maximum temperatures were closer to their hot ther-
mal limit, declined at faster rates when there had also been rapid 
losses in surrounding semi- natural habitats. In order to prevent 
further population declines and mitigate the impact of anthropo-
genic changes, we cannot ignore interactions between drivers of 
change, and we must account for variation across species’ ranges 
in responses to local and global environmental changes in both 
local conservation strategies and global models.
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