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Abstract
Growing evidence of global declines in pollinator abundance and diversity has raised con-
cerns about the resilience of pollination systems. When subjected to stressors, each nested 
component of the pollination system (communities, populations, and colonies) can respond 
in either a smooth linear fashion, or in an abrupt nonlinear manner. Threshold and tipping 
point responses to stress are of particular concern because they result in sudden changes 
with little warning; such changes may lead to persistent non-functional states that are dif-
ficult to reverse. Here, we review evidence for threshold and tipping point responses at 
the colony, population and community levels of the pollination system. We find that while 
there are strong theoretical reasons to expect tipping point and threshold responses at all 
three levels of the pollination system, evidence in the field is lacking for all levels except 
the colony level. While this is encouraging, caution is still warranted as tipping point and 
threshold responses—by their very nature—may not be apparent until they are underway. 
Moreover, we propose that the interaction of nonlinear stress responses across different 
levels of the pollination system can increase the risk of cascading failures. We therefore 
suggest a cautious approach toward the management of pollination systems. Since environ-
mental change will almost certainly continue to accelerate, understanding the potential for 
thresholds, tipping points and cascading failures is key to safeguarding global pollination 
systems.
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Introduction

Pollinating animals have long been recognized for their ecological and economic impor-
tance. In temperate regions, 78% of flowering plants are animal pollinated; this number 
rises to 94% in tropical communities (Ollerton et  al. 2011). The global economic value 
of animal pollination is estimated at 153 billion Euros annually (Gallai et al. 2009) with 
approximately 75% of the world’s major crops being moderately to totally dependent on 
animal pollination (Klein et  al. 2007). The past century has seen massive and accelerat-
ing levels of human-induced environmental change, much of which directly or indirectly 
impacts pollinators and the ecosystem services they provide. There is convincing evidence 
of ongoing global declines in many pollinator taxa (Biesmeijer et  al. 2006; Carvalheiro 
et al. 2013; reviewed in Potts et al. 2010; Sánchez-Bayo and Wyckhuys 2019).

Pollinators are assailed by an array of interacting stressors from habitat loss and alter-
ation to disease, invasive species, poor nutrition, exposure to agrochemicals and climate 
change (reviewed in Vanbergen 2013; Goulson et al. 2015; González-Varo et al. 2013). In 
the short term it is unlikely that these stressors will decrease; indeed, many (such as habitat 
loss and climate change) are on course to continue into the foreseeable future. Safeguard-
ing our pollination systems against this backdrop of accelerating global change requires an 
understanding of how pollination systems may respond to environmental stressors.

From a conservation perspective, it is not only the speed and magnitude of system 
response that is important, but also the shape of the response function. Responses to envi-
ronmental stressors can be broadly divided into three major groups: linear responses, 
threshold responses, and tipping point responses (Scheffer et  al. 2001) (Fig.  1). If a 
response function is linear, incremental changes in environmental factors will affect the 
system in proportional and predictable ways (Fig.  1a). In linearly responding systems, 
reducing stressors can recover the system to its former state in the same way that a stretched 
rubber band will return to its initial shape once pulling is stopped.

In contrast, nonlinearly responding systems can change disproportionally to small changes 
in stressors with little or no warning. Threshold responses are a type of nonlinear response 
characterised by a sharp -but still reversible- change in system behaviour once a threshold 
stressor value is surpassed (Fig. 1b). Tipping point responses go one step further: they occur 

Fig. 1   Type of responses in ecological systems due to a change in an environmental driver. a Linear 
decline. b Nonlinear change of ecological state after the system passes a threshold. c Tipping point nonlin-
ear response. At the tipping point, ecological systems shift from one state (upper branch) to the alternative 
state (lower branch). Black solid lines indicate stable equilibrium states, whereas black dotted lines repre-
sent the unstable threshold that separates the basins of attraction of different stable states. The open circles 
indicate the tipping points at which transitions between alternative states occur. Adapted from Scheffer et al. 
(2001)
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when a small change in the environmental stressor triggers a dramatic shift into an alterna-
tive state that is difficult to reverse (Fig. 1c). This means that a system that has shifted into an 
alternative state will not return to its previous state, even if conditions revert to pre-transition 
levels. This phenomenon is known as ‘hysteresis’ and encapsulates the idea that the pathway 
to system degradation may not be the same as the pathway to restoration (Scheffer et al. 2001).

In this paper, we synthesize theoretical and empirical evidence for nonlinear responses in 
pollination systems with emphasis on thresholds and tipping points. We conceptualise a polli-
nation system as a hierarchical set of nested systems (‘a system of systems’) where pollinator-
plant communities are made up of diverse and interacting pollinator and plant populations, 
which are, in turn, made up of interacting individuals that can adapt and exchange informa-
tion. In the particular case of social insects, such as bumble bees, stingless bees and honey-
bees, an extra level of organisation is added as individuals are also organised into colonies, 
and colonies may interact with other colonies within a population. At each level of organisa-
tion there are a separate set of dynamics that create feedbacks across levels and result in emer-
gent behaviours that cannot be anticipated if each part of the system is considered in isolation 
(Levin 1998). In our framework, we explicitly consider the potential that impacts on one level 
of the system can cascade through to other levels.

Our first goal was to identify empirical and theoretical examples of thresholds and tipping 
point responses at each level of the pollination system. Next, we explored the potential for 
threshold responses to propagate across levels of the pollination system, arguing that we need 
to explicitly consider their interactions and cascading effects. We conclude by highlighting 
several open research questions that could improve our understanding of the management and 
conservation implications of threshold and tipping point responses in pollination systems.

Threshold and tipping point responses in pollination systems: 
literature search

Evidence for strong nonlinear effects in pollination systems is likely scattered across many 
different literatures. We thus used a broad search strategy to capture the current state of evi-
dence. We conducted searches of Web of Science using key words that describe strong non-
linear responses (“phase transition” or “bifurcation” or “tipping point” or “critical transition”) 
and at least one of the following additional terms: “pollinator”, “pollination”, “Hymenoptera” 
(bees, ants, wasps and sawflies), “Diptera” (true flies), “Lepidoptera” (moths and butterflies) 
and “Coleoptera” (beetles). We chose the search terms Coleoptera, Diptera, Lepidoptera and 
Hymenoptera as we wanted to find papers that dealt with aspects of pollinator life history 
or physiology that could be missed with the “pollination” and “pollinator” search terms. We 
choose these four orders in particular as they are responsible for the majority of insect pollina-
tion (Rader et al. 2016). In addition, we reviewed references obtained from the citation list of 
each paper. We also used knowledge of our respective fields to find additional examples that 
were not discovered using our search terms.



3392	 Biodiversity and Conservation (2019) 28:3389–3406

1 3

Empirical evidence for tipping points and thresholds in pollinations 
systems

We found only 1 empirical example of a tipping point or threshold response to stress at the 
colony level (Bryden et al. 2013), and no empirical examples at the population or commu-
nity level. Although several studies investigated mechanisms that could plausibly lead to 
strong nonlinear declines (e.g. Whitehorn et al. 2009; Perry et al. 2015), they did not col-
lect the time series data and/or do the analyses necessary to confirm thresholds or tipping 
points. Since a wide variety of terminology is used to describe nonlinear stress responses, 
we cannot rule out the possibility that empirical examples exist but were not discovered by 
our search terms. While we did not find strong experimental or observational evidence for 
tipping point or threshold stress responses, we did discover evidence from theoretical stud-
ies. We argue that the ‘ingredients’ needed for nonlinear responses, such as strong positive 
feedback mechanisms (see Glossary), exist at each level of the pollination system. In the 
sections below, we discuss the theoretical knowledge base for threshold responses at the 
colony, population and community level.

Threshold responses at the colony level: collapse of a pollinator society

Despite the fact that the majority of bee species are solitary, social species such as hon-
eybees, stingless bees and bumble bees are often crucial pollinators in managed and natu-
ral ecosystems (e.g. Olesen et al. 2007; Geslin et al. 2017). Social bee species are some-
times considered more resilient to environmental stressors than solitary species due to their 
‘superorganism resilience’, where the large number of non-reproductive workers acts as a 
buffer against stress (Straub et al. 2015). If an individual bee dies, another rapidly takes 
her place; indeed, in several species there are exquisite physiological and/or behavioural 
mechanisms that allow individuals to alter their developmental trajectory to replace lost 
nest mates (Robinson 1992). However, it is becoming increasingly clear that social bees 
may, under certain conditions, suffer from colony collapses due to positive feedback mech-
anisms within the colony (Bryden et al. 2013; Perry et al. 2015; Myerscough et al. 2017).

One of the clearest examples of a positive feedback leading to colony collapse comes 
from the European honeybee (Apis mellifera). In honeybees, the task a worker bee per-
forms is dictated, in part, by her age. Younger workers typically perform in-nest tasks, 
while the oldest workers function as foragers (Huang and Robinson 1996). Up to a criti-
cal mortality rate, colonies can maintain a stable population size by replacing lost workers 
with sub-optimally performing precocious foragers (bees that accelerate their development 
to become foragers earlier than usual) (Khoury et al. 2011; Barron 2015; Perry et al. 2015; 
Myerscough et  al. 2017). However, precocious foragers are not as proficient as normal-
aged foragers and thus suffer from a higher mortality rate. Once the threshold mortality 
rate is surpassed, the colony population declines precipitously as the workforce becomes 
increasingly young and ineffective. This leads to a subsequent decline in food levels, which 
in turn stimulates the recruitment of even younger bees into the foraging force (Perry et al. 
2015). This death spiral continues until the colony’s adult workforce is depopulated and 
the colony ceases to function (Fig. 2a). While compelling modelling strongly suggests the 
existence of tipping points or thresholds in stressed honeybee colonies, strong empirical 
verification is lacking.
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Models suggest that a high rate of forager loss (upwards of 30% of foragers dying per 
day) would be needed to push honeybee colonies over the threshold (Perry et  al. 2015). 
While this is an extreme mortality rate (more than double the background mortality rate), 
it is not unreasonable, especially when we consider that bees (and other central-place for-
agers) are thought to be particularly sensitive to stressors that impair their cognitive func-
tion (Klein et al. 2017). Cognitively impaired bees suffer high mortality because they can-
not effectively navigate, orient, communicate and/or learn. A wide range of stressors are 
known to impact the cognitive function of bees including pesticides, heavy metals, para-
sites and pathogens, malnutrition and low temperatures during development (Tautz et al. 
2003; Gegear et al. 2006; Jin et al. 2015; Burden et al. 2016; Klein et al. 2017). At least one 
study has found experimental evidence that cognitive impairment alone is enough to trig-
ger colony collapse in bumblebees, where chronic exposure to sub-lethal doses of neoni-
cotinoid insecticides resulted in colony collapse when the number of cognitively impaired 
bees exceeded a critical threshold (Bryden et al. 2013).

Fig. 2   Known and suggested positive feedbacks that can possibly cause threshold and tipping point 
responses in pollination systems. Boxes contain system components, while arrows indicate interactions 
between components. Minus signs depict negative relationships between components, while plus signs indi-
cate positive relationships. The product of the signs along the direction of the arrows results in a positive 
feedback process that may constitute a mechanism for causing threshold behaviour at each level of the pol-
lination system
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Threshold responses at the population level: Allee effects 
and extinction vortices in pollinators

In 1930, Allee observed that many species suffer from low or negative population growth 
when their population size is small (Allee et al. 1949; Courchamp et al. 1999). Populations 
of small size would then suffer ‘Allee effects’ which drive them abruptly to extinction. At 
least six mechanisms underlying Allee effects have been identified so far, including mate 
limitation, cooperative defence, predator satiation, cooperative feeding, dispersal, and habi-
tat alteration (Kramer et al. 2009). Most of these mechanisms could affect the population 
dynamics of pollinators. Butterflies, for example, may experience Allee effects due to mate 
limitation because individuals become reproductively active at different times of the year 
(Calabrese and Fagan 2004). At low population densities, more individuals find themselves 
reproductively isolated thus reducing the population growth rate and further decreasing the 
mating probability of individuals, ultimately leading to a spiral toward extinction.

It is also possible for a population to be subject to multiple simultaneous Allee effects 
(Berec et  al. 2007). It is easy to imagine situations where an environmental driver (e.g. 
insecticide use) causes an increase in mortality rate which then sets off an extinction spi-
ral as Allee effects become more pronounced. Although the prevalence and magnitude of 
Allee effects amongst pollinators is unknown, it seems likely that they could increase the 
risk of extinction in pollinator populations at low densities.

In addition to Allee effects, a nonlinear shift to extinction at low densities can be 
enhanced by the combined effects of genetic diversity loss, environmental stochasticity, 
and demographic stochasticity. These elements create an ‘extinction vortex’ (Fig. 2b) that 
can cause accelerating decline leading to extinction (Gilpin 1986). Extinction vortices have 
been implicated in the extinction of 10 vertebrate species (Fagan and Holmes 2006).

Pollinating insects in the order Hymenoptera may be at risk of a type of extinction vor-
tex caused by their haplo-diploid sex-determination mechanism. In hymenopterans, sex is 
determined by the fertilization status of the egg; males are haploid and result from unfer-
tilised eggs while females result from fertilized eggs and are diploid. In single locus com-
plementary sex determination (sl-csd) (widespread in the Hymenoptera and believed to be 
ancestral), sex depends on the allelic composition of a single gene known as the csd (Van 
Wilgenburg et al. 2006). If a fertilized egg is heterozygous at the csd, it will develop into 
a normal diploid female (Hedrick et al. 2006). However, if the offspring is homozygous at 
the csd, the result is an inviable or sterile diploid male (Hedrick et al. 2006). A female that 
mates with a male with whom she shares one of her sex determination alleles will produce 
50% inviable diploid males.

The production of diploid males results in mate limitation for fertile females, leading to 
decreased population size. If the population size continues to decline, genetic diversity at 
the csd also declines (Fig. 2b). As a consequence, the probability that a female will mate 
with a ‘matched male’ increases, thereby increasing the frequency of diploid males (Chap-
man and Bourke 2001). The resulting positive feedback loop, termed ‘the diploid male vor-
tex’, ultimately drives the population to extinction at rates more than an order of magnitude 
higher than that caused by other forms of inbreeding depression (Zayed and Packer 2005).

Studies of inbred bumblebee colonies found that increased diploid male production 
was associated with a slower colony growth rate, shorter survival time and decreased off-
spring production suggesting the presence of an incipient diploid male vortex (Whitehorn 
et al. 2009). Darvill et al. (2012) found that the presence of infertile triploid male bumble 
bees (the product of a mating between a diploid male and a normal female) was negatively 
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correlated with patch size, suggesting that environmental degradation caused an increase in 
triploid males as predicted by the diploid male vortex.

The risk of entering a diploid male vortex is influenced by several parameters. Model-
ling suggests that the number of diploid males in a population is driven more strongly by 
male flight radius than by the number of sexual alleles (Faria et al. 2016). The impact of 
male flight radius on allelic diversity is more pronounced in small patches than in larger 
patches (Faria et al. 2016). These results suggest that populations of smaller hymenopter-
ans, which tend to have smaller flight ranges (Greenleaf et al. 2007), living in fragmented 
environments may be at increased risk of the diploid male vortex. The risk of diploid male 
vortices is exacerbated in social hymenopterans such as honeybees, stingless bees and 
bumble bees because only one or a few individuals within the colony actively engage in 
reproduction. As a result, effective population size can be orders of magnitude lower than 
the number of individuals observed in the field (Chapman and Bourke 2001).

Despite the dire implications of the diploid male vortex, some studies suggest that 
inbred populations can escape extinction. For example, Boff et al. (2014) found no relation-
ship between island isolation and diploid male production in an orchid bee species even 
though genetic diversity was lower on islands. Similarly, Elias et al. (2010) found no evi-
dence for extinction proneness in parasitoid wasp populations containing high numbers of 
diploid males. Despite a massive population bottleneck, invasive Apis cerana honeybees 
apparently avoided the diploid male vortex because balancing selection prevented the loss 
of rare csd alleles, thus restoring high levels of heterozygosity (Gloag et al. 2016).

A modelling study by Hein et al. (2009) suggested that in order for the diploid male vor-
tex to start, four conditions needed to be met: (i) extreme fragmentation (i.e., populations 
are small and isolated), (ii) fixed sex ratio, (iii) low reproductive rate, and (iv) an inability 
on the part of females to detect the genotype of potential mates. Relaxing any of these 
conditions allows the population to escape the diploid male vortex. While these theoretical 
results may reduce the set of conditions under which a diploid male vortex can develop, the 
combination of even a weak diploid male vortex with unknown (so far) Allee effects might 
still lead to nonlinear responses to extinction in pollinator populations.

Threshold responses at the community level: extinction cascades 
and the collapse of pollinator communities

Pollinator communities are made up of interacting flowering plants and their pollinators 
whose interactions form ecological networks. Ecological networks provide a powerful con-
ceptual tool for understanding the influence of environmental change on communities (Pas-
cual and Dunne 2006). Such influence can take place due to changes in species composi-
tion, due to changes in realised species interactions, or to changes in the co-evolutionary 
processes that shape species interactions (Tylianakis and Morris 2017).

A characteristic property of pollination networks is their ‘nested’ structure, which 
means that specialist species tend to interact with a core composed of their most general-
ist partners (Bascompte et al. 2003; Bascompte and Jordano 2007). There is a substantial 
amount of theoretical literature that aims to understand the role of this nested topology 
on the stability and maintenance of biodiversity in mutualistic communities such a plant-
pollinator networks.

Nested plant-pollinator communities have been shown to sustain high biodiversity (Bas-
tolla et  al. 2009) and to remain stable to random disturbances (Grilli et  al. 2016) when 
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compared to their random counterparts. On the other hand, nested pollination networks are 
more prone to nonlinear community-wide collapses compared to random networks with-
out a nested structure (Lever et al. 2014). The increased susceptibility to collapse occurs 
because in highly nested communities a strong positive feedback can develop between pol-
linators that interact with the same plant. Simply put, in a nested pollination network there 
are more pollinator species that interact with the same plant species. These multiple shared 
interactions translate into a higher number of pollinator visitors for the plant. Since the 
mutualistic benefit to the pollinators is proportional to plant biomass, pollinators can sur-
vive high levels of stress because they are benefiting from indirect positive effects from 
their nested pollinator partners. The positive indirect effect sustains the existence of the 
pollinators up to a threshold stress level. Once the stress threshold is surpassed the indirect 
effects are no longer sufficient at which point all nested partners collapse to extinction.

Nonlinear species loss is expected to occur predominantly in communities where plants 
depend strongly on their pollinators and vice versa (obligate mutualism) (Lever et al. 2014; 
Dakos and Bascompte 2014). The nonlinear response is usually a sequence of cascading 
tipping point events where subsets of species go extinct from the community. In addition to 
nestedness, higher degree of connectance (i.e. the realised number of interactions over the 
total possible number in a network) results in a higher probability that these tipping point 
events become synchronised; this synchronicity ultimately leads to a single strong response 
affecting most of the community (Lever et al. 2014).

However, the pattern of community extinction in pollination systems under stress is 
not necessarily nonlinear. Species extinctions in plant-pollinator communities may follow 
a sequential pattern occasionally triggering cascading secondary extinctions, but where 
the overall pattern of species loss will appear gradual rather than abrupt. Whether or not 
the pattern of extinction is linear or nonlinear is influenced by each species’ tolerance to 
extinction which in turn depends on the species’ number of interactions and on its con-
tribution to network nestedness (Saavedra et al. 2013). Memmott et al. (2004) found that 
removing pollinators from the most specialist to the least specialist species led to nonlinear 
response only after the majority of pollinators had been lost. However, when pollinators 
were removed in the reverse order (least specialist to most specialist) plant species went 
extinct more rapidly but in a linear manner.

Which extinction pattern (least specialist to most specialist or vice versa) is more likely 
to occur empirically? Aizen et al. (2012) found evidence that specialist pollinator species 
with a small number of interactions were more likely to disappear from isolated hills in 
Argentina. Using a 120 year-long dataset, Burkle et  al. (2013) found that specialist pol-
linators were more likely to be extirpated, even when their host plants were still present. 
These empirical findings suggest that specialist pollinators are more likely to go extinct 
than generalists.

Other empirical studies show that invasive species can also alter the structure of pollina-
tion networks (Aizen et al. 2008) thus altering the probability of nonlinear collapses. For 
instance, exotic plants are often generalists, attracting a large number of pollinator species 
(Aizen et al. 2008; Stouffer et al. 2014) which can cause invaded communities to become 
significantly more nested (Bartomeus et al. 2008). If such patterns are generally true, the 
loss of specialist species or the invasion of generalist species may lead to strongly con-
nected or nested networks that will be more likely to suffer strong, sudden synchronised 
collapses.

The prediction that networks may become prone to synchronised collapses neglects 
the potential buffering effect of ‘interaction rewiring’, which has been empirically 
shown to contribute to maintaining a constant network structure (Petanidou et al. 2008; 
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Timóteo et  al. 2016). Interaction rewiring refers to a pollinator’s ability to switch to 
alternative, less-preferred flowers if a preferred flower is unavailable; this behaviour 
might prevent a pollinator population from collapsing long enough for a preferred plant 
species to recolonise the site. Removal experiments conducted on simulated Mauritian 
pollination networks found that network stability can be maintained if species ‘re-wire’ 
themselves by shifting to new plants when their preferred species becomes extinct (Kai-
ser-Bunbury et al. 2010).

More generally, adaptive foraging by pollinators can increase community persistence 
and robustness to species loss (Valdovinos et al. 2013). The potential of adaptive responses 
to stabilise communities will depend partly on the amount and conservation of trait varia-
tion within populations that could counteract phenological mismatches between plants and 
pollinators (Revilla et al. 2015) or the sensitivity of specific species to chemical pollution 
(reviewed in Leonard and Hochuli 2017). In addition, the effect of network rewiring via 
adaptive foraging will depend on the temporal and spatial variability of interactions (Tyli-
anakis and Morris 2017). Climate-induced phenological shifts in plant-pollinator commu-
nities (Rafferty et al. 2013) can leave plants and pollinators without interactions even if the 
phenological shifts are small (Memmott et al. 2007) and could potentially increase the risk 
of a community collapse. So far there is insufficient empirical evidence and an incomplete 
theoretical understanding of the extent to which behavioural changes, flows between meta-
communities, and trait variation act in concert to minimize the risk of threshold responses 
in pollination networks.

Open research questions

Our synthesis of theoretical and empirical evidence for nonlinear effects at different lev-
els of the pollination system revealed several missing links and open questions. Below we 
address several areas where further knowledge could improve our understanding and man-
agement of thresholds and tipping points in pollination systems.

How prevalent are threshold and tipping point responses?

The existence of positive feedback loops at all levels of the pollination system lead us to 
the prediction that nonlinear stress responses should be common. Yet our literature search 
failed to find either experimental or observational evidence for nonlinear phenomenon at 
the population or community level and only one clear example from the colony level. Why 
is there a mismatch between prediction and experimental results? One possibility is that 
real pollination systems have a number of resilience mechanisms (discussed below) that 
allow for greater-than-expected tolerance to stressors. Nonlinear effects are also, by their 
very nature, difficult to observe until collapse is already underway. It is also possible that 
more examples of nonlinear responses exist but were not captured by our search terms. We 
suspect that researchers may not always frame their results in terms of thresholds and tip-
ping points, even when studying systems that display these dynamics. Thus we suggest that 
future work focus on characterising the shape of stress responses at all levels of the pollina-
tion system; this would allow us to determine the actual prevalence of nonlinear effects.
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Are there mechanisms that safeguard the stability of pollinator 
systems and reduce the risk of threshold and tipping point responses?

It is possible that resilience mechanisms (such as network rewiring, flexible caste determi-
nation, demographic rescue from nearby populations, conservation of genetic variation) are 
sufficient to delay or prevent the kind of nonlinear responses we describe throughout this 
manuscript. However the extent and nature of these mechanisms is still largely unknown. 
With further research, it may be possible to harness the stabilising ability of resilience 
mechanisms to buffer systems that are close to tipping points. In the case of urban and agri-
cultural environments, this could take the form of selective planting of key plant species, 
or the provision of nesting habitat targeted at pollinator species known to play key roles 
in maintaining network resilience. On the conservation side, a thorough understanding of 
resilience mechanisms may allow us to prioritise the conservation of particularly important 
plant or pollinator species. At the colony level, understanding resilience mechanisms could 
lead to new interventions for preventing colony collapse in managed pollinators.

What kind of experiments and models can we develop to identify 
thresholds and tipping points at the colony, population 
and community level?

A key step towards safeguarding pollination systems is to identify which systems (if any) 
have a high risk of threshold or tipping point responses. This will require studies aimed 
at identifying key stressors, positive feedback mechanisms, nonlinear responses in obser-
vational data, and, if possible, experiments for establishing the existence of thresholds 
(Scheffer and Carpenter 2003). Here, we have tentatively identified places where there is 
potential for threshold or tipping point responses (Fig. 2), but further work is needed to 
confirm and expand our list. This is no easy task as experimental evidence is difficult to 
gather (Schröder et  al. 2005). So far, studies using space-for-time substitution document 
gentle rather than nonlinear decreases in abundance of bee populations along disturbance 
gradients (Winfree et  al. 2009). Nonetheless, such observed response patterns are few, 
remain difficult to obtain, and do not preclude the potential for threshold or tipping point 
responses. A meta-analysis of studies focused on long term population trends in pollinating 
species might be helpful in determining whether population declines tend to be linear or 
nonlinear. Unfortunately, longer term studies at the required resolution remain few and far 
between.

At the colony level, experiments that carefully apply varying stressors to bee colonies 
could be used to determine the shape of the colonies’ response function. It would be par-
ticularly interesting to determine if different stressors result in different types of decline 
(e.g. threshold, tipping point, linear). The data needed to address these questions might 
already exist within data sets collected from the increasing number of sensor-enabled hon-
eybee hives. In addition, modelling of bee colony demography and behaviour can be used 
to narrow down the list of potential stressors (and their interactions) that are likely to cause 
nonlinear declines; once candidate stressors have been identified in silico they can then be 
tested in the field (Henry et al. 2017).

Systems with tipping points can appear gradual in their responses to stress due to time 
lags (Hughes et  al. 2013). Slowly responding populations under rapid environmental 
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change, assisted by subsidies between metacommunities, can create temporal and spatial 
heterogeneities that may mask the nonlinear response of a bistable system. Indeed, thresh-
old responses at the colony, population and community level will most likely be identified 
after terminal collapse processes are underway because timescales of ecological responses 
often do not match monitoring timescales. In addition, traditional census techniques (e.g. 
pollinator sampling) which do not take into account the potential for nonlinear responses 
might overestimate the true health of pollination systems. What is needed is a reliable way 
to identify the conditions that can increase the potential fragility of pollination systems 
(see Foley et al. 2015; Hunsicker et al. 2016). Research that combines modelling and field 
experiments can help achieve this goal.

Could interacting threshold and tipping point responses lead 
to cascading failures across scales in a pollination system?

Thus far we have described real and potential threshold or tipping point responses at col-
ony, population and community levels in isolation (Fig. 2). However, levels of the pollina-
tion system can interact with one another, potentially accelerating global collapse (Fig. 3). 
It is well-recognised that different environmental stressors can interact with one another 
leading to synergistic effects on pollinator decline (e.g. Vanbergen 2013; Goulson et  al. 
2015; González-Varo et  al. 2013). What is less well-studied is the potential for interac-
tions between different levels of the pollination system to cause cascading effects that could 
increase the risk of pollination system collapse. Consider, for instance, that exposure to 
sublethal doses of insecticides could result in the collapse of wild bumblebee colonies if a 
threshold number of bees experience cognitive impairment. A local increase in the rate of 
colony failure could reduce population-level genetic diversity, initiating a diploid male vor-
tex. This would trigger a decrease in the number of social bees, which are often important, 
highly connected components of the pollination network (Olesen et al. 2007). The loss of 
social bees could in turn initiate a series of plant extinctions, resulting in a cascade of sec-
ondary extinctions and, ultimately, community collapse.

How likely is this scenario? Although there are mechanisms that can buffer responses in 
the pollination system (like the ones described in the previous section), the extent to which 
resilience mechanisms can prevent collapse in the face of rapidly increasing environmental 
change remains unknown. Thus, research is needed to understand how different nonlinear 
responses of the pollination system at different scales might interact to cause global sys-
temic collapses (Fig. 3).

Which pollinator species are most susceptible to threshold and tipping 
point responses at the population level?

Ideally, species or populations at risk of non-linear declines would be identified as 
potential targets for monitoring and conservation efforts. The hymenopteran sex deter-
mination system and the fact that hymenopterans are central place foragers could 
potentially make them more vulnerable than other insect groups to non-linear declines. 
However, we currently have little knowledge on how common extinction vortices and 
diploid male vortices are in nature nor do we know whether there are strong Allee 
effects in non-hymenopteran pollinators. At the colony level, experimental evidence 
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for non-linear declines in colony health comes only from bumble bees; examples from 
other eusocial bee species are lacking although there is strong anecdotal evidence of 
rapid, nonlinear collapse in honeybees. Future research should determine if non-linear 
decline is a common feature of colony failures or if it is associated with particular 
stressors.

Another unresolved question is the extent to which eusocial species are more sensi-
tive to environmental change than are solitary species. The potential fragility of social 
species is suggested by several recent analyses which found that sociality in bees is 
associated with a lack of resilience to land use changes (Williams et  al. 2010; De 
Palma et al. 2015 although see Bartomeus et al. 2013 for a counter example).

Fig. 3   Potential interconnections between positive feedbacks across different levels of organisation in the 
pollination system. Potential pathways are depicted via which environmental stresses can create a series 
of cascades that could increase the risk of collapse in a pollination system. Straight dotted arrows indi-
cate interactions between different components. The solid curved arrows depict positive feedback processes. 
Allee effects, diploid male effects, and inbreeding are grouped together for ease of representation. Colony 
collapse occurs at the colony level, extinction vortices occur at the population level, and extinction cascades 
occur at the community level
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Can we develop indicators for detecting impending pollinator 
collapse?

A possible method for assessing the risk of nonlinear responses in pollination systems 
comes from a set of methods called resilience indicators. Resilience indicators are based 
on statistical properties in the dynamics of a system that are symptomatic of an impending 
tipping point (Scheffer et al. 2009). The most prominent of these indicators are a rise in 
variance and autocorrelation, both of which are consequences of the slow response capac-
ity of a system close to a tipping point (Wissel 1984). General frameworks for the applica-
tion and use of these indicators are well-developed (Dakos et al. 2012), and they have been 
increasingly tested in lab and field experiments (Carpenter et al. 2011; Dai et al. 2012; Ver-
aart et al. 2012; Gsell et al. 2016). In fact, these indicators have been shown to be generic 
for a range of ecological responses which makes them universal signals of degradation and 
loss of ecological resilience (Kéfi et al. 2013). Although so far there is no empirical test-
ing of early warning indicators in pollination systems, these indicators have been theoreti-
cally shown to provide warning of impeding collapse both at the species and community 
level in simulations of empirically described plant pollinator networks under increasing 
environmental stress (Dakos and Bascompte 2014). At the colony level, recent advances in 
high frequency monitoring via sensor arrays inside managed bee colonies could be used to 
collect a large amount of data about colony health and performance. These metrics, alone 
or in combination, could serve as response variables, which could be analysed for early 
warning indicators.

It may be particularly difficult to adapt generic early warning indicators to the com-
munity and population levels of pollination systems because they require long and highly 
resolved records of population abundances; while such data may exist for some taxa in 
some places, it is difficult to collect and unavailable for the majority of pollinator species. 
Theoretical work suggests that it may be possible to decrease this complexity by reducing 
multispecies community dynamics to aggregated dynamics of plant and pollinators func-
tional groups (Jiang et al. 2018). It remains, however, a challenge to achieve this simplifica-
tion as it requires information on both the structure and the intensity of mutualistic interac-
tions between plants and their pollinators.

Alternatively, response variables such as crop yield, fruit quality or farmer profit could 
be attractive targets for analysis with early warning indicators because they are relatively 
easy to collect and are likely linked to the functioning of the pollination system. Theoreti-
cally, it has been shown that changes in variance and autocorrelation of profit made by the 
exploitation of a harvested resource (e.g. fisheries) could better reflect the risk of collapse 
compared to changes in the same indicators of the state of the system itself (Richter and 
Dakos 2015). However, the use of yield, profit or quality might be complicated in agri-
cultural systems because of human management. For example, growers might compensate 
for decreased crop yields due to the loss of wild pollinators by renting honeybee colonies; 
this would mask early warning signals in crop yield data. Indeed, it has been suggested 
that human adaptive management tends to keep agricultural systems close to their tipping 
points (Yletyinen et al. 2019), which might dampen the effectiveness of early warning indi-
cators (Bauch et al. 2016). For this reason, a combination of ecological and socioeconomic 
response variables might be more useful (Yletyinen et al. 2019). For instance, in the case 
of agricultural pollination, monitoring could include the amount of money growers allocate 
to renting honeybee hives as well as floral visitation rate and/or pollinator species richness. 
Progress toward identifying suitable response variables will require simulation studies to 
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explore scenarios of how the combination of abundance dynamics, structural community 
properties and human responses could create synthetic indicators for the risk of abrupt 
community responses that could be tested in the real-world.

How do we manage threshold responses in pollination systems?

Insight into how to best manage threshold effects in pollination systems could come from 
the experiences of managers in other ecological systems. In their analysis of 51 case stud-
ies, (Kelly et al. 2015) found that ecological systems with strong nonlinear responses could 
be best managed when the systems were relatively small (so that inputs and outputs could 
be more closely controlled), when routine monitoring programs were in place, and when 
systems were specifically managed with nonlinearity, thresholds and tipping points in 
mind.

Long term pollinator monitoring programs are urgently needed especially in poorly 
studied regions of the world such as Australia, Africa and Asia. A precautionary attitude 
should be taken when setting conservation targets for pollination systems, since declines 
may happen suddenly and, in the case of bistable systems, may be irreversible. Primary 
industries such as agricultural systems may be at particular risk for tipping points and the 
economic impacts of such collapse could be very high (Yletyinen et al. 2019). Thus, we 
suggest there is an urgent need for research into nonlinear responses in pollination-depend-
ent crops.

The finding that management outcomes were most successful when managers specifi-
cally managed with thresholds and critical transitions in mind is promising; it is our hope 
that the present manuscript will encourage managers and researchers to think about poten-
tial threshold responses within pollination systems.

Concluding remarks

Tipping points and thresholds are, by their nature, difficult to detect until they have been 
passed. As such, the lack of direct field evidence for nonlinear effects at the community 
and population level should not lead to complacency. While pollination systems can be 
resilient against environmental change, collapse of these systems would be economically 
and ecologically catastrophic. Since environmental change will almost certainly continue 
to accelerate, understanding the mechanisms that can provoke collapses and developing 
techniques to prevent them may be key to safeguarding our pollination systems.
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Glossary

Allee effect	�	�  Allee effects occur when populations suffer from low or nega-
tive population growth when their population size is small

Alternative stable states	� Different states of a system that can occur under the same 
external conditions

Bistability	�		�  The presence of two alternative stable states under the same 
conditions

Extinction vortex	�	�  A self-reinforcing process that drives population size down-
ward to extinction

Hysteresis	�		�  The lack of reversibility in bistable systems; hysteresis refers 
to the phenomenon where the pathway to system degradation 
may not be the same as the pathway to restoration

Threshold response	� A strong nonlinear response of a system to small changes in 
environmental conditions or stressors

Pollination system	�	� Community composed of interacting pollinators (animals) and 
plants

Positive feedback		�  A self-amplifying process between two or more system 
components

Resilience indicators	� Indicators of increasing instability in system dynamics that are 
used to detect proximity to tipping points (also referred to as 
early-warning signals)

Tipping point	�	�  A point where a runaway process (usually due to a positive 
feedback) pushes a system to flip into a different state
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