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Abstract
Drought-induced treemortality has recently received considerable attention.Questions have arisen
over the necessary intensity and duration thresholds of droughts that are sufficient to trigger rapid
forest declines. The values of such tipping points leading to forest declines due to drought are presently
unknown. In this study, we have evaluated the potential relationship between the level of tree growth
and concurrent drought conditions with data of the tree growth-related ringwidth index (RWI) of the
two dominant conifer species (Pinus edulis andPinus ponderosa) in the SouthwesternUnited States
(SWUS) and themeteorological drought-related standardized precipitation evapotranspiration index
(SPEI). In this effort, we determined the binned averages of RWI and the 11month SPEIwithin the
month of July within each bin of 30 of RWI in the range of 0–3000.We found a significant correlation
between the binned averages of RWI and SPEI at the regional-scale under dryer conditions. The tip-
ping point of forest declines to drought is predicted by the regressionmodel as SPEItp =−1.64 and
RWItp = 0, that is, persistence of thewater deficit (11month)with intensity of−1.64 leading to negli-
gible growth for the conifer species.When climate conditions are wetter, the correlation between the
binned averages of RWI and SPEI is weakerwhichwe believe ismost likely due to soil water and
atmosphericmoisture levels no longer being the dominant factor limiting tree growth.We also illus-
trate a potential application of the derived tipping point (SPEItp =−1.64) through an examination of
the 2002 extreme drought event in the SWUS conifer forest regions. Distinguished differences in
remote-sensing basedNDVI anomalies were found between the two regions partitioned by the
derived tipping point.

1. Introduction

The significant carbon sink that the world’s forests
represent plays a substantial role in balancing global
carbon budget as well as influencing fluxes within
other related reservoirs. However, the world’s forests
are being lost at a relatively rapid rate, as consequences
of direct deforestation and climate-driven forest
degradation (Contreras-Hermosilla 2000, Lambin
et al 2003, Bonan 2008). The climate-driven forest
declines are widely expected to increase in a warming

world (Allen et al 2010, Zhao and Running 2010,
Williams et al 2013, Wei et al 2014). Physically, this is
because hot air can hold more water vapor, increasing
atmospheric evaporative demand and duration
between consecutive precipitation events (likely
increasing severity of floods and droughts). Ecologi-
cally, trees suffer heat stresses and potential water
deprivation by heat-driven drought as temperature
approaches and surpasses certain levels, resulting in
drought-inducedmortalities.Widespread treemortal-
ity induced by recent heat waves and droughts has
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been documented (Van Mantgem et al 2009, Allen
et al 2010). This warmer climate-induced tree mortal-
ity is of concern because it may play a key role in a
climate-carbon positive feedback system. Bothmodel-
ing (Williams et al 2013) and observations (Yi
et al 2010) have demonstrated that as temperature is
above a certain threshold values, terrestrial carbon
uptake is limited by relative water availability. Recent
climate data show that more than half of the land
surface is drying and the aerial extent which is
experiencing this negativemoisture balance is expand-
ing with the warming climate (Yi et al 2014). A
deduction from the above modeling and FLUXNET
data re-analysis is that the rate of atmospheric CO2

transfer to land is expected to decrease, thus, resulting
in further warming and drying. Drought-induced tree
mortality has been shown to greatly reduce terrestrial
carbon uptake (Zhao and Running 2010). However,
the relationship between tree mortality and drought is
reported to be more complex than that between
grassland production and drought (Yi et al 2012). This
is thought to be mainly due to the greater ability of
trees to access water sources at greater depths leading
to lower sensitivity to moisture levels in shallow soil
horizons. Therefore, quantitative determination of
what level of available moisture is sufficient to induce
drought-related tree mortality is challenging and
critical to understanding on the potential positive
feedback to greater global warming.

Several lines of efforts have recently been made to
quantify potential relationships between large-scale
tree mortality and climate conditions by: (1) examin-
ing correlations between tree abundance in basal areas
experiencing extreme drought conditions (e.g. Floyd
et al 2009); (2) identifying response time-scales of for-
est to drought conditions (e.g. Vicente-Serrano
et al 2013); (3) empirical-based predictions of tree-
ring growth width as functions of warm-season vapor-
pressure deficits and cold-season precipitation at
regional-scales (Williams et al 2013) or as a function of
Palmer drought severity indices (PDSI) (Ogle
et al 2000); (4) using both empirical and process-based
models to examine the responses of trees to droughts
(McDowell et al 2013), and (5) site-specific ecophysio-
logical studies, such as Breshears et al (2008), in which
predawn water potential was measured before and
during severe drought over more than a decade and
associated with mortality of pinyon pine. Another
approach is comparison of growth history between
trees that died during drought and trees that lived,
such as Macalady and Bugmann (2014) for pinyon
pine and Kane and Kolb (2014) for montane conifers
in the Southwestern US (SWUS). Most of these efforts
have focused on coniferous forest of the SWUS pri-
marily due to findings that tree mortality rates in
SWUS have rapidly increased in recent decades with
the warming climate (Van Mantgem et al 2009, Wil-
liams et al 2013) and the coniferous forest in these
semiarid regions are usually highly resistant to

drought (Vicente-Serrano et al 2013). No doubt, all
these studies have advanced knowledge of forest
decline to drought. However, using easily observed
meteorological variables in combination with trees’
physiological variables to predict possible drought-
induced mortality is rare (Anderegg et al 2013). Here,
we are looking for a relationship between a meteor-
ological drought index and tree growth rate, by which
the tipping point of treemortality can be predicted.

Drought-induced tree mortality or dieback could
occur when trees face extreme water deficits that
exceed their ability to cope and acclimate. In this
study, we considered the extreme water deficits where
trees cease to grow as tipping point, below which the
available water cannot meet the base level to maintain
vitality and tree mortality or dieback could occur.
With the aim to translate meteorological drought
index into tipping point that triggers possible tree
mortality, we hypothesize that the tipping point (i.e.
threshold level of drought) can be determined by the
monotonic dependence of tree growth on a drought
index due to tree growth declines with increasing
drought intensity under dryer conditions. Due to a
relative abundance of documented tree growth-rela-
ted ring width index (RWI) data for the SWUS, a bet-
ter understanding of forest responses to drought can
be expected. We use the extensive data sets of RWI of
two dominant conifer species (Pinus edulis (PIED) and
Pinus ponderosa (PIPO)) in the region to test our
hypothesis. Tree-ring growth results from the inter-
relationships that exist between metabolism of carbon
and plant hydraulics (McDowell et al 2011). For indi-
vidual trees, ring widths are the end-product of these
mechanisms and are expressively sensitive to moisture
fluctuations (Liu et al 2013, Vicente-Serrano
et al 2013). Thus, tree-ring is of key significance in
drought reconstructions (Cook et al 1999, Stahle
et al 2000). In further reference to drought-induced
tree mortality, trees that died during droughts largely
had lower pre-drought growth rates than those which
survived. Thus, variation in tree-ring widths during
the preceding 10–15 year time period can be used to
aptly predict the likelihood of drought-induced mor-
tality (Ogle et al 2000). In addition, ring width can be
used for building models of growth-based mortality
risk and assessing growth relationships to climate and
competition (Macalady et al 2014). Tree growth is the
balance of photosynthetic gains and respiratory losses
in carbon (Amthor 1984). Under water-stress condi-
tions, trees continuously regulate water use, via many
mechanisms, including stomatal closure, leaf shed-
ding and avoiding cavitation of xylem, resulting in
rates of water production from respiration roughly
equating to those of consumption due to photosynth-
esis, so as to delay forest mortality during drought
(Huntingford et al 2000, Anderegg et al 2012). Such
modulations lead to gradually inhibition in radial
growth (Zweifel et al 2006).
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Which drought index is most appropriate to
develop an understanding of coniferous tree ring
growth in response to dryer conditions across the
SWUS? A number of drought indices have been pro-
duced for monitoring or assessing the spatial patterns
and temporal trends of droughts (Du Pisani et al 1998,
Heim 2002, Keyantash and Dracup 2002, Mezősi
et al 2014), including (i) the PDSI (Palmer 1965,
Dai 2011a, 2011b) that is based on a soil water balance
equation; (ii) the standardized precipitation index
(McKee et al 1993) that is based on a precipitation
probabilistic approach; (iii) dryness (Budyko 1969,
Zhou et al 2008, Yi et al 2010, 2013) that is based on
annual energy and water budgets; (iv) forest drought-
stress index derived from tree-ring data which is influ-
enced by warm-season vapor-pressure deficit and
cold-season precipitation (Williams et al 2013); and
(v) the standardized precipitation evapotranspiration
index (SPEI) indicates deviation from the average
water balance (precipitation minus potential evapo-
transpiration) (Vicente-Serrano et al 2010). Here, we
use the SPEI as a drought variable for data analysis
because the SPEI data are available for different time-
scales representing the cumulative water balance over
the previous n months and also incorporates the
effects of temperature on drought severity (Beguería
et al 2013, Vicente-Serrano et al 2013). Time-scale is
critical to assess the time-scales to which tree-ring
growths aremost sensitive to drought conditions espe-
cially to the persistence of water deficits.

2.Data andmethod

This study focuses on two dominant conifer species,
PIED and PIPO in the SWUS (Arizona, New Mexico,
Colorado, and Utah). The SWUS experienced a
comparatively moderate to severe drought event in
2002, with record or near-record precipitation deficits
throughout the region (Cook et al 2004). This event
provides us with a natural experiment from which we
can develop an understanding how such forest
responds to severe droughts.

2.1.Data
2.1.1. Tree-ring
A total of 116 standard chronologies from the Interna-
tional Tree-Ring Data Bank (www.ncdc.noaa.gov/
paleo/treering.html), representing two dominant con-
ifer species, PIED and PIPO, served as the examined
population in this study. The high density data were
drawn from 116 sites for the conifers whose average
age is 400 years and average elevation of their base is
2220 meters. Each chronology represents the average
growth of several trees (22 samples per site) of the
same species growing at the same site (supplementary
table1, available at stacks.iop.org/ERL/10/024011/
mmedia). The standard chronologies were created
with the Program AutoRegressive STANdardization,

by detrending and indexing (standardizing) from tree-
ring measurement series, then applying a robust
estimation of the mean value function to remove
effects of endogenous stand disturbances (Cook 1985).
The RWI value of 1000 represents mean growth values
while value of 0 represents no growth. The mean
length of the chronologies usedwas 80 years.

2.1.2. SPEI
Monthly data of SPEI with different time-scales at a
spatial resolution of 0.5° were used to quantify meteor-
ological drought conditions from 1901 to 2002. Differ-
ent SPEI time-scales (1–24 month) represent
cumulative water balance ranging from relatively short
to long terms (e.g. SPEI obtained for time-scale of 24
month represents the cumulative water balance over
the previous 24 months). These monthly data of SPEI
with different time-scales were obtained from the SPEI
website (http://sac.csic.es/spei/database.html), which is
based on monthly precipitation and potential evapo-
transpiration values drawn from the Climatic Research
Unit of the University of East Anglia. Since SPEI values
have been found to be sensitive to global warming and
are comparable in time and space and across time-
scales, they can thus be utilized to quantify climatic
anomalies in terms of intensity as well as temporal and
spatial extents (Vicente-Serrano et al2010, 2013).

2.1.3. NDVI
The NDVI dataset derived from July 1981 to Decem-
ber 2002 which were evaluated in this study were
obtained from the Global Inventory Monitoring and
Modeling Systems (GIMMS) group at the Laboratory
for Terrestrial Physics (Tucker et al 2005). This
particular dataset has a spatial resolution of 1/12° and
temporal resolution of 15 day and has been widely
used for monitoring global vegetation conditions (Wu
et al 2014). A post-processing satellite drift correction
was applied to the dataset to remove artifacts due to
the orbital drift and changes in the Sun-target-sensor
geometry (Pinzon et al 2005). This dataset is more
sensitive towater vapor in the atmosphere as a result of
the AVHRR’s wide spectral bands (Brown et al 2006).
An increase in atmospheric or soil water vapor results
in a lower NDVI signal, which can be interpreted as an
actual change if no correction is applied (Pinheiro
et al 2004). The maximum value composite (MVC)
method (Holben 1986) should lessen these artifacts.
The MVC approach was applied to the original
GIMMS 15 day NDVI composite data, which spanned
30 years from January 1982 to December 2002, to
aggregate monthly data to reduce the influence from
clouds in subsequent analysis.

2.2. Time-scale test and binned average
2.2.1. Time-scale test
For each year of a site, there is a single RWI value.
However, there are 288 (12 × 24) different values of
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SPEI for each year because eachmonth has 24 different
values of SPEI over the time-scale spectrum (i= 1, 2,
…, 24 months), indicating cumulative water balance
ranging from short to long term. Thus SPEI data can
be expressed herein as SPEIi,j (j= January,…, Decem-
ber). The objective of this effort is to locate which SPEI
among 288 different values can serve as a better
drought index for tree-ring growth. For instance, a site
has n year RWI data, as well as each SPEIi,j (j = January,
…, December) has n year data. Pearson correlation
coefficient between RWI and each SPEIi,j can be
calculated. Thus, we obtained 288 Pearson correlation
coefficients for each site, which can be expressed as a
matrix of 12 by 24. We obtained 116 suchmatrixes for
the 116 tree-ring chronology sites. To determine the
calendar month and time-scale (1–24 month) which
best characterizes the generality of pattern of drought’s
influences on tree growth over the region, the 116
matrixes were averaged into a newmatrix to represent
the pattern at the regional-scale (figure 1). Among the
subject population of 288 SPEI values, the SPEI which
has a strongest correlation with RWI is the month of
July with a duration of 11 months. Figure 1 also
indicates that the cumulative water balance in winter
and fall substantially contributes to drought condition
in next year. This finding can alternatively derived
from fact that the correlation between RWI and SPEI
of June is the highest at durations of 9months, SPEI of
May at 8 months durations, and SPEI of April at 7
months durations. Based on figure 1, the SPEI of July

with an 11 months duration will be used as drought
index in this analysis.

2.2.2. Binned averages
In order to properly represent the generality of
relationships between tree growth and drought condi-
tions over the region, ‘binned average analysis’ was
carried out to minimize the uncertainty induced by
spatial heterogeneity (difference in topography, soil
property and forest density etc) that randomly affect
tree growth among the 116 sites (de Toledo et al 2011,
Peterman et al 2013, Williams et al 2013). Binned
averages of RWI and SPEI were determined within
each bin of 30 of RWI in the range of 0–3000
(approximately the maximum RWI). Thus, near 100
binned averages of RWI and SPEI were obtained
through this method. Subsequently statistical popula-
tion in each binned averages was examined. Binned
averages with number of samples less than ten were
excluded as they would increase statistical errors when
analyzing the relationship between tree growth and
drought conditions. Ultimately 72 binned averages of
RWI and SPEIwere valid in the study.

3. Empiricalmodel

The relationship between the binned average RWI and
SPEI is shown in figure 2. Two piecewise regressions
separately by a breakpoint SPEIup = 0.35. Under dryer
condition (SPEI < SPEIup), the piecewise regression is
given by

= × +RWI 607.35 SPEI 997.53, (1)11,Jul

where RWI represents the tree growth and SPEI11,Jul
represents the drought condition quantified by water
deficits over the previous 11 months accumulated up
to July. The breakpoint SPEIup is the upper boundary
beyond which tree growth is less limited by water
stress. The result shows that, under dryer conditions,
99% variation of tree growth can be explained by
SPEI11,Jul at regional scale. According to mechanisms
of hydraulic failure and carbon starvation evaluated in
the literature (Brodribb and Cochard 2009, Anderegg
et al 2012, McDowell et al 2013), trees continuously
regulate carbohydrate and hydraulic dynamics under
water stress via stomatal closure, which minimizes
hydraulic failure, causing photosynthetic carbon
uptake to decline to low levels till respiration is
proportional to photosynthesis (Huntingford
et al 2000, McDowell et al 2008). Such controls result
in zero net growth, exhibiting as RWI= 0, and
increases risks of mortality of the subject conifer as
ultimately stored carbonhydrates would be depleted
during the protracted drought, or these resources
couldn’t be transported among tissues (Sala
et al 2010). Therefore, drought conditions corre-
sponding to an RWI being equal to zero is the
theoretical tipping point at the species-level. The

Figure 1.The distribution ofmean Pearson correlation
coefficients betweenRWI and SPEIi,j (i=1,2,…,24months; jth
month) from January toDecember over 116 chronology sites
in the SWUS region. For each site, the Pearson coefficients
can be expressed as amatrix of 12months by 24 time-scales.
We obtained 116 suchmatrixes for the 116 tree-ring
chronology sites. To determine the calendarmonth and time-
scale (1–24month) which best characterizes the generality of
pattern of drought’s influences on tree growth over the
region, the 116matrixes were averaged into a newmatrix to
represent the pattern at the regional-scale. Among the subject
population of 288 SPEI values, the RWIwhich has a strongest
correlationwith SPEI is that for themonth of Julywith a
duration of 11months. Therefore, SPEI11,Jul is selected to use
as a drought index in this analysis.
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tipping point of tree growth decline to drought is
predicted by the regression model as SPEItp =−1.64
and RWItp = 0. It suggests that conifer trees cease
positive net growth when SPEI11,Jul approaches −1.64,
which is the apparent tipping point for tree growth at
regional scale.

When climate conditions are wetter (i.e.,
SPEI > SPEIup), the piecewise regression is given by

= × +RWI 806.01 SPEI 1234.5. (2)11,Jul

Although the slope of regression (2) is higher
under wet condition than that of regression (1) under
dry condition, the correlation in regression (2) is
much weaker than in regression (1), only 21% varia-
tion of tree growth can be explained by SPEI11,Jul.

4. Application

Since SPEItp was derived fromphysiological data at the
species-level, it is necessary to verify whether it is
applicable to forest ecosystem-level from the perspec-
tive of remote sensing. To execute this, an analysis of
the severe drought in 2002 which occurred in the
SWUS region was performed to compare the differ-
ences of forest responses to drought under two
conditions: one with a severity less than the tipping
point (SPEI > SPEItp) and conversely one with a

greater severity than the tipping point (SPEI < SPEItp).
Conifer forest regions (PIED and PIPO dominated)
are defined herein as the distribution map of the
general forest cover types from United States Depart-
ment of Agriculture Forest Service (http://
nationalatlas.gov/atlasftp.html), with a spatial resolu-
tion of 1 km. This map is derived from satellite
imagery, ground-truthed by field observations and
refined with ancillary data from digital elevation
models as well as expert knowledge. There are about
70%RWI chronology sites locate in the range of 25 km
of the conifer forest regions. Therefore, it is appro-
priate to use the region for further verification of
whether the SPEItp (species-level) is applicable at the
ecosystem-level.

The conifer forest regions were partitioned into
two regions, designated regions A and B, by the rela-
tive tipping point of SPEItp (figure 3(a)).The two
regions represent the two drought conditions. Region
A is characterized with lower severity of drought than
the tipping point (SPEI > SPEItp) while region B is
characterized with higher severity of drought than the
tipping point (SPEI < SPEItp). Comparisons between
the differences in responses to drought under the two
relatively different drought conditions were made to
verify if the SPEItp can serve as a tipping point at eco-
system-level. The responses of the subject forest to
drought were quantified through use of standardized
anomalies of GIMMS NDVI which served to evaluate
potential changes in forest activity. In the process,
NDVI in 1982–1999 is utilized to represent the normal
condition of forest activity in the pre-drought periods.
The standardized anomalies NDVI in the drought year
of 2002were calculated pixel by pixel by

=
−

S

NDVI

NDVI NDVI
, (3)

Anomaly,2002
Max (GS)

2002
Max (GS)

Mean(1982–1999)
Max (GS)

Mean(1982–1999)
Max (GS)

where NDVI2002
Max (GS) represents the optimum growth

condition of forest activity in growing season from
March to October in drought year of 2002,
NDVIMean(1982–1999)

Max (GS) represents the average optimum
growth condition of forest in growing seasons from
March toOctober during the pre-drought time period,
SMean(1982–1999)

Max (GS) represents the standard deviation of the
optimum growth condition of forest spanning the
growing season from March to October in pre-
drought periods. Pixels with NDVI anomalies in the
range ±1 standard deviation (std.) are classified as
showing no changes; pixels with NDVI anomalies less
than −1 std. are classified as significantly declined and
with NDVI anomalies greater than +1 std. classified as
significantly increased.

Spatial patterns of NDVI anomalies in 2002 under
two drought conditions were analyzed. It clearly
appears that most parts of region A are independent of
NDVI anomalies less than −1std. (figure 3(b)); while

Figure 2.Relationship between binned averages of RWI and
SPEI11,Jul SPEI11,Jul is the value of SPEI in Julywith time scale
of 11months, which accounts for water balance over the
previous 11months accumulated up to July. The circles are
binned averages of RWI and SPEI11,Jul within every 30 bins of
RWI in the range of 0–3000. The total of 116 standard RWI
chronologies were from the International Tree-RingData
Bank (www.ncdc.noaa.gov/paleo/treering.html), represent-
ing two dominant conifer species,Pinus edulis andPinus
ponderosa. RWI standard deviation bar in each binwere
marked vertically, while SPEI standard deviation bar in each
binwasmarked horizontally. The SPEI11,Jul binned averages
with statistical population less than tenwere excluded as they
would increase statistical errors when analyzing the relation-
ship between tree growth and drought conditions. Ultimately
72 binned averages of RWI and SPEIwere valid in the study.
Two segmented regressionswere conducted seperately: circles
in red indicate dryer condition (SPEI < SPEIup = 0.35) and
circles in green indicatewetter condition (SPEI > SPEIup).
Under dryer condition, tipping point of drought
(SPEItp =−1.64) was deduced from equation (1). SPEIup is
the upper boundary beyondwhich tree growth is less limited
bywater stress.

5

Environ. Res. Lett. 10 (2015) 024011 KHuang et al

http://nationalatlas.gov/atlasftp.html
http://nationalatlas.gov/atlasftp.html
http://www.ncdc.noaa.gov/paleo/treering.html


most parts of region B have NDVI anomalies beyond
−1std. (figure 3(c)).The statistical results show that
the average NDVI anomaly in region A was −0.28, less
than −1std., showing no changes, indicating that

forest activity was less affected by drought when
SPEI > SPEItp. However, average NDVI anomaly in
region B was −1.22, which in absolute terms is greater
than −1std., showing significantly declined from

Figure 3.Conifer forest responses to drought under two drought conditions in 2002: (a) division of drought areas of conifer forest in
the SWUSby the tipping point of SPEItp =−1.64 into two regions: regionA (SPEI > SPEItp) and region B (SPEI < SPEItp); (b) spatial
distribution ofNDVI anomalies in regionA in 2002; (c) spatial distribution ofNDVI anomalies in region B; and (d)NDVI anomalies
probability distribution of regions A andB. The conifer forest regionsmarked by both red and yellow color infigure 3(a) were derived
from the distributionmap of general forest cover types fromUnited States Department of Agriculture Forest Service (http://
nationalatlas.gov/atlasftp.html) with a spatial resolution of 1 km. 116 RWI chronology sites used in this analysis aremarkedwith cross
symbols. 70%of these sites were located in the range of 25 kmof the conifer forest regions. NDVI anomalies were calculated by
formula (3) pixel by pixel. Forest activity in regionAwas independent ofNDVI anomalies less than−1std. in figure 3(b), whilemost
parts of region B significantly changed, withNDVI anomalies beyond−1std. infigure 3(c). AverageNDVI anomaly in regionAwas
−0.28, less than−1std., indicating that forest activity was least affected by drought, while averageNDVI anomaly in region Bwas
−1.22, beyond−1std., indicating that forest activity was seriously affected by drought.
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which it is responsible to infer that forest activity was
seriously affected by drought when SPEI < SPEItp
(figure 3(d)).

This study further carried out independent t- test
to analyze differences in forest activity between
regions A and B during pre-drought period
(1982–2001) and drought year of 2002 respectively. In
the pre-drought period, the mean difference of NDVI
anomaly between regions A and B is −0.055 55
(p= 0.70), indicating no significant difference in forest
activity between them. Therefore, it is reasonable to
consider forest activity in region A is statistically
equivalent with region B in the pre-drought period.
However, in the drought year of 2002, NDVI anomaly
of region B was significantly lower than that of region
A, with mean difference being −0.939 10 (p< 0.0001),
indicating that forest in region B was affected by
drought even worse than region A (table1). In this
case, drought condition is the only difference between
region A (SPEI > SPEItp) and B (SPEI < SPEItp), from
which it is possible to deduce that the SPEItp causes the
significant difference in forest activity.

5.Discussion

Based on the physiological mechanisms on trees
growth, response patterns of conifer species (PIED
and PIPO) to droughts in the SWUS were analyzed by
physiological data RWI combining with meteorologi-
cal drought index at a relatively coarse scale. More
importantly, the tipping point of tree responses to
drought at the species-level over the region has been
discovered. McDowell et al (2013) has studied physio-
logical mechanisms that is related to drought-induced
tree mortality through multiple model-experiment
framework. They believed that tree mortality was
determined by time spent at extensive hydraulic failure
or carbon starvation. Such a critical drought condition
in duration and intensity has been deduced in our
study, i.e. when drought sustains for duration of 11
months with intensity of −1.64, trees growth are
expected to cease, leading to possible treemortality.

In this study, patterns of response to drought at
forest ecosystem-level under two drought conditions
have been further examined from remote sensing per-
spective. The results shows that when drought severity

exceeds the tipping point (i.e. SPEI < SPEItp), NDVI
significantly decline with average NDVI anomaly less
than −1std. (figure 3(c)), which is tightly tied to regio-
nal mortality (Breshears et al 2005). Also region B gen-
erally is coincide with the areas that experienced
noticeable levels of tree mortality identified by aerial
survey conducted by the US Forest Service (US Forest
Service 2003). Therefore, region B generally denotes
the area of forest with differential mortality. There-
fore, the tipping point at species-level could be up-
scaled to forest ecosystem-level, represented as phy-
siological drought indicator for PIED and PIPO domi-
nated forest. When drought severity exceeds the
tipping point, differential forest mortality can be
expected to occur, leading to damages in forest struc-
ture and consequently its function.

Although SPEItp was derived at the species-level,
the application from remote sensing has already con-
firmed that SPEItp could be scaled to forest ecosystem-
level, indicating that SPEItp is applicable for current
studies on drought impacts. Therefore, the SPEItp can
aptly serve as a criterion, along with climate models to
study dynamic vegetation simulations under different
climate change conditions, for a better understanding
on forest response to potential climate change in an
effort tomitigate adverse impacts.

In order to survive under water stress, trees
decrease allocation to growth, leading to increases in
susceptibility to other disturbances (e.g. biotic agents)
(Breshears et al 2005, McDowell et al 2008, McDo-
well 2011, McDowell et al 2011). Recent studies indi-
cate that ⩾1 year of severe drought predisposes PIED
to insect attacks and increases mortality (Gaylord
et al 2013). Besides, increased temperatures can
enhance the net damage due to tree pests indirectly, by
encouraging pest reproduction and dispersal (Raffa
et al 2008), whichwill increase risks of forestmortality.
However, due to lack of available relevant data, we did
not investigate potential effects of such biotic factors.
Investigations of potential synergies between pre-
cipitation and other climate variables with biotic fac-
tors affecting forest activity is strongly encouraged
from the results of this and other studies.

Due to different levels of missing climate data
from observation stations for the long period of ∼80
years since 1901, SPEI time-series at 0.5° were used for

Table 1.AverageNDVI anomaly comparison between regions A andB during pre-drought period and
drought year of 2002a.

A versus B t Df Sig (two-tailed) Mean difference Std. error difference

Pre-drought −0.378 38 0.707 −0.055 55 0.146 91

Drought −13.679 1359 0.000 −0.939 10 0.068 65

a NDVI anomalies were calculated by formula (3) pixel by pixel. Independent t- test was carried to compare

the forest activity between regions A and B during the pre-drought period and drought year of 2002

respectively. During the pre-drought period, the difference between the two regions is not significant with

mean difference of −0.055 55 (p= 0.707). During the drought year of 2002, forest activity in region B was

significantly lower than that of regionAwithmean difference of−0.93910 (p< 0.0001).
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this study. SPEI at this coarse scale might bring possi-
ble scale-effect-errors in analyzing relationship
between tree growth and drought since the RWI
chronologies were derived at stand-scale. However,
with the higher density of the RWI chronologies,
stable relationships were found between SPEI and
RWI as Pearson correlation is above 0.5 for most sites
(81.35%) independently of the SPEI time-scale and
month of the year (supplementary table 2).

6. Conclusions

Determining the quantitative relationship of forest
response to drought and subsequent revelation of the
tipping point of these low precipitation conditions is
crucial for an assessment of climate change impacts on
a forest ecosystem. The results in this study indicated
that a tree’s RWI has a good statistical relationship
with the climate drought index SPEI at 11 month
time-scale in July (SPEI11,Jul), from which the tipping
point of drought (SPEItp) that trees can endure can be
deduced. This study’s results specifically show that the
tipping point (SPEItp) of PIED and PIPO is−1.64, that
is, drought sustains for duration of 11 month with
intensity of −1.64 might lead to differential mortality.
As an indicator of ecosystem phenology, NDVI
significantly declined in area where the SPEI < SPEItp,
than that in area where SPEI > SPEItp, which illu-
strated that the tipping point of drought derived from
RWI could be up-scaled to the ecosystem-level to
assess possible impacts of climate change on forest
ecosystem.
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