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Abstract. We test the validity of applying the alternative stable state paradigm to account
for the landscape-scale forest/non-forest mosaic that prevails in temperate Tasmania,
Australia. This test is based on fine-scale pollen, spore, and charcoal analyses of sediments
located within a small patch of non-forest vegetation surrounded by temperate forest.
Following nearly 500 years of forest dominance at the site, a catastrophic fire drove an
irreversible shift from a forested Cyperaceae–Sphagnum wetland to a non-forested
Restionaceae wetland at ca. 7000 calibrated (cal) yr BP. Persistence of the non-forest/
Restionaceae vegetation state over 7000 years, despite long fire-free intervals, implies that fire
was not essential for the maintenance of the non-forest state. We propose that reduced
interception and transpiration of the non-forest state resulted in local waterlogging, presenting
an eco-hydrological barrier to forest reestablishment over the succeeding 7000 years. We
further contend that the rhizomatous nature of the non-forest species presented a reinforcing
eco-physical barrier to forest development. Our results satisfy a number of criteria for
consideration as an example of a switch between alternative stable states, including different
origin and maintenance pathways, and they provide insights into the role of threshold
dynamics and hysteresis in forest–non-forest transitions.

Key words: alternative stable states; Australia; fire; forest; hysteresis; non-forest; paleoecology; regime
shift; Tasmania.

INTRODUCTION

Large sudden shifts in ecosystem states, such as

sudden shifts between forest and grassland, occur when

an ecological system crosses a threshold (Scheffer et al.

2001, Scheffer and Carpenter 2003). Such shifts in

ecosystem states can have serious ramifications for

ecosystem functioning; for example, forests have a

substantially higher carbon storage potential relative to

grasslands (Casini et al. 2009). The understanding of

how and why these shifts occur is, thus, a critical

endeavor. Triggers for shifts across ecological thresh-

olds include large external perturbations, small incre-

mental environmental changes, and internal feedbacks

(Scheffer and Carpenter 2003). Following a catastroph-

ic regime shift, a system may return to its original state

or the system may settle around a new state (Scheffer

and Carpenter 2003). This latter situation may arise

from the existence of alternative stable ecosystem

states.

The model of alternative stable states is often

invoked to account for the persistence of different

species assemblages within the same environment

(Petraitis and Latham 1999). Shifts between stable

ecosystem states occur when (1) a critical threshold is

crossed that results in the removal of species required

for the self-maintenance of one state, (2) a species that

initiates a switch to an alternative state arrives, and (3)

the new species assemblage is capable of self-mainte-

nance for more than one generation (Connell and

Sousa 1983, Petraitis and Latham 1999, Scheffer et al.

2001, Scheffer and Carpenter 2003). In terrestrial

vegetation systems, alternative stable states often

manifest spatially as sharp transitions in an assem-

blage/physiognomic state (Wilson and Agnew 1992),

while temporal shifts may manifest as historical

discontinuities in vegetation communities that may be

represented as jumps in time-series data (Scheffer and

Carpenter 2003). Despite the recent widespread appli-

cation of the alternative stable state model to a range of

natural systems (e.g., Scheffer et al. 1993, Scheffer and

Carpenter 2003, Petraitis and Dudgeon 2004, Warman

and Moles 2009, Odion et al. 2010, Hirota et al. 2011,

Mayer and Khalyani 2011), demonstrating that the

same site conditions can support alternative states in

terrestrial vegetation systems is far from easy (Petraitis

and Latham 1999, Schröder et al. 2005, Odion et al.

2010). A complicating factor in terrestrial vegetation

systems is demonstrating stability: the ability of the

vegetation state to maintain itself through more than
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one generation (Connell and Sousa 1983, Peterson

1984). This problem is most salient in long-lived

vegetation systems, such as forests and shrublands,

where generational times are long. Such systems

require novel approaches to gathering the data needed

to understand the underlying mechanisms governing

their apparent stability (e.g., Warman and Moles 2009,

Odion et al. 2010, Hirota et al. 2011, Jeffers et al. 2011).

Here, we use paleoecology to reconstruct a regime shift

between temperate forest and non-forest vegetation

states in the southern hemisphere.

Mosaics of forest, savanna, and grasslands have been

used as a model system for exploring the efficacy of the

alternative stable states model for terrestrial landscapes

(Hirota et al. 2011, Lehmann et al. 2011, Mayer and

Khalyani 2011, Staver et al. 2011). In this system,

vegetation transitions between three states (forest,

savannah, and grassland) according to feedback mech-

anisms related to rainfall and fire (Mayer and Khalyani

2011). Drawing on the state and transition concepts put

forward for the forest–savannah–grassland system and

the early work of Jackson (1968) in Tasmania, Wood

and Bowman (2012; see also Wood et al. 2011a, b)

framed the vegetation landscape of temperate southwest

Tasmania in the alternative stable states framework.

This system has four vegetation states: rain forest,

eucalypt forest, sclerophyll shrubs, and moorland.

Rainforest and eucalypt forest in southwest Tasmania

are sensitive to frequent fires, but they produce a

considerable amount of fuel that is flammable when

dry (particularly eucalypt forest). The forest state is

maintained by an infrequent fire regime (70–400 year

fire-return interval for eucalypt forest and .400 year

fire-return interval for rainforest) that has a twofold

effect: (1) the establishment of slower growing trees

relative to non-forest species and (2) the accumulation of

soil nutrients that are essential for forest development in

this extremely oligotrophic region (Jackson 1968, Pyrke

and Marsden-Smedley 2005, Bowman and Wood 2009,

Wood and Bowman 2012). These positive feedbacks

between fire, vegetation, and soil characteristics engen-

der an inertia to change in these vegetation states, but

repeat fires or high severity fires can trigger transitions

between vegetation states.

While there is evidence for fire–vegetation–soil feed-

backs that reflect the mechanisms of self-maintenance in

this system (Wood and Bowman 2012), the factors

leading to the establishment of these alternative

vegetation states remain untested (i.e., the problem of

‘‘origin’’ [Petraitis and Latham 1999]). Only one study

unequivocally documents the establishment of non-

forest vegetation in place of forest in this region, but

the factors leading to the establishment of non-forest at

that site (the origin) are unknown (Ellis and Thomas

1988). Moreover, while fire clearly plays a key role in

this vegetation landscape, relatively little attention has

been given to the potential role of other factors, such as

hydrology, in maintaining alternate vegetation states in

this system (Pemberton 1989). Anecdotal information

on the role of hydrology in temperate forest–non-forest

dynamics can be drawn from other high-rainfall

temperate regions, where permanent transformations

from forest to non-forest are observed after forest

removal and are explained by reduced transpiration

rates under forest canopies relative to non-forest (Dı́az

and Armesto 2007). The altered transpiration regime

results in soil waterlogging and excludes tree seedling

reestablishment (Dı́az and Armesto 2007). While not

explicating a mechanistic pathway, Pemberton (1989)

invoked hydrology as a possible factor in the apparent

inability of forest to encroach upon some non-forest

patches in the humid landscape of Tasmania. However,

the influence of hydrology in this system has been largely

ignored.

Here, we examine the roles of fire and hydrology in

the origin and maintenance of forest and non-forest

vegetation states by reconstructing vegetation and fire

history over the last 7500 years of a small (,18 ha)

moorland (non-forest) patch surrounded by forest on

the Gog Range in Tasmania, Australia. The plateau of

the Gog Range is characterized by a series of discrete

non-forest patches nested within a larger forest matrix

(Fig. 1). Paleoecological research from within a patch of

moorland on the Gog Range reveals that at least parts

of the plateau that now host moorland were occupied

by forest during the mid Holocene, with fire implicated

in the permanent transition from forest to non-forest

(Webb et al. 1994). We focus on multi-decadal scale

dynamics close to a forest–non-forest boundary and

specifically ask: (1) What are the extrinsic factors

leading to the establishment of non-forest in place of

forest in this temperate system (i.e., the problem of

origin)? (2) Do forest and non-forest represent alterna-

tive stable states in this system? and (3) What are the

mechanisms of self-maintenance of vegetation states in

this system?

METHODS

To reconstruct vegetation and fire history over the last

7500 years on the Gog Range (4183002800 S, 1468230500 E),

we retrieved a 94-cm core from Granta Pools using a D-

section corer. The Gog Range is a low (;750 m) 13-km

range that is crested by a flat narrow plateau. The

climate is humid, with an annual winter dominant

rainfall of 1200 mm. The Granta Pools are surrounded

by a ,18-ha patch of non-forest moorland (one of many

that line the plateau), and tall Eucalyptus forests with an

understory of mesophyte wet forest and rainforest

species (temperate eucalypt/wet sclerophyll forest) cloak

the northern and southern slopes of the Gog Range,

growing to within 120 m of Granta Pools (Fig. 1). The

site occupies a shallow depression in the Ordovician

conglomerate bedrock that has filled in with organic

sediments. Ordovician conglomerate, along with Pre-

cambrian quartzite, are low nutrient yielding and highly

resistant rock types that dominate the geology of west
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and southwest Tasmania (Woodward et al. 1993), giving

rise to the extreme oligotrophy that characterizes this

landscape.

To enable the vegetation and fire reconstruction, we

analyzed contiguous 1 cm thick sediment samples from

the Granta Pools core for pollen, spores, and charcoal

following standard protocols (Faegri and Iversen 1989,

Whitlock and Larsen 2001). Pollen percentages were

calculated with two sums: one that includes all taxa and

the other that includes terrestrial taxa only. Pollen

analysis is a powerful tool for vegetation reconstruc-

tion that relies on an appreciation of the relationship

between pollen deposition and vegetation (Bunting

2003). Of particular relevance to the present study are

the well-established depositional characteristics of

wetland and arboreal pollen types: wetland pollen

types are rarely transported far from their source plants

and are good indicators of local wetland dynamics

(e.g., Bunting 2003), while arboreal pollen types can be

grossly over represented in pollen spectra relative to

their presence in the vegetation. Critically, all key tree

pollen types in Tasmania are over represented in the

modern pollen rain (Macphail 1979, Fletcher and

Thomas 2007).

Fletcher and Thomas (2007) conducted a thorough

numerical analysis of pollen–vegetation relationships in

western Tasmania that is vital for interpreting pollen

data in this region in terms of vegetation. The key

relevant findings of that study for the present paper are

summarized here. The principal rain forest species in

Tasmania, Nothofagus cunninghamii, can comprise up

to 50% of the terrestrial pollen sum of pollen spectra

from non-forest vegetation. Eucalyptus, the dominant

tree type in the study area, can contribute more than

30% of the terrestrial pollen sum at sites where

Eucalyptus species are absent from the local vegetation.

Likewise, the other dominant arboreal taxon at Granta

Pools, Pomaderris apetala, can register values higher

than 20% of terrestrial pollen sums at sites where it is

absent from the local flora (Fletcher and Thomas

2007). In contrast, non-forest taxa (Gymnoschoenus

sphaerocephalus, Melaleuca, and Leptospermum/Baeck-

ea) are uniformly underrepresented in the modern

pollen rain of Tasmania and are rarely encountered in

the pollen spectra of sites from which they are absent

(Fletcher and Thomas 2007). Indeed, the key moorland

plant species, Gymnoschoenus sphaerocephalus, registers

pollen values as low as 5% at sites where it composes

almost 60% of the local vegetation (Fletcher and

Thomas 2007).

The accumulation rates of pollen and spores (PAR)

and charcoal (CHAR), which reveal changes in the

actual influx of pollen or charcoal independent of

variables other than time, were calculated using ages

interpolated to each sample level based on an age–

depth model derived from four radiocarbon ages.

Radiocarbon ages were converted to calibrated years

(cal yr BP) using the southern hemisphere calibration

curve (McCormac et al. [2004]; see Fig. 5 and Table 1).

Detrended correspondence analysis (DCA) was used to

identify compositional trends in the (relative) terrestrial

pollen dataset using PCOrd 4.27 (McCune and

Mefford 1999). To reconstruct the local fire history,

we employed CharAnalysis software (Higuera et al.

2009). The CHAR data was interpolated to the median

sample resolution (63 yr/sample) for the analysis of

CHAR peak frequency. Charcoal peaks, a proxy for

local fire episodes (Higuera et al. 2010), were identified

as the positive residuals exceeding a locally fitted

CHAR background model (400-year window).

RESULTS

In this section, we present a detailed analysis of the

period between ca. 7500 and 6500 cal yr BP, highlighting

the critical transition between forest and non-forest at

the site. The dominant pollen and spores between ca.

7400 and 7000 cal yr BP are Cyperaceae and Sphagnum

(aquatic/wetland component) and Eucalyptus and Po-

maderris (terrestrial component). Peak CHAR values at

ca. 7000 cal yr BP coincide with a spike in Botryococcus,

a replacement in the wetland flora of Cyperaceae by

Restionaceae, and in the terrestrial flora by Leptosper-

mum/Beackea, G. Sphaerocephalus, and Melaleuca.

These latter taxa remain dominant for the remainder

of the record.

Rapidly accumulating peat occurred under a Cyper-

aceae–Sphagnum wetland and a forest dominated by

Pomaderris and other forest elements between ca. 7400

and 7000 cal yr BP (Fig. 2). This 400-year phase

documents a period when the temperate eucalypt forest

that presently cloaks the slopes of the Gog Range

occupied the currently non-forested patch of vegetation

at the Granta Pools site. Our results mirror a lower

resolution pollen record from within moorland on the

Gog Range plateau (Webb et al. 1994). Together these

results imply that significant portions of, if not the

entire, summit plateau hosted temperate eucalypt forest

through this time. Peak CHAR values occur at ca. 7000

cal yr BP (Fig. 3c) coincident with a major, abrupt,

transition in the terrestrial and wetland systems (Figs. 2

and 3b). Cyperaceae replaced Restionaceae as the

dominant wetland taxon around 7000 cal yr BP,

punctuated by a brief (33-year) Botryococcus (a

colonial algae) phase between ca. 7060–7000 cal yr

BP (Fig. 2). This brief algal phase is coincident with

peak CHAR values and a marked drop in Sphagnum

(Fig. 2b), suggesting the destruction of the Cyperaceae–

Sphagnum wetland and the transitory development of

areas of open water prior to the colonization of the site

by Restionaceous species. A shift from high arboreal

pollen values (Fig. 2d) to high values of non-forest

moorland/scrub taxa (Gymnoschoeunus sphaeocephalus,

Melaleuca, and Leptospermum/Beackea) also begins at

ca. 7000 cal yr BP (Fig. 2e), culminating in an arboreal

minimum at ca. 6800 cal yr BP and a maximum of

MICHAEL-SHAWN FLETCHER ET AL.2506 Ecology, Vol. 95, No. 9
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moorland/scrub taxa between ca. 6650 and 6600 cal yr

BP (Fig. 2d, e).

The most salient feature of our data is the abrupt and

unidirectional nature of the transition between forest

and non-forest at ca. 7000 cal yr BP (Fig. 3b). The DCA

of the terrestrial pollen dataset reveals two statistically

significant populations along the main axis of variation

(DCA Axis 1) marking this transition (Figs. 3c and 4): a

population of forest taxa prior to the transition and a

population of moorland/scrub taxa afterwards (Fig. 4).

Following this transition, the non-forest state displays a

remarkable degree of stability throughout the record

(Fig. 3). The stability of the non-forest state occurs,

despite more than 700 years elapsing before another

local fire episode at the site and despite prolonged

periods low fire episode frequency and between 4000 and

1000 cal yr BP (Fig. 3).

DISCUSSION

Forest–non-forest transition

Various feedback mechanisms (Fig. 5) may have

contributed to the changes observed between ca. 7500

and 6500 cal yr BP at Granta Pools, and to the

maintenance of the stable vegetation states (sensu Wood

and Bowman 2012). Each vegetation community may

modify the rate of fuel accumulation and fuel charac-

teristics (and therefore fire frequency), soil nutrient

capital, and light environment in a direction that

enhances its own growth and survival, and simulta-

neously hinders or constrains other vegetation types

(Fig. 5b). The results of the present analysis suggest an

alternate self-maintenance pathway in this system: eco-

hydrology (Fig. 5c). High transpiration rates under

forest canopies in high rainfall regions facilitate the

TABLE 1. Radiocarbon dating results.

Lab code
Depth
(cm)

Radiocarbon age
(14C years)

Median probability
(cal yr BP)

Lower range
(cal yr BP)

Upper range
(cal yr BP)

S-ANU4630 19 1590 1429 1332 1530
S-ANU4631 42 4675 5400 5089 5467
S-ANU4632 67 6185 6980 6907 7160
S-ANU4633 89 6470 7347 7254 7429

Notes:Upper and lower ranges are based on 2-sigma error ranges. Calibrations (cal yr BP) are based on the southern hemisphere
calibration curve of McCormac et al. (2004).

FIG. 1. An image of the Gog Range plateau showing the coring site within Granta Pools and highlighting (bordered in white)
the non-forest vegetation on the plateau. The X marks the location of the coring site within Granta Pools. The location of the core
site in Tasmania is shown in the inset.
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aeration of soils that are susceptible to waterlogging,

which can inhibit tree establishment (Dı́az and Armesto

2007). Eucalyptus species exhibit remarkably high

evapo-transpiration rates (Sharma 1984), and the

persistence of temperate eucalypt forest at Granta Pools

under a wet climate regime prior to 7000 cal yr BP is

consistent with high transpiration rates under forest

vegetation. Temperate eucalypt forest in Australia is

sensitive to frequent fire, but produces a considerable

amount of flammable fuel and is maintained by an

infrequent (70–400-year fire-return interval) fire regime.

While able to persist as a distinct vegetation state for

millennia (Macphail 1984), under certain conditions

(dry summer–autumn), temperate eucalypt forest is a

highly flammable vegetation type with a high fuel load

(Bradstock 2010). The fire at ca. 7000 cal yr BP at

FIG. 2. Pollen and spore data from Granta Pools from 7500 to 6600 calibrated (cal) yr BP. The dashed vertical line indicates the
critical transition between forest and non-forest at the site.

MICHAEL-SHAWN FLETCHER ET AL.2508 Ecology, Vol. 95, No. 9

 19399170, 2014, 9, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1890/12-1766.1 by U

niversity O
f C

entral Florida, W
iley O

nline L
ibrary on [01/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Granta Pools had a catastrophic local impact, destroy-

ing the then extant forest system and resulting in an

immediate transition to non-forest vegetation at the site

(Figs. 3b and 5c and d).

The destruction of the forest vegetation and Cyper-

aceae–Sphagnum wetland by fire, facilitated the invasion

of the site by Restionaceae species and, subsequently, by

the rhizomatous sedge G. sphaerocephalus. Restionaceae

species commonly occupy the most waterlogged areas in

Tasmanian non-forest vegetation (moorland in this case)

and are the principal peat-forming species in many

ponds within moorland vegetation. Elsewhere in the

oligotrophic systems of Tasmania, the resilience of

widespread tracts of non-forest vegetation appears to

be related to a complex suite of feedbacks related to a

high frequency of fire and interactions of fire with soil

nutrients (Fig. 5b; reviewed by Wood et al. [2011]).

However, the low levels of charcoal since the establish-

ment of non-forest vegetation at Granta Pools appear to

discount frequent fire as a factor in the maintenance of

this system.

We suggest two additional feedback mechanisms that

contribute to the inability of forest species to invade the

non-forest system at Granta Pools and elsewhere in

Tasmania (Fig. 5c). The first is related to the effect of

reduced interception and transpiration on the hydrolog-

ic regime of the local non-forest vegetation system.

Observations of increasingly waterlogged soils across

forest–non-forest boundaries are common in high-

rainfall, oligotrophic Tasmania, with most authors

invoking topography (Di Folco and Kirkpatrick 2011)

and a reduced interception and transpiration in non-

forest systems (Brown et al. 1982, Aabay and Berglund

1986, Bowman et al. 1986, Rumpff 2002, Di Folco 2007,

FIG. 3. A time series plot of environmental data over the last 7500 years pertinent to Granta Pools. (a) The linear age–depth
curve based on four radiocarbon ages. Error bars indicate the 2-sigma error range of the calibrated radiocarbon ages. (b)
Ordination axis scores from a detrended correspondence analysis (DCA axis 1) of the terrestrial pollen data set from Granta Pools
(the orange [green] horizontal bar indicates the mean axis value for the non-forest [forest] vegetation states, while the shaded area
indicates two standard deviations from the mean). (c) Charcoal accumulation (gray solid line) and fire episode frequency (red
dashed line) at Granta Pools. The dashed vertical line indicates critical transition between forest and non-forest at the site.
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Wood et al. 2011) as key factors in this disparity. At

Granta Pools, reduced transpiration rates due to the

immediate replacement of trees by peat-forming wetland

plants, rhizomatous sedges, and non-forest species

tolerant of waterlogged soils (such as Melaleuca) may

have amplified soil waterlogging in this local topograph-

ic depression, effectively precluding seedling establish-

ment (sensu Dı́az and Armesto 2007). The capacity for

rhizomatous plants to endure, colonize, and dominate

waterlogged terrain (Koncalov 1990) would act as a

positive eco-hydrological feedback that effectively ex-

cludes tree establishment and facilitates maintenance of

waterlogging at the site. Second, the dense sedge swards

that dominate non-forest vegetation at Granta Pools (G.

sphaerocephalus) are likely to exclude trees through

interspecific competition (Fensham and Kirkpatrick

1992). Field and pot experiments have demonstrated

that the development of grass swards in open environ-

ments in Tasmania inhibits the establishment of trees by

blanketing the ground, and if germination occurs,

seedling growth is likely to be inhibited because the

grass root mat imposes a physical barrier to root

development (Fensham and Kirkpatrick 1992, Kube

1993).

A catastrophic regime shift between alternative

stable states?

A call for an application of the alternative stable

state theoretical framework to the vegetation landscape

of the humid regions of Tasmania draws support from

conceptual models (Jackson 1968, Bowman and Jack-

son 1981). It is also consistent with recent studies that

provide tentative (Wood and Bowman 2012) and more

speculative (Fletcher and Thomas 2010) evidence that

forest and non-forest are alternative stable states in the

landscape of western and southern Tasmania. The fire-

driven transition from forest to non-forest vegetation

at Granta Pools, Tasmania, represents a clear example

of a catastrophic regime shift. Catastrophic regime

shifts occur when a regime threshold is crossed in

FIG. 4. Detrended correspondence analysis biplot of the terrestrial pollen data set from Granta Pools. The position of fossil
samples is shown: open circles denote samples with a strong (negative) correlation to forest pollen taxa (green arrows pointing left);
solid circles denote samples with a strong (positive) correlation to non-forest pollen taxa (orange arrows pointing right). The arrow
length indicates the strength of the correlation, and the correlation statistics are listed. Dashed arrows indicate wetland taxa. The
ages indicate the timing of the transition from forest to non-forest.
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response to environmental forcing, and a system

reorganizes around a new basin of attraction (Scheffer

and Carpenter 2003). This type of response can be an

artifact of a non-linear reaction to a gradual environ-

mental change or a response to a stochastic event, such

as fire. Within the alternative stable state paradigm, if a

system has only one basin of attraction (stable state), it

will follow a trajectory back toward that same state

after a perturbation. If there are multiple basins of

attraction (alternative stable states), a sufficiently

severe event will force the system toward an alternative

basin, and the system settles around an alternative

stable state (Scheffer and Carpenter 2003). Such critical

transitions are manifest on either side of a breakpoint

in time-series data (Willis et al. 2010, Jeffers et al.

2011). Our time-series data of vegetation change at

Granta Pools display a clear breakpoint at ca. 7000 cal

yr BP (Fig. 5b), coincident with maximum CHAR

values that document a regime shift from a forest

(temperate eucalypt forest) to a non-forest (moorland)

basin of attraction in response to a stochastic fire

episode (Figs. 4, 5).

FIG. 5. A hypothetical stability landscape (sensu Scheffer et al. 2001) and proposed feedback mechanisms for the alternative
stable states found in the humid landscape of Tasmania based on our interpretation of the Granta Pools data (sensu Wood and
Bowman 2012). (a) A three-dimensional stability landscape that depicts rainforest and non-forest (moorland/scrub) as deep and
resilient basins (with transitions into or out of these basins requiring strong environmental forcing) and temperate eucalypt (wet
sclerophyll) forest as a shallower basin. The dashed line follows the trajectory of the Granta Pools (this study) vegetation system in
response to a catastrophic fire. The position of the ball shows the vegetation state after this stochastic disturbance event, with the
vegetation state now lying within the deep, stable, and resilient non-forest basin. (b and c) The self-regulating internal feedback
mechanisms (symbolized by the dashed circles with arrows) maintaining stability within the forest and non-forest vegetation states:
(b) those depicted by Wood and Bowman (2012) as operating in the landscape of southwest Tasmania and (c) those proposed as
operating at Granta Pools. (d) A summary of the temporal sequence between 7500 and 6500 cal yr BP that lead to the critical
transition between a forest and non-forest vegetation state at Granta Pools following the stochastic fire event. Italic typeface
indicates the proposed internal feedback mechanism for each stable state.
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On the problem of ‘‘origin’’

Broad-scale paleoecological studies of the Tasmanian

forest–non-forest system argue that the application of
fire after the arrival of people to a largely non-forested
landscape through the last glacial stage essentially

deflected post-glacial vegetation development toward
species that could tolerate the altered fire regime and

increasing humidity through the transition to the
succeeding interglacial period (the Holocene): namely

non-forest moorland species (Fletcher and Thomas
2010). Fletcher and Thomas (2010) further contend that

the inherent flammability of non-forest vegetation in this
region was sufficient to maintain non-forest dominance

throughout the climatic vicissitudes of the Holocene to
the present day. While this thesis may hold at the coarse

spatiotemporal scale (landscape and millennial) afforded
by their regional paleoecological synthesis, it is very

likely that transitions between forest and non-forest
occurred at smaller scales of space and time through the

Holocene, resulting from, for example, stochastic fire
events like those we have documented. Underpinning

this notion, and indeed all attempts to account for the
contemporary vegetation landscape of southwest Tas-
mania, is the widespread and untested assumption that

fire is the key factor in the origin of this landscape
mosaic. Importantly, our study is the only study to date

that reveals fire as the causal factor leading to the
establishment of non-forest vegetation in place of forest

in Tasmania. The implication from our data that, once
established, the self-maintenance of non-forest vegeta-

tion at Granta Pools is facilitated via eco-hydrological
and eco-physical feedbacks, whilst in need of empirical

data for conclusive support, is consistent with experi-
mental and observational studies documenting the eco-

hydrological effects of forest removal (e.g., Tallis 1991,
Dı́az and Armesto 2007). Further, the implication that

hydrology, rather than fire, was sufficient for self-
maintenance of the non-forest state corroborates the

notion that self-maintenance pathways can vary from
those that lead to the establishment of an alternative

stable state (Drake 1991). Moreover, in potentially
identifying both the origin and maintenance mechanisms

of this system, we successfully address the concerns of
those who require independent treatment of these key
processes in order to validate the existence of alternative

stable states (Petraitis and Latham 1999).

CONCLUSION

We have documented an unequivocal transition

between forest and non-forest in the humid forest–
non-forest landscape mosaic of Tasmania. Critically, we

have identified different origin and maintenance path-
ways in this regime shift between alternative stable

states. Initially, fire destroyed the then extant forest,
opening the system to an invasion by a suite of non-

forest plant species that altered the local hydrological
and physical environment. The maintenance of the non-

forest state for ;7000 years following the forest–non-

forest transition occurs despite widely varying fire-

regimes, and we postulate that the maintenance of the

non-forest state occurs via eco-hydrological and eco-

physical feedbacks that differ from the origin (fire).
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