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Human footprint on ecosystems is growing, and ecosys-
tems cope with these changes in different ways. Climatic 
changes or human activities may push some ecosystems to 
shift abruptly to a different state in an often irreversible 
manner. Such catastrophic shifts can even happen when 
external changes are gradual, in which cases the shifts are 
even harder to foresee. Because these radical changes in 
ecosystem states can coincide with loss of species, habitats 
and ecosystem services and might fundamentally affect the 
livelihood of people who depend on these resources, under-
standing the ecological mechanisms behind catastrophic 
shifts has attracted a lot of attention in ecology (Holling 
1973, May 1977, Rietkerk et al. 1996, Scheffer et al. 2001, 
Folke et al. 2004). More generally, a broad range of com-
plex systems, such as financial markets, human societies,  
and the climate, seems to exhibit abrupt (e.g. financial 
crashes, revolutions and hurricane) rather than gradual 
behavior in face of gradual external changes (Sornette 2002, 
2003, Diamond 2004, Peters and Pielke 2004). Lately, the 
possibility of radical changes stimulated research target-
ing at identifying indicators – or ‘catastrophe flags’ in the 

words of Gilmore (1981) – that would allow us to assess 
the imminence of these abrupt, unexpected and irreversible 
shifts (Sornette 2002, Scheffer et al. 2009).

The search for indicators has been quite fruitful and  
has shown that the way ecosystem characteristics, such as 
biomass or population abundance, vary in space and time 
may give us hints about an approaching shift. In particu-
lar, ecosystems become slower when approaching a shift,  
meaning that close to a shift the return time back to  
equilibrium after a disturbance becomes longer. This phe-
nomenon is called ‘critical slowing down’, and the family of 
indicators derived from it has been referred to as ‘generic 
early warning signals’ (reviewed by Scheffer et  al. 2009). 
These indicators may be helpful not only for ecosystems  
but also for the wider range of complex systems previously 
mentioned that are likely to exhibit shift behaviors.

The search for indicators has mostly focused on model 
systems that exhibit a catastrophic shift, prior to which 
specific behaviors of the system were identified as potential 
early warning signals. The objective was to ultimately use 
these signals to detect catastrophic shifts in real ecosystems. 
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The quickly expanding literature on early warning signals for critical transitions in ecosystems suggests that 
critical slowing down is a key phenomenon to measure the distance to a tipping point in ecosystems. Such 
work is broadly misinterpreted as showing that slowing down is specific to tipping points. In this contribution, 
we show why this is not the case. Early warning signals based on critical slowing down indicate a broader class 
of situations where a system becomes increasingly sensitive to perturbations.
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Ecosystem responses to external changes can surprise us by their abruptness and irreversibility. Models have helped 
identifying indicators of impending catastrophic shifts, referred to as ‘generic early warning signals’. These indicators 
are linked to a phenomenon known as ‘critical slowing down’ which describes the fact that the recovery rate of a system 
after a perturbation decreases when the system approaches a bifurcation – such as the classical fold bifurcation associated 
to catastrophic shifts. However, contrary to what has sometimes been suggested in the literature, a decrease in recovery 
rate cannot be considered as specific to approaching catastrophic shifts. Here, we analyze the behavior of early warning 
signals based on critical slowing down in systems approaching a range of catastrophic and non-catastrophic situations. 
Our results show that slowing down generally happens in situations where a system is becoming increasingly sensitive to 
external perturbations, independently of whether the impeding change is catastrophic or not. These results highlight that 
indicators specific to catastrophic shifts are still lacking. More importantly, they also imply that in systems where we have 
no reason to expect catastrophic transitions, slowing down may still be used in a more general sense as a warning signal 
for a potential decrease in stability.
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However, ecosystems do not always respond in an abrupt, 
unexpected and irreversible (i.e. catastrophic) way. 
Instead, ecosystem changes may be smooth, gradual, 
and reversible (i.e. non-catastrophic). Nevertheless, it is  
not clear whether the early warning indicators observed 
before a catastrophic shift are also observed before  
other types of transitions (Van Nes and Scheffer 2007, 
Chisholm and Filotas 2009, Kuehn 2011). If they do, we 
are not dealing with generic early warning signals ‘specific’ 
to catastrophic shifts. Such specific indicators would be of 
high practical relevance because of the possibly consider-
able economic and ecological losses associated with cata-
strophic shifts in ecosystems.

In this paper, our aim is to test whether early warning 
signals also precede non-catastrophic transitions. We do this 
by comparing the behavior of the two main early warning 
signals (namely variance and autocorrelation) in ecosystem 
models before catastrophic and non-catastrophic shifts.

Methods

As a starting point, we used a simple model of over
harvesting (Noy-Meir 1975, May 1977). This model is a  
classical example describing the occurrence of catastrophic 

shifts in ecosystems. The model describes the growth of a 
resource (e.g. vegetation) and its consumption (e.g. by 
grazers). As grazing pressure increases, the resource growth 
cannot sustain the losses due to grazing and the resource 
decreases. An interesting characteristic of this model is 
that the way in which the resource decreases in response 
to increasing grazing pressure (i.e. the type of transi-
tion) depends on the carrying capacity of the resource, K  
(Table 1). Here, we tuned K to obtain three different types  
of transitions: the classical catastrophic transition (fold 
bifurcation, for K 5 10), a sharp but continuous transi-
tion (cusp bifurcation, for K 5 5.2), and a gradual smooth 
response (no bifurcation, for K 5 2).

Additionally, we examined two other types of transi-
tions related to non-catastrophic bifurcation points that are 
common in ecosystem models. For example, in the classical  
Lotka–Volterra competition model (Lotka 1925), species 
coexist up to a point at which interspecific competition drives 
one species extinct through a transcritical bifurcation. We 
used the overharvesting model described above (Noy-Meir 
1975, May 1977) with a linear grazing functional response 
to study a transcritical bifurcation where increasing grazing 
leads to the extinction of the resource.

The last non-catastrophic transition we studied was  
the Hopf bifurcation. This transition describes the onset  

Table 1. Model equation and parameter name, interpretation and values.

Parameters Values used for

Model 1 (Fig. 1)

dV/dt  rV(1 2 V/K) 2 cV2/(V2  Vo
2)

V vegetation biomass
t time

Fold bifurcation (Fig. 1a) Cusp point (Fig. 1b)

K Carrying capacity of the resource 10 5.2
r Growth rate of the resource 1 1
c Maximum grazing rate 1–3 1–3
Vo Biomass at which the grazing rate is half maximum 1 1

Model 2 (Fig. 2a): transcritical transition

dV/dt  rV(1 2 V/K) 2 cV
K Carrying capacity of the resource 10
r Growth rate of the resource 1
c Maximum grazing rate 1–2

Model 3 (Fig. 2b): Hopf transition

dR/dt  rR(1 2 R/K) 2 gCR/(R  h)
dC/dt  egCR/(R  h) 2 mC
R biomass of the resource

C biomass of the consumer
K Carrying capacity of the resource 0.1–4
r Growth rate of the resource 0.5
g Maximum grazing rate 0.4
h Biomass at which the grazing rate is half maximum 0.6
e Assimilation efficiency of consumer 0.6
m Mortality rate of consumer 0.15

Model 4 (Appendix, Fig. A2): pitchfork transition

dV/dt  rV(1 2 V/K)(V 2 Vc) 2 cV  i
K Carrying capacity of the resource 10
r Growth rate of the resource 0.1–1
c Maximum grazing rate 0.8
Vc Critical value of resource biomass for resource to grow 5
i Immigration rate 4
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of oscillations in an otherwise stable population. It is a com-
mon transition described in consumer–resource models, 
where an increase in resource productivity drives the system 
into acyclic behavior, such as the well-studied predator– 
prey cycles of algae–zooplankton (Scheffer et  al. 1997)  
and of hare–lynx (Stenseth et al. 1997). To study this bifur-
cation, we used the classical Rosenzweig–MacArthur model 
with a type II functional response (Rosenzweig 1971).

All models and the parameter values used for each type 
of transition are summarized in Table 1. We chose a set of 
models that are classic in ecology for exhibiting a certain 
type of transition. However, the mathematical properties 
of a system going through these types of critical transitions 
(Kuehn 2011) is largely independent of the specific model 
formulation. Therefore our results should be independent  
of model specifications.

We estimated eigenvalues along all transition types using 
GRIND in MATLAB (available at , www.dow.wau.nl/aew/
grind/.). We also followed changes in temporal autocorrela-
tion and variance. To this end, for each level of the control 
parameters, we estimated the autocorrelation at-lag-1 and the 
variance as the standard deviation of the state variable using 200 
points of the produced time-series and using the same sequence 
of additive noise for each level of the control parameter. We 
only dealt with the scenario of a constant regime of noise prior 
to the transition. False alarms or deviations in the behavior of 
leading indicators prior to catastrophic transitions have been 
reported elsewhere in the case of non-constant regimes of noise 
or multiplicative noise (Brock and Carpenter 2010, Dakos 
et al. 2012). We expect that the same conclusions will also hold 
for the non-catastrophic cases as well. Autocorrelation at-lag-1 
was estimated as the autoregressive coefficient from fitting a 

Figure 1. Behavior of the indicators along catastrophic vs non-catastrophic transitions in the overharvesting model (Noy-Meir 1975, May 
1977). Left: fold bifurcation (abrupt, discontinuous), middle: cusp bifurcation (abrupt, continuous), right: no bifurcation (gradual, con-
tinuous). First row: model equilibria depending on the control parameter (c; see Table 1 for parameter definition). Second row: dominant 
eigenvalue of the system. Third row: standard deviation. Fourth row: autocorrelation at lag one. All models and the parameter values used 
for the simulations are summarized in Table 1.
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but not catastrophically to changing external conditions, in which 
case we talk about ‘non-catastrophic’ transitions. Figure 1b illus-
trates a sharp but continuous decrease in biomass along a graz-
ing gradient. Along this type of transitions, the eigenvalue goes 
almost to zero as the system approaches the cusp point, just like in 
the case of a catastrophic bifurcation (Fig. 1e). This implies that 
slowing-down is also to be expected (Strogatz 1994, Kuehn 2011,  
Lim and Epueranu 2011, Thompson and Sieber 2011). 
Indeed, we find that both variance and autocorrelation 
rise along the transition (Fig. 1h, k). This type of ecosys-
tem response represents a common case of abrupt, nonlinear  
but continuous change in ecosystem states. However, it is a limit 
case to the fold bifurcation, and it is therefore not surprising 
that the indicators respond similarly as before a fold bifurcation 
(i.e. as in Fig. 1g, j).

What is more interesting is to see what happens along 
a transition that shows a smooth, gradual decrease in veg-
etation biomass (Fig. 1c). In this case, the eigenvalue does 
not reach zero. Nonetheless it reaches a maximum value  
at some point along the transition (Fig. 1f ). This leads vari-
ance and autocorrelation to show similar trends as along the 
other transitions (Fig. 1i, l). Their increase is, however, not  
as steep as in the cases where the system exhibits a bifurca-
tion point in our numerical examples (Fig. 1g, h, j, k).

Non-catastrophic transitions with bifurcation
What happens along other types of transitions that are  
associated with bifurcation points? Besides the fold, other types 
of bifurcations are commonly observed in ecological models. In 
the case of a transcritical bifurcation (Fig. 2a), a stable and an 
unstable equilibrium collide and exchange stability at the bifur-
cation point (Fig. A1 in Supplementary material Appendix A1). 
In the case of a Hopf bifurcation (Fig. 2b), a stable equilibrium 
is replaced by a stable limit cycle at the bifurcation.

At both transcritical and Hopf bifurcations, the eigen-
values reach zero (Fig. 2c–d). Indeed, we also find that  
the indirect indicators of critical slowing down, variance  
and autocorrelation of the state variables, both peak at the 
bifurcation points (Fig. 2e–h) in the same way as it hap-
pens along the transitions studied in Fig. 1. The same phe-
nomenon occurs at other bifurcation types (Thompson 
and Stewart 2002, Thompson and Sieber 2011), such as 
the very uncommon pitchfork bifurcation (Strogatz 1994;  
Fig. A2 in Supplementary material Appendix A1). Thus, 
no difference in the behavior of the generic early warning  
signals prior to the fold, transcritical, and Hopf bifurca-
tions is to be expected. However, it is noteworthy that the  
behavior of the state variables along these transitions may 
be more informative and help discriminating between  
these three types of transitions. For example, before the 
fold bifurcation, there are usually unnoticed changes in the 
state of the system, while before the transcritical bifurcation 
at least one state variable clearly goes to zero. In the case  
of the Hopf bifurcation damped oscillations in the state of 
the system are observed before the transition.

Discussion

In the case of ecosystems, but also more generally of  
complex systems (Sornette 2002, 2003, Peters and Pielke 

linear autoregressive model of first order (AR(1), xt  1 2 m   
a1(xt 2 m)  e, where a1 is the autoregressive coefficient of order 
1, m the mean of the timeseries and e an error i.i.d term) to 
the data. We solved the stochastic equations using Euler–Mu-
rayama integration with Ito calculus.

Slowing down before a catastrophic transition

What happens near a catastrophic shift? Several indica-
tors that can signify proximity to a catastrophic shift have 
been recently suggested by simple models. A descrip-
tion of how these indicators change in the vicinity of 
catastrophic shifts can be found in Scheffer et al. (2009). 
Here, we will briefly illustrate these changes in the case of  
Noy-Meir’s classical overharvesting model (Noy-Meir 
1975). When grazing pressure increases, the vegetation 
biomass gradually decreases until the grazing pressure 
reaches the point F1, referred to as the bifurcation point or 
tipping point (Fig. 1a). At this point the system collapses 
to a low biomass state, and a catastrophic change in the sys-
tem’s state occurs. Once the system has collapsed, recovery is  
possible only if the grazing pressure is decreased below 
another bifurcation point F2, a phenomenon referred to as 
hysteresis, which is due to the coexistence of two alternative 
system’s states between F1 and F2. In the rest of the paper, a 
‘catastrophic shift’ refers to a fold bifurcation as illustrated 
in Fig. 1a. Note that the use of the word ‘catastrophic’ 
comes from the field of ‘catastrophe theory’ initiated by 
the mathematician René Thom, and refers to the abrupt-
ness of a system’s response to small changes in external 
conditions and not to the possible negative consequences 
of the shift. A catastrophic shift can indeed have negative 
(e.g. shift from high to low biomass F1) or positive (e.g. 
shift from low to high biomass at F2) consequences. Hys-
teresis is what makes catastrophic transitions potentially 
difficult to reverse, or even irreversible, which is why indi-
cators aiming at avoiding the occurrence of catastrophic 
shifts would be of great practical relevance.

When a catastrophic shift (or a fold bifurcation) is 
approached, it has been shown that a system becomes  
slow in returning to equilibrium after a perturbation. 
Mathematically, this phenomenon of critical slowing 
down (Box 1) is related to the fact that the real part of 
the dominant eigenvalue of the system goes to zero at a 
bifurcation point (Fig. 1d) (Wissel 1984, Strogatz 1994, 
Schefferet al. 2009). Critical slowing down translates into 
two other phenomena: 1) an increase in the system’s vari-
ability (i.e. the standard deviation of temporal fluctuations 
in the state variable) and 2) an increase in the autocorrela-
tion of the time series (Fig. 1g, j, Box 1). Interestingly, the 
spatial equivalents to those temporal indicators (i.e. spatial 
variance and spatial auto-correlation) increase as well when 
the system approaches a catastrophic shift (Oborny et al. 
2005, Guttal and Jayaprakash 2009, Dakos et al. 2010).

Slowing down before a non-catastrophic transition

Non-catastrophic transitions with no bifurcation
While the fold bifurcation (Fig. 1a) represents a catastro
phic ecosystem response due to the existence of alternative  
ecosystem states, there are cases where ecosystems respond sharply 
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Box 1. What happens near a catastrophic shift?

Basic theory

A now classic analogy to understand how an ecosystem may respond to an increasing pressure is the one of a ball rolling 
in a landscape (Noy-Meir 1975, May 1977, Gilmore 1981). The landscape represents a collection of possible states for 
the ecosystem. The ball rolls down the slope and settles at the bottom of the valleys, which represent the stable states. 
More technically, the landscape is the ‘potential’ of the system in physics and can be calculated for Noy-Meir’s model.

Figure I. Fold bifurcation (equation and parameter values are in Table 1). The curve represents the equilibrium vegetation biomass as 
a function of the grazing rate, c. Black lines correspond to stable states and grey lines to unstable states. Critical thresholds of the 
environmental conditions, F1 and F2, bound the parameter space where two stable states coexist, i.e. the bistability area. The two 
stable states are separated by an unstable one. Panels A–F display the potential function (or landscape) of the system for different 
values of c.

When grazing pressure increases, modifications of the shape of the landscape occur (Fig. IA–F). For small values  
of c, the landscape has only one valley. The system has a unique stable state of high biomass to which it inevitably  
tends toward from all initial conditions and following any disturbance (Fig. IA). When c increases, a second valley 
appears (at F1; Fig. IB–E). The system has now two equilibria, one corresponding to a high biomass and the other to 
a low biomass state. The valley into which the ball will settle depends on its initial location in the landscape. At the 
bifurcation point F2, the first valley disappears and the landscape is again reduced to one valley. This is how the system 
collapses from a high to a low biomass state, i.e. where the catastrophic shift occurs.

Following more specifically the changes in the shape of the valley allows understanding more in detail the  
dynamics of the system as a shift is approached. The shape of the valley flattens (Fig. I, compare panels C, D and E). 
Because of this flattening of the landscape, the characteristic return time to equilibrium after a perturbation increases 
when the system gets closer to the threshold F2, this means that a disturbed ecosystem needs more time to recover  
when it is nearer to a threshold (Gilmore 1981, Wissel 1984, Van Nes and Scheffer 2007). This phenomenon is referred 
to as ‘critical slowing down’ in the physics literature.

Two other phenomena follow from the flattening of the landscape. First, the system variability increases near a 
threshold (Gilmore 1981). It is indeed intuitive that a ball slightly pushed will move more in a flatter landscape. This is 
reflected by the increase in the standard deviation of temporal fluctuations in the state variable just before a transition 
occurs (Oborny et al. 2005, Carpenter and Brock 2006) (Fig. 1g). Second, the system’s state become more similar to 
its past state because of the slowing down, meaning that the time series becomes more auto-correlated (Fig. 1j, Kleinen 
et al. 2003).
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Figure 2. Behavior of the indicators before different types of bifurcation points. Left: transcritical bifurcation; right: hopf bifurcation. First row: 
model equilibria depending on the control parameter (c for the transcritical transition and K for the Hopf transition; see Table 1 for parameter 
definition), second row: dominant eigenvalue of the system, third row: standard deviation, fourth row: autocorrelation at lag one.

2004, Scheffer et al. 2009), two of the questions we would 
like to address with generic early warning signals are: first, 
‘what’ is going to happen (i.e. what type of ecosystem 
response is to be expected), and second, ‘when’ is it going to 
happen? Our analysis confirms the theoretical expectation 

that the generic early warnings cannot answer the ‘what’-
question as they behave in a similar way along a range of 
transitions. This implies that the early warning signals lack 
‘specific’ indicator value. Thus, slowing down and its derived 
indicators, variance and auto-correlation, may occur, at least 
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the generic early warning signals may fail to announce an 
approaching shift (Brock and Carpenter 2010, Carpenter 
and Brock 2010, Hastings and Wysham 2010, Dakos et al.  
2011). Combining generic indicators with indicators spe-
cific to transition types as well as knowledge on ecosys-
tem properties, even derived from coarse ecological data, 
could be part of the solution to gauging ‘what’ transition is  
about to happen. Inevitably, such direction will lead to new 
indicators that will match specific types of transitions.

The next challenge is to address the question of ‘when’ 
a shift is going to happen. All currently available indica-
tors change gradually and they do not provide a measure of  
the distance to the transition. For the moment, it seems  
that most of the indicators will remain relative measures, 
making sense only in the presence of a baseline. Due to sta-
tistical limitations, a trend in a single indicator is likely to 
be insufficient to determine the proximity to a transition 
in real ecosystems (Biggs et  al. 2009). Therefore combin-
ing several indicators to confidently detect an approach-
ing transition (Guttal and Jayaprakash 2009, Drake and  
Griffen 2010, Dakos et al. 2011), or using both time series 
and spatial information if available (Rietkerk et  al. 2004, 
Kéfi et  al. 2007, 2011) can be a promising way forward. 
Also combining early warning signals with predictions of 
mechanistic models may be helpful (Lenton 2011). While 
uncertainties in the model parameters may be too large  
for accurate prediction, combining model predictions with 
early warning signals may improve the reliability.

Despite the fact that generic early warning signals do 
not provide specific information about the type and the 
risk of an upcoming transition, testing these ideas and 
their applicability can still prove beneficial for ecosystem 
management. Recent studies have provided encourag-
ing results (Dakos et  al. 2008, Drake and Griffen 2010,  
Carpenter et  al. 2011, Veraart et  al. 2012), and more  
effort must be devoted to confront these indicators with 
real data (Andersen et  al. 2009). We hope that this work 
will stimulate further research aiming at devising indica-
tors specific to catastrophic shifts, whose occurrence may be 
extremely important for the livelihood of people living in 
the ecosystems threatened.
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