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Lakes are often described as sentinels of global change. Phenomena like lake eutrophica-
tion, algal blooms, or reorganization in community composition belong to the most
studied ecosystem regime shifts. However, although regime shifts have been well docu-
mented in several lakes, a global assessment of the prevalence of regime shifts is still
missing, and, more in general, of the factors altering stability in lake status, is missing.
Here, we provide a first global assessment of regime shifts and stability in the productiv-
ity of 1,015 lakes worldwide using trophic state index (TSI) time series derived from
satellite imagery. We find that 12.8% of the lakes studied show regime shifts whose sig-
natures are compatible with tipping points, while the number of detected regime shifts
from low to high TSI has increased over time. Although our results suggest an overall
stable picture for global lake dynamics, the limited instability signatures do not mean
that lakes are insensitive to global change. Modeling the interaction between lake cli-
matic, geophysical, and socioeconomic features and their stability properties, we find
that the probability of a lake experiencing a tipping point increases with human popula-
tion density in its catchment, while it decreases as the gross domestic product of that
population increases. Our results show how quantifying lake productivity dynamics at a
global scale highlights socioeconomic inequalities in conserving natural environments.

regime shift j remote sensing j ecological stability j global change j trophic state index

Ecosystems differ greatly in their dynamics and stability over time, with some display-
ing relative constancy, others varying predictably over seasons, and yet others changing
nonlinearly or unpredictably over longer time periods (1–3). A great deal has been writ-
ten about the potential for lakes and ponds to display dramatic instabilities, including
nonlinear dynamics and regime shifts in response to environmental drivers (4, 5). In
particular, regime shifts triggered by anthropogenic stressors (e.g., warming or eutro-
phication) capture both public and scientific attention because of the severity and
potential irreversibility of the incurred changes. Although regime shifts have been well
documented in a number of lakes (6), the prevalence of regime shifts in lakes on a
global scale remains unknown. With human water security, aquatic food security, and
freshwater biodiversity at stake (7), we ignore to what extent the dynamics of lake pro-
ductivity around the globe are changing. Here, we characterize regime shifts in produc-
tivity in lakes worldwide in order to quantify their prevalence. We also quantify the
coefficient of variation and trend in the variability of lake productivity over time as
metrics of lake stability. Finally, we test how these characteristics of lake productivity
dynamics change as a result of global change drivers, such as climate change, human
population density, and economic activity, to identify which drivers of lake productiv-
ity dynamics are crucial for understanding lake responses in a changing world.
Remote sensing allows the consistent and reproducible assessment of water quality in

thousands of lakes worldwide (8). Remotely sensed data have been used to identify
alternative trophic states in South American shallow lakes (9). In large lakes, remotely
sensed phytoplankton biomass has been shown to respond to climate warming depend-
ing on the lake’s trophic status (10). Although remote sensing avoids human biases
when selecting study systems (11), there are limitations on the size of lakes that can be
studied (SI Appendix, Fig. S1). Multispectral satellite images can quantify a lake’s tro-
phic state index (TSI) based on phytoplankton abundance. TSI can be used as a proxy
of lake productivity, a metric typically associated with ecosystem functioning and lake
dynamics (12). Whereas most work so far has focused on measuring primary produc-
tion and water quality parameters for characterizing the trophic state of a lake (13–15),
TSI allows a comprehensive assessment of changes in the dynamics of lake productivity
that are still missing at a global scale.
Lake trophic state can respond gradually or abruptly to global change. Prolonged

seasonal stratification in deep lakes due to climate warming can induce gradual long-
term changes in lake productivity (16). Smooth or sharp peaks in seasonal or interannual
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productivity patterns are observed in lakes. The occurrence and
duration of algal blooms appear to be increasing (17), and envi-
ronmental change favors changes in plankton composition (18).
Shallow lakes can undergo abrupt shifts to a turbid eutrophic
state following the loss of aquatic macrophytes caused by an
increase in nutrient loading (4). Such regime shifts can be related
to a tipping point response (5). If that is the case, an increase in
variance over time is a telltale sign, as it is associated with a dete-
rioration in the stability of a lake and potentially with tipping
points between alternative stable states (19).
Here, we assess lake productivity dynamics at a global scale.

We investigate how TSI dynamics are changing over time, both
in terms of temporal trends in the mean and variability of TSI
through the study period, as well as in terms of the occurrence
of regime shifts and tipping points. We use methodologically
consistent water quality data of 1,015 lakes worldwide (8) to
assess their trophic state based on lake TSI. From 2002 until
the end of its mission in 2012, the MERIS sensor on board the
Envisat satellite provided images of the Earth’s surface at 300
m spatial resolution. The de-trended TSI time series allows us
to compare lakes with different seasonal patterns (see Materials
and Methods). Moreover, we obtain environmental and socio-
economic covariates to understand how climate (20), human
activity in the catchments, and lake geological and geographical
characteristics (21) affect global trends in lake stability, as well
as the occurrence of regime shifts.
Given that aquatic ecosystems are currently affected by envi-

ronmental change across the globe (20, 22–25), and that they are
sensitive to extreme events (26), it is reasonable to expect that
lakes are becoming less stable over time and have a higher chance
of undergoing regime shifts—related or not to alternative stable
states. Unfortunately, it is currently logistically impossible to con-
duct hundreds of whole-lake studies to estimate their ecological
stability and assess whether a lake has experienced a regime shift.
Instead, we can derive proxies of lake stability by measuring
changes in variability (coefficient of variation and trend in vari-
ance) and by identifying abrupt changes in the pattern of fluctua-
tions of the lake trophic state. While our approach has numerous
advantages for its global scope and cost-effectiveness, the data and
techniques have intrinsic limitations (SI Appendix). Current
remote sensing sensors have resolution limits that constrain our
analysis to large lakes (>6 km2, SI Appendix, Fig. S1). At the
same time, pure observational data cannot conclusively determine
whether a regime shift is related to shifts between alternative sta-
ble states (27, 28). Therefore, we refer to the abrupt changes
observed as candidate regime shifts, and candidate tipping points,
as we identify signals compatible with these processes (Materials
and Methods). Defining true alternative states in the examined
lakes would require additional evidence (28–30).

Results

While a lake’s TSI has been used to classify lakes as potentially
eutrophic or oligotrophic (12), fluctuations of a lake’s TSI in
time could reflect how lake TSI is responding to short-term
perturbations and long-term stressors (SI Appendix, Fig. S2 and
Table S5). High temporal variability in the dynamics of an eco-
system reflects increases in the intensity and/or the number of
stressors and disturbances affecting the ecosystem (2, 31). At
the same time, high temporal variability is a signature of low
ecological stability (32–34). Less stable ecosystems tend to
show higher temporal variability measured as increased variance
or coefficient of variation (35, 36). Moreover, an increase in
variance over time is regarded as an indication of loss of

stability due to slowly changing conditions (37) that may serve
as an early warning of a nearby regime shift (19). The coeffi-
cient of variation over the entire study period measured the
lake’s average stability (Fig. 1A), while the trend in variance
provided a measure of stability change (Fig. 1B). We found
that the coefficient of variation was predominantly low, it followed
a log-normal distribution (mean = 0.178, variance = 0.009),
with most lakes being rather stable (Fig. 1A).

We identified candidate regime shifts in lake dynamics by
first analyzing if lake TSI abruptly changed at a point in time
by comparing whether the mean TSI before and after the
change was significantly different (Fig. 2B and Materials and
Methods). Then, to find which candidate regime shifts might
result from a tipping point between alternative stable states, we
tested whether the TSI variance also increased before the candi-
date regime shift (Fig. 2B and Materials and Methods). Such a
pattern in variance trend reflects a progressive loss of resilience
that has been shown to occur before regime shifts to alternative
stable states (19, 38).

As a whole we found 130 lakes with candidate tipping points,
which represented 12.8% of the 1,015 studied lakes (Fig. 2A).
Lakes that shifted from low to high TSI were more numerous
than lakes that shifted from high to low TSI (94 vs. 73). Also,
37 lakes shifted twice during the observation period. The rela-
tively low reported incidence of candidate tipping points might
also be linked to the stringent criteria we applied here to identify
abrupt changes that could be linked to alternative states
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Fig. 1. Stability of global lake productivity. Each circle represents one of
the 1,015 lakes and the color represents their long-term stability, measured
as the coefficient of variation in the TSI time series (A), and the temporal
trend in stability, measured as trend in TSI variance (calculated as the
Spearman rank correlation between TSI variance and time) (B). In each
map, the insert histogram shows the distribution of measured values.

2 of 6 https://doi.org/10.1073/pnas.2116413119 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 6
5.

56
.3

7.
30

 o
n 

Ju
ly

 3
1,

 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
65

.5
6.

37
.3

0.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116413119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116413119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116413119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116413119/-/DCSupplemental


potentially caused by internal mechanisms (39). When relaxing
this condition, only looking at regime shifts that would only
leave the signature in the mean without influencing the variance,
we find that 28% of lakes show regime shifts that could
be caused by strong external stressors (e.g., storms, nutrient pol-
lution, warming events). We found candidate regime shifts
and tipping points were scattered across all kinds of biomes
(Fig. 2A).
More interestingly, while we found candidate regime shifts

only in 28% of the lakes during the study period, the occur-
rence of candidate regime shifts from low to high trophic states
increased over time (Fig. 2C and Spearman ρ between 0.47 and
0.79, SI Appendix, Fig. S3). These results combined raise ques-
tions about the factors contributing to potential instabilities in
lake phytoplankton biomass dynamics.
By controlling for a number of climatic, socioeconomic, and

geophysical variables (SI Appendix, Table S1), we found that
the probability of a lake experiencing a candidate regime shift
was negatively related to its latitude, with lakes closer to the
equator being less likely to experience regime shifts. We also
found that candidate regime shifts were positively related to the
variance trend and the coefficient of variation (Fig. 3A and SI

Appendix, Table S2). At the same time, the coefficient of varia-
tion was found to be positively correlated with the lake’s lati-
tude and depth but negatively correlated with the average gross
domestic product (GDP) of the human population within the
catchment. In other words, wealthier populations tend to be
associated with more stable lakes, which therefore have a lower
probability of experiencing a regime shift. (Fig. 3A and SI
Appendix, Tables S2 and S3).

The probability of a lake experiencing a candidate tipping
point—when controlling for the same aforementioned variables—
was also found to be negatively related to latitude. Still, the
greatest explanatory power came from socioeconomic factors.
While human density in the catchment increased the probability
of a lake experiencing a candidate regime shift, that population’s
GDP decreased that probability by a similar amount (Fig. 3B
and SI Appendix, Table S4).

Discussion

Our work provides a first-ever assessment of the stability of lake
productivity on a global scale. By analyzing dynamical patterns
of lake TSI in remotely sensed time series from 1,015 lakes
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Fig. 2. Candidate tipping points in lake productivity globally. (A) Each circle represents one of the 1,015 lakes. Empty circles show lakes without signs of can-
didate tipping points, while filled circles represent lakes that shifted from high to low TSI (blue) and lakes that shifted from low to high TSI (red) at some
point in time during the study period. For each lake, we obtain the TSI time series in the period from March 2002 to April 2012, over which we calculate TSI
mean (blue line) and TSI variance (red line) inside a 1-y moving window. A change-point analysis then breaks the time series when an abrupt change occurs
in the mean value of TSI (see Materials and Methods). To be qualified as a candidate tipping point, trend in TSI variance before the change point has to be
positive and significant. Moreover, we do not consider change points 2 y at the beginning and at the end of the time series. (B) The particular example of
the change-point analysis and regime shift detection for Therthar Lake in Iraq, whose location is indicated by the arrow in (A). TSI values are indicated by the
blue time series, while variance is indicated by the red time series. Change points in TSI mean are indicated by dotted vertical lines, but only the second
one meets all the requirements to qualify as a candidate tipping point. The average TSI value between the change points is shown by horizontal orange
lines. (C) The occurrence of candidate regime shifts is increasing over time. The yellow line shows the linear fit as a visual aide. To calculate the number of
candidate regime shifts over time, the time period is discretized in bins. A sensitivity analysis shows that this trend is independent of the width of the time
window over which occurrence was calculated, (SI Appendix, Fig. S3).
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worldwide, we find seemingly limited signatures of global change
negatively affecting the dynamical stability of lake productivity.
This overall positive (i.e., stable) picture appears to be in contrast
to the expectation that global change is having a widespread neg-
ative impact on lake ecosystems. The documented rise in lake
heatwaves is expected to affect lake productivity (26), lake warm-
ing is setting off changes in the occurrence of algal blooms (25)
and the stratification patterns of lakes (16). Moreover, lake pro-
ductivity has been shown to abruptly respond to nutrient load
changes in current and past records (40, 41). However, we find
candidate tipping points in productivity only in 12.8% of lakes
we study. These results seem to agree with a recent meta-analysis
showing that thresholds are rare (42). Setting aside data quality
issues (e.g., length of the time series, gaps, resolution, signal to
noise ratio, see SI Appendix), that pose a priori limitations to
analyzing remote-sense data, this rather low fraction might be

partly explained by the fact that global change effects are not
directly manifested on the dynamics of lake productivity due to
time lags or due to indirect interacting effects. For instance, it has
been shown that warming can increase or decrease lake phyto-
plankton biomass depending on whether warming is affecting pro-
ductivity directly or indirectly through species interactions (10).
Despite recent advances in automated monitoring of aquatic com-
munities (43), we lack ecological data. Still, our results are in
broad agreement with empirical studies that show inconsistencies
in measuring stability changes in lake dynamics, especially in the
vicinity of regime shifts (44, 45).

Yet, the relatively low incidence of lakes with decreasing
stability signatures does not mean that lakes are insensitive to
global change. By simultaneously studying climatic, geophysical,
and socioeconomic lake features and their interactions, our results
show that the drivers of stability are directly or indirectly linked
to human-driven global change. Large lakes, like the ones studied
here, tend to have larger catchments and are affected by larger
human populations (the Spearman rank correlation between
catchment area and lake area in the Hydrolakes database is 0.47,
P < 0.001). Given the positive relationship, we found between a
lake’s probability of experiencing a candidate tipping point and
population density in a catchment, as well as the wide geographi-
cal distribution of lakes experiencing negative trends in stability;
we can conclude that lake instabilities might even become more
common in the future as human population increases. However,
the negative relationship between tipping point probability and
GDP not only shows global and regional inequalities in the access
to nature and the stability of the services it provides. On a positive
note, this evidence suggests that as regional GDP rises, anthropo-
genic impacts on aquatic ecosystems may decline.

Materials and Methods

For a full description of the methods, see SI Appendix, Methods.

State Variables. Lake water quality state variables are obtained from the Coper-
nicus Global Land Service. The Copernicus Global Land Service (https://land.
copernicus.eu) provides bio-geophysical products based on MERIS data, includ-
ing global 10-d averages of lake TSI (46) based on a thoroughly validated
chlorophyl-a retrieval scheme (47). TSI is obtained for 1,015 lakes between
March 2002 and April 2012. We spatially averaged the pixels in each lake
for each point in time to obtain a representative value of the lake’s produc-
tivity. Time points were filtered out if less than 50% of the lake’s surface was
visible for a given 10-d period.

Covariates. At the lake level, we obtain information on geographic coordinates,
lake depth, catchment area, lake volume, and surface water temperature. At the
catchment level, we obtained information about land use cover, precipitation,
human population, and subnational gross domestic product.

Time Series Analysis: Average TSI, Trend in TSI, and TSI Coefficient of
Variation. For each lake’s raw time series, we calculate average TSI, the trend in
TSI measured as the Spearman rank correlation between TSI and time, and TSI
coefficient of variation.

Time Series Analysis: Trend in TSI Variance. In order to calculate the trend
in TSI variance, we first dealt with data gaps and then de-trended the data to
remove the annual cycle and long-term trends.

Dealing with Data Gaps. Data gaps are a direct result of ice or cloud coverage.
as is commonly the case for time series obtained via remote sensing.

We fill in the data gaps in the time series using a bootstrapping approach
inside a 1-y-long moving window centered around the date of interest (SI
Appendix, Fig. S5C). Inside the moving window, we resample the existing values
of TSI. If, for example, the moving window is filled with data only 70%, and 30%
is gaps, then we are doing 500 randomizations using 70% of the data (gaps or
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Fig. 3. Factors affecting the probability of a lake experiencing a candidate
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best supported generalized linear mixed effect models (SI Appendix, Tables
S2–S4). Arrows between variables represent statistically significant effects
of one variable on another. Line and arrow thickness and its label show
the effect size, its 95% CI, and the direction of the relationships. Black lines
represent positive effects, while red lines represent negative effects. Red
circles represent socioeconomic variables, and yellow circles represent
lakes’ physical characteristics.
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not). We, therefore, obtain 500 time series for each lake. For each data point, we
obtain a mean value and its 95% CI, and we are left with no gaps but with an
estimation of the uncertainty of each value.

De-Trending. As a next step, we de-trend the gap-filled time series by removing
the annual cycle based on the whole observation time period (48). For each
lake, we first select all the data from each month separately. Then, we fit a linear
model to the data of each month separately. Finally, we calculate the residuals.
We repeat this procedure for each month, obtaining a time series of residuals.
The residuals time series becomes the time series where we calculate the trend
in variance of the whole time series. In the de-trended time series, we are look-
ing at the residuals of the TSI time series. Therefore, the trend in variance, or
change points, represent deviations of the general pattern trend regardless of
the seasonal pattern or gradual environmental forcing.

Calculating Variance Trend. High variance is commonly regarded in field data
as a lack of stability (2), and it is expected to increase before a tipping point (19).
In order to obtain a time series of variance (SI Appendix, Fig. S5C), variance is cal-
culated inside a 1-y moving window as we did for filling data gaps. Calculating the
variance time series over the gap-filled data ensures that all the data points in the
variance time series are calculated over a population of the same size. Within that
moving window, we calculate the variance over the residuals time series calculated
after de-trending and bootstrapping each of the 500 aforementioned time series.
Taking the average value on each time step for each of the 500 time series gener-
ates an average variance time series. The characteristic variance of each lake is then
calculated as the average value of variance throughout this variance time series.
This variance value is then used to calculate the coefficient of variation.

In order to calculate the trend in variance, we calculate the temporal trend of
each of the 500 variance time series, as the Spearman rank correlation (ρ)
between variance and time. That gives us a distribution of ρ values. In order to
determine whether the trend in the mean is significant, we perform a t test. The
P value of the t test will inform us whether the average trend in variance is sig-
nificantly different from zero. The sign of the average ρ value tells us whether it
is a positive or negative trend. Can you add why you did this?

Change-Point Detection: Regime Shifts and Tipping Points. A regime
shift is defined as an abrupt change in a time series. To identify abrupt changes
in the TSI time series, we first use a change-point detection algorithm (33, 34),
implemented in Matlab R2019a under findchangepts, allowing for a maximum
of three change points. The change-point detection is run over the de-trended
gap-filled time series of TSI, as it requires an equally spaced time series free of
gaps. The change-point algorithm tries to divide the time series into regions by
minimizing the sum of the residual (squared) error of each region from its local
mean. In the case of the TSI value, since we are interested in changes in the
mean, the function to fit is an intercept representing the mean value (Fig. 1B).
We exclude change points that occur in the first 2 or the last 2 y of the time
series since we do not have enough information before or after the change point
to be sure that it is a true abrupt shift.

Second, we determine whether each of the change points represents a candi-
date regime shift. For each change point, we calculate its abruptness. We define
abruptness a as

a =
jsj

0:5ðσb + σaÞ ,

where jsj is the absolute value of the difference between the average TSI before
and after the change point, and σb and σa are the SD of TSI before and after the
change point, respectively (49). We consider a candidate regime shifts those
change points whose abruptness is larger than 1 (SI Appendix, Fig. S6). More-
over, to see if those changes represent a candidate regime shift, the mean of the
state variable before and after the change point must be not only different, but
they should come from different distributions. To test whether this is the case,
we perform a Welch t test where the two populations are the time series frag-
ments: the first fragment spans the time between the previous change point
(or the beginning of the time series) and the change point of interest, and the
second fragment spans the time after the change point of interest to the next
change point (or the end of the time series). A candidate regime shift means
that the TSI before the change point is significantly different (P < 0.05) from the
mean after the change point. Including a statistical test to assess the differences
in mean allows us to rule out those change points where there might be an
abrupt change, but then the mean slowly changes back to the previous values
before the change point.

Finally, we are interested in identifying regime shifts that might represent tip-
ping points between alternative stable states. To do so, we estimate the trend in
the variance of TSI only in the period before each candidate regime shift and
leading up to it (as we describe in SI Appendix, Methods). If the trend is signifi-
cantly positive, we consider a candidate regime shift as a candidate tipping
point.

Statistical Analysis. To determine what climatic, geologic, and anthropogenic
variables explain the probability of a lake experiencing a candidate regime shift
or a candidate tipping point, we used generalized mixed-effects models using a
binomial distribution to fit the model to the data by maximizing log-likelihood.
The response variable is either 1 (the lake has experienced a candidate regime
shift) or 0 (it has not). The models were structured such that the probability of
experiencing a candidate regime shift or a candidate tipping point is explained
by climate (temperature and precipitation), catchment and lake properties, as
well as anthropogenic variables (population density and GDP). All variables used
are shown in SI Appendix, Table S1. All fixed effects were scaled. Variables
were also log-transformed when necessary. This first analysis showed that the
coefficient of variation significantly increased the probability of a lake experienc-
ing a candidate regime shift. Subsequently, a separate generalized mixed-effect
model was performed to explain the coefficient of variation using the same
variables input variables. The models were simplified by removing the non-
significant variables sequentially. In all models, we used the lake’s identification
as a random factor, acknowledging in this way intrinsic differences between
lakes.

Data Availability. All code and data can be downloaded from https://doi.org/
10.25678/0004W8.

[Time series and code] data have been deposited in [ERIC] (https://doi.org/
10.25678/0004W8).
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