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Abstract: Although the public desire for healthy environments is clear-cut, the science and management of
ecosystem health has not been as simple. Ecological systems can be dynamic and can shift abruptly from
one ecosystem state to another. Such unpredictable shifts result when ecological thresholds are crossed; that is,
small cumulative increases in an environmental stressor drive a much greater change than could be predicted
from linear effects, suggesting an unforeseen tipping point is crossed. In coastal waters, broad-scale seagrass
loss often occurs as a sudden event associated with human-driven nutrient enrichment (eutrophication). We
tested whether the response of seagrass ecosystems to coastal nutrient enrichment is subject to a threshold
effect. We exposed seagrass plots to different levels of nutrient enrichment (dissolved inorganic nitrogen) for
10 months and measured net production. Seagrass response exhibited a threshold pattern when nutrient
enrichment exceeded moderate levels: there was an abrupt and large shift from positive to negative net leaf
production (from approximately 0.04 leaf production to 0.02 leaf loss per day). Epiphyte load also increased
as nutrient enrichment increased, which may have driven the shift in leaf production. Inadvertently crossing
such thresholds, as can occur through ineffective management of land-derived inputs such as wastewater
and stormwater runoff along urbanized coasts, may account for the widely observed sudden loss of seagrass
meadows. Identification of tipping points may improve not only adaptive-management monitoring that seeks
to avoid threshold effects, but also restoration approaches in systems that have crossed them.
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La Búsqueda de Umbrales del Colapso Ambiental en las Praderas de Pastos Marinos

Resumen: Aunque el deseo público por un ambiente saludable es más que claro, la ciencia y el manejo
de la salud de los ecosistemas no han sido sencillos. Los sistemas ecológicos pueden ser dinámicos y pueden
cambiar súbitamente de un estado ambiental a otro. Dichos cambios impredecibles suceden cuando se cruzan
los umbrales ecológicos; esto es, pequeños incrementos acumulativos de un estresante ambiental conllevan
a un cambio mucho mayor del que podŕıa pronosticarse a partir de efectos lineales, sugiriendo que se ha
cruzado un momento cŕıtico imprevisto. En las aguas costeras, la pérdida de pastos marinos a gran escala
ocurre comúnmente como un evento repentino asociado con el enriquecimiento de nutrientes causado por
humanos (eutrofización). Probamos si la respuesta de los ecosistemas de pastos marinos al enriquecimiento
costero de nutrientes está sujeta al efecto umbral. Expusimos lotes de pastos marinos a diferentes niveles de
enriquecimiento de nutrientes (nitrógeno inorgánico disuelto) durante diez meses y medimos la producción
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neta. La respuesta de los pastos marinos exhibió un patrón de umbral cuando el enriquecimiento de nutrientes
excedió niveles moderados: hubo un cambio mayor y súbito de positivo a negativo de producción neta de
hojas (de aproximadamente 0.04 de producción de hojas a 0.02 de pérdida de hojas por dı́a). La carga
de epı́fitas también incrementó conforme incrementó el enriquecimiento de nutrientes, lo que pudo haber
conducido el cambio en la producción de hojas. Cruzar dichos umbrales de manera inadvertida, como puede
ocurrir por medio del manejo inefectivo de contribuciones derivadas del suelo como las aguas negras y
la escorrent́ıa de lluvia a lo largo de las costas urbanizadas, puede representar la pérdida de praderas de
pastos marinos observada ampliamente. La identificación de los momentos cŕıticos puede mejorar no sólo
el monitoreo del manejo adaptativo que busca evitar los efectos umbral, sino también las estrategias de
restauración en sistemas que ya han cruzado estos umbrales.

Palabras Clave: cambio de fase, eutrofización, momento cŕıtico, nutrientes, pérdida de hábitat

Introduction

The concept of ecological thresholds emerged in the
1970s from theoretical models and empirical observa-
tions of dramatic changes in ecosystems (Holling 1973;
May 1977). It suggests ecological systems are susceptible
to abrupt change (e.g., in quality or property), and small
changes in environmental conditions produce large re-
sponses (Groffman et al. 2006; Suding & Hobbs 2009).
When a threshold is recognized the stressor can be man-
aged (e.g., nitrogen pollution) such that it does not ex-
ceed the point past which change is observed. Where
they are unknown, small shifts in environmental stressors
could elicit unexpected ecosystem change (e.g., grass-
lands to woodlands and coral- to algal-dominated systems)
(Scheffer et al. 2001). Although threshold effects are well
established in theory (Groffman et al. 2006; Suding &
Hobbs 2009), they are poorly validated in the field. The
major research challenge is to identify when systems are
approaching their tipping point, a critical precursor to
predicting loss (i.e., early warning signals, Scheffer et al.
2009) and the stabilizers against loss (i.e., the system’s
capacity to resist) (Connell & Ghedini 2015). This feeds
into the ultimate goal of improving monitoring for adap-
tive management and determining whether management
goals are being met (Groffman et al. 2006).

Seagrass meadows are renowned for providing critical
ecosystem services and habitat for marine species (Orth
et al. 2006). Catastrophic losses in seagrass meadows
have been documented worldwide over recent decades
(Waycott et al. 2009) and are often characterized by the
sudden unexpected disappearance of entire meadows
(e.g., Cambridge & McComb 1984). This sudden loss of
seagrass is often linked to heavy nutrient loading (i.e.,
eutrophication) in coastal waters (review by Burkholder
et al. 2007), which drives a self-accelerating cascade of
direct and indirect effects commonly associated with ex-
cessive epiphyte proliferation (Walker & McComb 1992;
Duarte 1995; Mabrouk et al. 2013). But, their suscepti-
bility to threshold effects is unknown. These effects can
overpower buffering processes that maintain resistance
so that loss is sudden rather than gradual. This leads to
the question of whether this sudden loss is a result of

seagrass surpassing a threshold in response to increasing
nutrient load.

Considerations of threshold effects have rarely moved
beyond the development of theory to test in the field.
The sudden loss of seagrass meadows suggests there is a
threshold effect and represents a case that can be used
to validate their existence in situ. We tested whether a
gradual increase in environmental stress leads to gradual
decline or sudden loss (i.e., threshold effect). Specifically,
we investigated whether incremental increases in nutri-
ents and associated epiphyte cover cause a proportional
reduction in net productivity of seagrass meadows or
whether there is a threshold effect beyond which the
magnitude of change is considerably greater.

Methods

We tested the hypothesis that seagrass switch from
growth (net production of leaves) to decline (net loss
of leaves) across a gradient of nutrient enrichment on a
naturally nutrient-poor coast by exposing plots of Amphi-
bolis antarctica (20 × 20 cm) to 7 levels of controlled
nutrient enrichment for 10 months (n = 5 replicate
plots per enrichment level) (Supporting Information),
which enabled seasonal variation to be encompassed.
The seagrass plots were located 4–6 m deep and 2 km off-
shore from Lady Bay, Fleurieu Peninsula, South Australia
(35°27′44.4132′′ S, 138°16′9.138′′ E), where background
measures of dissolved inorganic nitrogen (DIN) were be-
low detection limits (0.001 mg/L). Using well-established
methods (McSkimming et al. 2015), we wrapped vary-
ing weights of fertilizer (Osmocote Pro, Scotts, Australia)
in nylon mesh bags and secured them at substrate level
with plastic stakes (see Supporting Information for trans-
lation of fertilizer weight to DIN concentrations in the
field). Plots were separated by a minimum of 2.0 m
to ensure independence of enrichment, based on a
previous field-trial that showed background concentra-
tions occurred within at least 0.5 m of such bags of
Osmocote (Scotts, Australia). The fertilizer within bags
was replaced at 10-week intervals to ensure continuous
enrichment.
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Figure 1. Leaf turnover (leaf production minus leaf drop) and epiphyte cover (mean [SE]) of seagrass (Amphibolis
antarctica) exposed in situ to increasing levels of nutrient enrichment (DIN, dissolved inorganic nitrogen). The
modeled curves are based on the dose-response model (Berry & Wallace 1981).

As a proxy measure of seagrass persistence, we mea-
sured net production (i.e., leaf turnover) in situ as the
product of leaf production minus leaf drop (see Methods
in Walker [1985]). Amphibolis antarctica has a number
of shoots with leaf clusters (typically 10–12 leaves each)
that extend from each vertical rhizome. It grows by con-
tinually developing new leaves at the apex of each leaf
cluster and drops older leaves as it grows (see Marbà
& Walker 1999). To quantify leaf production, a nylon-
cable tie was placed above the fifth leaf from the top
of a meristematic apical leaf cluster (n = 2 leaf clusters
per plot), and the number of leaves above the tie were
counted after 10 months. To quantify leaf drop, we af-
fixed ties above the fifth leaf of different clusters (n = 2
leaf clusters per plot), and counted the number of leaves
below the tie. The percent cover of epiphytes on leaf
surfaces was estimated from randomly selected individu-
als (n = 5 per plot). We divided the fifth youngest leaf
from the apical tip into 1 mm2 cells and recorded each
cell as either covered or not covered with epiphytes. We
used analysis of variance to test for differences among the
seven levels of enrichment and post hoc pairwise tests
to identify which of these levels differed from each other
(Supporting Information).

Results

Seagrass exhibited a threshold response to nutrient en-
richment. A cumulative increase in nutrients from 0 to
0.13 mg/L of DIN resulted in little change in leaf turnover,
but past this enrichment level, further increases in nutri-

ents resulted in a switch from net seagrass production to
net seagrass loss (Fig. 1). The switch from positive to neg-
ative leaf turnover occurred when leaf drop increased;
leaf production remained relatively stable under all lev-
els of nutrient enrichment (Supporting Information).
Hence, a threshold effect was evident (between 0.13 and
0.15 mg/L of DIN) as seagrass switched from growth (net
production of leaves) to decline (net loss of leaves). The
cover of epiphytes on seagrass leaves increased gradually
with increasing nutrient enrichment (Fig. 1); leaves had
approximately 50% coverage at the point the threshold
effect was observed.

Discussion

We experimentally demonstrated that a gradual increase
in environmental stress (i.e., nutrient loading) drove a
switch from net seagrass production to net seagrass loss.
Seagrass remained unaffected during gradual increases
in nutrient pollution (minor to moderate enrichment),
but then small cumulative increases in nutrients drove a
much greater consequence than would be predicted from
linear effects (Fig. 2). Hence, an unforseen tipping point
was crossed. The point at which the threshold effect was
manifest in our test system suggests that seagrass mead-
ows are resistant to moderate DIN enrichment (i.e., ter-
restrial runoff from natural and agricultural catchments),
but not major enrichment (i.e., urban catchments)
(Fig. 2). In our study, minor to moderate nutrient enrich-
ment reflected terrestrial inputs from natural and agricul-
tural catchments and major enrichment reflected inputs
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Figure 2. Response of
seagrass meadows (i.e., leaf
turnover) to increasing
nutrient enrichment (i.e.,
dissolved inorganic nitrogen
concentration): (a) minor to
moderate levels of
enrichment (ecosystem
persistence) and (b) small
cumulative increase in
nutrients (moderate to
major levels) that elicit a
threshold effect (ecosystem
loss).

from heavily populated urban catchments (Gorman et al.
2009; McSkimming et al. 2015).

Although the mechanisms by which nutrient pollu-
tion drives seagrass loss is impressively documented (re-
viewed in Burkholder et al. [2007]), the existence of
tipping points changes thinking on management of these
systems. Nutrients are essential for seagrass photosynthe-
sis and growth (i.e., they are a resource), but at elevated
levels they suppress net productivity. Beyond a particu-
lar level of nutrient availability, further enrichment may
no longer support net production, but rather may result
in a negative turnover rate as the balance between leaf
production and drop is disrupted.

Good quality coastal water is a highly valued resource,
worth hundreds of millions of dollars in Australia alone
(e.g., MacDonald et al. 2015). Ongoing economic deci-
sions pivot on the balance between the financial accept-
ability of nitrogen-reduction targets (i.e., taxpayer bur-
den) and ecological outcome relative to thresholds (i.e.,
targets do not over or under deliver ecological improve-
ments). The difficulty is that managers can unwittingly
push a system to the brink whereby stressors continually
increase without signs of stress, and then suddenly an un-
realized threshold is exceeded that leads to a catastrophic
outcome (Foley et al. 2015). In our example, a thresh-
old occurred with Amphibolis antarctica, a species that
forms extensive seagrass meadows in temperate Australia
(Edgar 1997). By recognizing this threshold effect (i.e.,
knowing the point where excess nutrients have the great-
est impact), one can begin to manage for it and minimize
socioeconomic cost. Thereby, the management of nutri-
ent pollution at minor to moderate levels would enable
persistence of seagrass systems and their ecosystem ser-
vices (e.g., nutrient absorption).

Resource enrichment (e.g., nitrogen from terrestrial
runoff or carbon from fossil fuel combustion) represents
a persistent enigma for those who manage biogenic habi-
tats because enrichment often acts as a direct positive
effect (i.e., resource [Burkholder et al. 2007; Connell

et al. 2017]), but it also has an indirect negative ef-
fect (i.e., stressor [Burkholder et al. 2007; Connell et al.
2013]) where it favors fast-growing and opportunistic
competitors (Vitousek et al. 1997). The stressor most
commonly argued or demonstrated for seagrass loss by
nutrient over enrichment is light reduction through stim-
ulation of high-biomass algal overgrowth as epiphytes
(Burkholder et al. 2007). We found that epiphyte over-
growth increased gradually with gradual increases in en-
richment, suggesting the mechanisms that drive loss (e.g.,
light reduction) may mediate the threshold effect. Yet, in
many seagrass systems, the reason for the sudden nature
of change may be as much about tipping points in photo-
physiology associated with epiphytic growth (Bulthuis
& Woelkerling 1983; Gurbisz & Kemp 2014) as it is
about the sudden loss of ecological buffering processes
that mediate their growth (i.e., trophic compensation
[McSkimming et al. 2015]).

Although enrichment stimulates rapid growth of algal
epiphytes, there appears to be a tipping point past which
grazers can no longer control algal biomass on seagrass
(Wetzel & Neckles 1986). In response to enrichment,
herbivores can increase consumption of high-quality al-
gae (Falkenberg et al. 2014) and expand their population
size (Heldt et al. 2016) to buffer against such enhanced
algal production (McSkimming et al. 2015). Such com-
pensatory effects stabilize a system as disturbances inten-
sify, but their collapse drive a self-accelerating cascade
of direct and indirect effects (Duarte 1995) and sudden
loss of resistance (Connell & Ghedini 2015). Hence, a
persistent challenge to identifying thresholds, the point at
which resistance is lost, is the detection of compensatory
processes where the masking effects are immediate and
result in no observable change. In most circumstances,
ecosystems often appear stable because of their natural
inherent resistance to environmental change (Ghedini &
Connell 2016), but where compensatory processes fail
to counterbalance the effect of change, the result may
be unpredictable phase shifts from one state to another.
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Hence, not all meadows will be subject to loss because
of spatial differences in stabilizing processes of ecosys-
tems that compensate for increasing effects of multiple
disturbances (Ghedini et al. 2015).

The idea that ecosystems can switch abruptly to a con-
trasting state is widely accepted (Scheffer et al. 2001),
yet because its inception, based on theoretical models
(Holling 1973; May 1977), these phase shifts have been
rarely documented. Although predicting threshold ef-
fects is notoriously difficult, because of a multitude of
interacting processes that operate over very different
scales of space and time, we identified a tipping point
relevant to catchment management. By identifying these
threshold effects, we sought to account for the widely
observed sudden loss of seagrass meadows and to inform
ongoing managerial judgments that necessarily balance
financial acceptability of nitrogen-reduction targets with
outcomes sought by the public.
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