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review article

Thresholds and breakpoints in ecosystems
with a multiplicity of stable states

Robert M. May*

Theory and observation indicate that natural multi-species assemblies of plants and animals are likely to
possess several different equilibrium points. This review discusses how alternate stable states can arise in
simple 1- and 2-species systems, and applies these ideas to grazing systems, to insect pests, and to some

human host-parasite systems.

IN all but the most trivial areas of cnquiry. there arise questions
about the extent to which events are shaped by predictable natural
laws as against the accidents of initial conditions and per-
turbations. Is the human story largely a deterministic tale of
civilisations marching to Toynbee’s tune, three and a half beats to
disintegration, or did the hinge of history turn on the length of
Cleopatra’s nosc? Such questions of the relative roles of chance
and necessity! are fundamental in modern cosmology?-3, in the
foundations of statistical mechanics*®, and in evolutionary
biology! and ecology. even though they may arise in less blatant
and romantic fashion than the “what ifs* of history and the social
sciences.

Viewing the grand sweep of evolution, we can see many
examples where the taxonomic details of the plant or animal that
occupies a given niche at a given time and place depend on
historical accident, but where the niches themselves, and the broad
patterns of community organisation, are remarkably constant® ?.

Taking a much narrower and more local view, it is interesting to
consider a particular assembly of species, with specified in-
teractions among them. and to ask questions about the dynamics
of the system. Is the dynamical behaviour described by the multi-
dimensional generalisation of a single valley (a global attractor)?
Or is the dynamical landscape pockmarked with many different
valleys, separated by hills and watersheds? If the former, the
system has a unique stable state. to which it will tend (like a marble
sceking the bottom of a cup) from all initial conditions, and
following any disturbance. If the latter, the state into which the
system settles depends on the initial conditions; the system may
return to this state tollowing small perturbations, but large
disturbances are likely to carry it into some new region of the
dynamical landscape (so that the system behaves rather like the
ball in a pin-ball machine). If there is a unique stable state,
historical effects are unimportant: if there are many alternative
locally stable states, historical accidents can be of overriding
significance. Obviously, questions of this kind arc very important
in the understanding and management of ecosystems.

A large body of empirical obscrvations shows that many natural
communities have a multiplicity of stable states. Sutherland'® has
demonstrated that for the fouling community (a complex assembly
ofhydroids, tunicates, bryozoans, sponges and associated species)
at Beaufort. North Carolina, the order of larval recruitment
determines the way the community develops. Reviewing other
work on the marine rocky intertidal (see also the review by
Levin''), on coral reefs, on freshwater lakes, and on terrestrial
plant communities, Sutherland concludes that community struc-
ture can often “be explained only by referring to specific historical
events” and thereforc that “multiple stable points are an undeni-
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able reality.” A similar conclusion emerges from Connell’s and
Slatyer's'? survey of mechanisms of succession in natural com-
munities.

The view that complicated ecosystems possess many alternative
stable statesis also supported by theoretical studies of mathemati-
cal models that caricature such systems. From the growing number
of possible examples, I mention only two, chosen from opposite
ends of the spectrum. Austin and Cook'? have made computer
studies of a system in which 94 species (embracing plants.
herbivores and carnivores) are linked together by interactions that
aim to be relatively realistic: the system has many equilibrium
points, and is easily transferred from one to another. Case and
Gilpin'* have explored a relatively abstract system, in which the
coefficients in the interaction matrix for a n-species
Lotka- Volterra model are assigned random values; if n is at all
large, the system typically collapses to one or other of a variety of
simpler systems with fewer species. and this final steady state
depends on the initial population values. The notion of ‘resilience’
has been introduced by Holling!® in an attempt to characterise the
degree to which a system can endure perturbations without
collapsing or being carried into some new and qualitatively
different state. Theoretical ideas about resilience, along with
interpretive reviews of diverse other meanings that can be attached

to ‘stability’ inan ecological context, are the subject of many recent
J6 022

papers

Itis thusclear that real ecosystems possess multiple stable states,
as do plausible mathematical models. Unfortunately, the com-
plications inherent in multi-species systems almost invariably
preclude any quantitative confrontation between theory and data.
Formulti-species communities, the empirical observations remain
largely anecdotal, and the theory remains largely metaphorical.

For simple 1- and 2-species situations it is, however, beginning
to become possible to put theory and observation together, to gain
insight into the workings of systems with more than one stable
state. This review is a synthesis of several examples of this kind. I
begin with grazing ecosystems (and then. more generally. any
harvested crop or animal population), go on to insect pest systems
(particularly the spruce budworm). and conclude with some
human host-parasite systems,

Grazing ecosystems

Consider®32* a population of herbivores. maintained at a con-

stant density H, and sustained by vegetation whose biomassis V.
Our interest is centred on the dynamics of the vegetation
biomass. Following Noy-Meir®®, suppose that in the absence of
grazing the growth rate of the vegetation as a function of ¥is G( 1),
and that the herbivores consume the vegetation at a net rate C(V)
(corresponding to a per capita consumption at a rate
c(V):C(V)= Hc(V)).Then the rate at which ¥ changes is given by
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dVjdt = G(1) - C(V) = G(V)—He(V) (1)

The vegetation biomass will thus tend to settle to an equilibrium
level where the natural growth rate exactly balances the loss rate
due to grazing: that is, to a value of V such that G(V) = C(}).
Noy-Meir shows how these equilibrium V-values can be found
graphically, for various assumptions about the way G(V)and C(V)
depend on V.

Fig. 1 illustrates one plausible situation. Here, as shown by the
solid curve, G(V) is positive even when V' = 0 (corresponding to
some constant background contribution to the vegetation growth
rate, for example from the sprouting of seeds blown in from other
areas). At first G(V)increases as Vincreases, but as V continues to
increase G( V) decreases as shading and competition for nutrients
becomes important, until G(V) = 0at V' = K; Kis the maximum
stable biomass of ungrazed vegetation. The general shape of the
per capita consumption function ¢( V) is a saturation curve: at low
V. the herbivore intakeis limited by forage availability, so thatc( 1)
increases with increasing V'; at high V, (V) saturates to some
constant determined by the animal’s intake capacity or digestion
rate, It is useful to christen Vo as the characteristic value of I at
which the consumption function saturates. The dashed curves for
total consumption rate C(V) = He(V) in Fig. 1 are for a ¢(}) that
increases linearly with V at small V, corresponding to a herbivore
that searches randomly (Holling’s *"Type II"" or “invertebrate™
predator search pattern??).

We see from Fig, 1 that for relatively small values of Hthereisa
single equilibrium value for V, given by the point A where G(V)
and C(V) curves intersect; this value is slightly less than K. For
relatively large values of H, there is again a unique equilibrium
value for V' (corresponding to the point E), now atafow value of V.
Forintermediate values of A, the G(V)and C(F)curves intersect at
three points. The points B and D correspond to locally stable V-
values, whose domains of attraction are divided by the unstable
equilibrium point corresponding to C; B and D are the bottoms of
adjacent valleys, and C marks the watershed between them.

The essential feature that leads to two alternative stable states
for intermediate H values in Fig. 1 is the assumption that c(V)
saturates to a constant for values of V significantly below the
ungrazed equilibrium. That is. defining

o = Vo/K (2)

Fig. 1 is for « significantly less than unity. If « exceeds, or is of the

dv/de

Fig. 1 Therate of change of vegetation biomass. d V/dr. isshown as
a function of V. The solid curve is the natural, ungrazed vegetation
growth rate (which here is finite even for V' = 0). The dashed curves
arc loss rates due to grazing (of Type Il pattern) at high, intermediate
and low herbivore densities. H. Where the solid curve lies above the
dashed one. the net growth rate is positive: where the solid curve lies
below the dashed one. the net growth rate is negative: the points of
intersection of the curves correspond to possible equilibrium points.
For further discussion. see the text.
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Intermediate H

dv/dr

Fig. 2 Asfor Fig. 1. except that here the natural growth rate (solid

curve) is hinearly proportional to Fat small V. and the loss rate due to

grazing (dashed curves) is of Type Ill. Specifically. this figure

corresponds to equations (3) and (4): the x of equation (2) is herc

x = 0.1, and “high. intermediate and low A are represented by

» = 0.35.0.22and 0.10. respectively. The basic features shown by the
figure are. however. generic.

order of, unity, there is always only one stable state in the figure
corresponding to Fig. 1.

Fig. 2 illustrates another plausiblc circumstance, which differs
from Fig. | in details but not in essentials. Here. as V increases,
G(V) increases from zero to some maximum value and then
decreases back to zero at V' = K. The per capita consumption
function ¢(V) is now for herbivores whose foraging efficiency
increases faster than linearly with V at low V values, but which
again saturates to a constant for V above some characteristic value
Vo (Holling's “Type 1117 or “vertebrate™ predator consumption
function?®, which is also typical of many invertebrates?® 2%).
Provided that Vo is significantly less than K (that is, o is small), we
can again distinguish three domains of dynamical behaviour for
the vegetation biomass: for small H there is a unique equilibrium
value of V, slightly below K (the point A): for large H there is a
unique equilibrium at a low Vvalue (the point E); forintermediate
H there are two alternative stable states (the points B and D),
divided by an unstable point (C).

Specifically, Fig. 2 illustrates the situation where G(V) is given
by the familiar logistic equation, G(V) = r¥(1 — V/K), and where
C(¥y is  the “Type III” consumption function
C(V) = BHV?/(V5+ V?). Then equation (1) has the particular

form
v (Y BHV? .
& =" TR T e )

This equation may equivalently be written in dimensionless form,
by using the earlier definition of o, and introducing the rescaled
variables X = I'//K.t1 = rrandy = BH/rK

dXxidr = X(1 = X)— X3/ + X7) {4)

This equation can exhibit (D. Ludwig, D. Jonesand C. S. Holling,
to be published) two alternative stable states if, and only if,
a < 1/3. 3.

Figure 3 is derived from the situation depicted in Fig. 2, and
shows the stable equilibrium value(s) of the vegetation V. as a
function of the herbivore density H. For low H, the vegetation
biomass tends to settlc to a unique steady value, slightly below K.
As Hincreases beyond a threshold value (T1), a second stable state
for V appears. in a discontinuous fashion. As H continues to
increase. there occurs a second threshold (73), beyond which there
is again only one stable equilibrium for V' (the original low-H state
having disappeared, discontinuously). For stocking densities in
the intermediate region, 71 < H < T2, the vegetation will tend
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Fig. 3 The equilibrium valucs of the vegetation biomass. I, are

shown as a function of the stocking density, H. For a fixed value of H
below the lower threshold at 7', or above the upper threshold at T,
there is a unique equilibrium value of V; any initial ¥ value will move
to this equilibrium, as indicated by the arrows. For H between T and
T>.therc are two alternative equilibria for V2 as shown by the arrows,
the system will move to the upper or lower equilibrium. depending on
whether the initial value of V' lies above or below the dashed
“breakpoint’ curve. (This curve is constructed from Fig. 2 and
equations (3) and (4), witha=0.1.}

toward either the upper or the lower equilibrium value, depending
on the initial value of V: for initial values lying above the dashed
line in Fig. 3. V will move toward the upper equilibrium  initial
values below the dashed line will move to the lower equilibrium.
Borrowing an epidemiological term?®, we may call the dashed line
the locus of the “*breakpoint™ values of V.

Although Fig. 3 was constructed from the specific equation (3),
its important features are generic to any grazing ecosystem where
the dynamics of the vegetation biomass is described by something
like Figs 1 or 2. Even in the specially simple case where the G(FV) of
Fig. 2. with G(O) = 0. is combined with the C(}) of Fig. |, witha
linear dependence on ¥ for small V, we still obtain Fig. 3, except
that now the lower equilibrium value (occurring for H > T1) is
V=0.

If it is assumed that gross animal production, Pg. is linearly
proportional to total consumption, C(V). then the equilibrium
level of Pg as a function of stocking density H can be read off from
Fig. 3. This is done in Fig. 4. Fig. 4 has all the properties just
adumbrated for Fig. 3. and is similarly generic.

Noy-Meir first points out some management morals implicit in
all this, and then discusses the extent to which such theoretical
insights accord with known facts.

If one has a grazing system capable of manifesting the discon-
tinuities illustrated in Figs 3 and 4, then the vegetation will tend
always to recover to a high level following an environmental
disturbance only if H is kept below some threshold density, 7.
Rut. as can be seen from Fig. 4, this usually implies unacceptably
low gross productivity. Conversely. for H above T, there is the
danger that an environmental fluctuation will carry V below the
breakpoint value (the dashed line). whereupon the system will
move into the alternative steady state. with dramatically lower
values of V and Pu. The closer the system is pushed toward the
point of maximum productivity (at H = T2),themorelikelyis this
discontinuous collapse. And of course if the stocking rate for
maximum productivity is misjudged, so that H is pushed beyond
T>.then the system must collapse to the towerequilibrium state. As
Noy-Meir?? sums it up, “a discontinuously stable system is highly
labile at the stocking rate which allows the highest productivity.
Such a grazing system can be maintained at or near this maximum
production rate only by very frequent. almost constant, adjust-
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ments of stock density in response to fluctuations in vegetation. A
somewhat lower stocking rate will ensure more stable, though on
the average somcwhat lower, production.™

Noy-Meir reviews two classes of empirical evidence.

For intensive, or pasture, systems he pulls together data on the
growth curves as a function of green biomass, G(}). for ryegrass-
clover in New Zealand3®3! and for clover in Australia®?, and on
the consumption curves for sheep, C{ ). for Phalaris-clover??, for
Phalaris-annuals-clover®*, and for ryegrass-clover>, all in Aus-
tralia. He concludes that the sheep tested by Arnold and by
Willoughby would be capable of discontinuous stability properties
in October (down under) in pastures of ryegrass, ryegrass-clover,
and possibly in clover. There is also direct evidence for two
alternate stable states in an experiment done by Morley*®, which
involves sheep at three different stocking rates in two grazing
systems (continuous and with rotation). with three replicates of
each.

For extensive, or range, systems, indirect evidence can be culled
from traditional management practices. Noy-Meir lists the con-
ventional distinction between ‘safe’ and ‘maximum’ stocking
rates, the notion of range readiness (allowing the vegetation to
build to some pre-determined level before introducing animals),
and the observation that productivity and animal condition may
remain high even though the range is on the verge of collapse. This
‘conventional wisdom’ is readily justified by Figs 3 and 4.

Throughout this discussion, the herbivore density H has been
treated as a constant. In natural (as opposed to managed)
situations. H itself will be a dynamical variable, whose rate of
change depends on ¥V and H. The consequent pair of differential
equations for H(r) and V() have been discussed by many people;
see the review by Caughley?*. The system may have a unique stable
point, or two (or even more) alternate stable points, or the
populations may oscillate in a stable limit cycle. This subject will be
pursued further, when we come to the budworm model, below.

Harvesting animal populations

In grazing ecosystems. we considered the dynamical behaviour ofa
population (the vegetation”, V(r)) which was being harvested by
herbivores. Much of the discussion can be translated to apply to
other systems where a plant or animal population is harvested,
either directly orindirectly, by man. In particular, fisheries provide
an example where one is interested in the dynamics of a fish
population, and where the net population growth rate involves a
natural growth term, G(V), and aloss rate due to harvesting, C(}).
which in general depends botly on the fishing effort and on the fish

Fig. 4 Gross animal productivity. P, is shown as a function of H.

This curve is derived from Fig. 3. under the assumption that Py is

proportional to the total consumption. C(V). of equation (1). The
main features are as in Fig. 3: for further discussion. see the text.
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population density. The same is true of whaling industries, and of
commercial forestries.

Brauer and Sanchez?” have considered a fish or other pop-
ulation that is harvested to give a constant yield. Their analysis
correspondsto Fig. 2inthe limit & — 0:thatis, they have the G( 1)
curve of Fig. 2, but their consumption or harvesting curves are
purely horizontal lines, alrcady saturated at V' = 0. The resulting
equilibrium fish population (V) as a function of yield (H) is a
limiting version of Fig. 3, with 7 at the origin, and thc lower
equilibrium curve collapsed to the H axis (I = 0).
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Fig. 5 This figure is a difference equation version of Fig, 3. for

animals with non-overlapping generations. The curves relating the

population magnitudes in successive generations are shown for

various levels of predation. £, Possible equilibrium points occur

where the curves mtersect the 45 line. (Specificaily. the differcnce

equation used here is N(7+1) = N(1) explr{l — N~ PNi(x> + N},
withay = 0.1.r =4, and P = 0.35.0.22.0.15)

A more realistic harvesting curve will acknowledge that, at low
fish population values, the effort necded to keep the yicld constant
is prohibitively high. Consequently. a realistic curve for attempted
‘constant yield” harvesting will be more like those in Fig. | and 2.
and much of the discussion of the system’s dynamics (ref. 38 and
J. R. Beddington, to be published) parallels that by Noy-Meir.
Beddington and May's*® study is focused on the response of the
system to environmental fluctuations, and to this end cmploys
differential equations with stochastic coefficients. Nevertheless,
the qualitative conclusions of this relatively sophisticated study
(especially the caution against trying to maximise sustained yield
under a strategy of constant quotas, which is roughly equivalent to
operating around 75 in Fig. 4) arc laid bare by the simple and
deterministic graphical analysis outlined above.

Other recent studics of harvested systems which can have
alternate stable states are due to Goh*” and to Huberman*® (who
uses equation (3)). Clark*! has given a fine review.

Insect pests: general remarks

We now alter our viewpoint, to think of V(¢) more generally as 4
‘prey” population. Its dynamical behaviour depends on the trophic
level above it (the “predators’, which were the herbivores A in the
grazing systems) and on the trophic level below it (the resources.
which were the light and nutrients determining K in the grazing
systems). At the risk of confusing the reader, I shall symbolise this
change of viewpoint by using N(r), to replace V{(1), for the prey
population, and by using P, to replace H, for the predators.

In dealing with insect pests, our attention has shifted up one
rung in the trophic ladder. Instead of the vegetation V(r) which
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depends on a variable H and a constant K. we have a population
N(r) of herbivorous insects which depends on predators P and
vegetational resources K. either of which may vary.

Fora given value of the environmental carrying capacity (K) and
for a specified density of predators (P, formerly H). the con-
siderations that determine the dynamics of the prey population (N,
formerly V) are likely to be as in Fig. 2. That is. the growth rate of
the prey population may be typified as logistic. and the predators’
attack rate will have the general form shown in Fig. 2 both for
vertebrate?® and for many invertebrate?® 2# predators.

One final complication must be disposed of. For the majority of
temperate zone insects. population growth is a seasonal (often
annual), rather than a continuous. affair. Thus the continuous rate
of population change, dN/ds, should usually be replaced by
discrete changes, N(z+ 1) — N(¢), at time intervals one¢ unit (often
one year) apart. The relation between the population values in
successive generations will still typically be determined by Fig. 2,
but with N(t+ 1) — N(1) replacing d N/dt on the y-axis. It is more
traditional, in this case, to plot the curve that relates N(1+1) to
N(1). This is done in Fig. 5. The 45" line represents population
values that are unchanging from one generation to the next, and
therefore the points where the curves intersect this line are possible
equilibrium states. Where the solid curve lies above the dashed
curve in Fig. 2, the net growth rate is positive, and the curve lies
above the 45 line in Fig. 5. Conversely, where the solid curve lies
below the dashed one in Fig. 2, the curve lies below the 45 line in
Fig. 5.

When predation is relatively unimportant (low Hin Fig. 2, low P
in Fig. 5), there is a unique equilibrium point, at a population value
slightly below K the population level is set primarily by resources.
When predation is relatively important (high Hin Fig. 2, high Pin
Fig. 5), thercis again a unique equilibrium point, this time at a low
population level: the population is predator-controlled. But for
intermediate levels of predation there are, as before, two attracting
equilibrium points (A and B in Fig. 5), divided by a repelling point
(Cin Fig. 5).

The consequences of thisintermediate level of predation. withiits
two alternative equilibria for the pest population, have been noted
by Takahashi*? and Watt*®. They observe that such pests may
usually fluctuate at low numbers, around the lower equilibrium
point at Ng. But if fluctuations in the number of predators. or of
pests, or of the carrying capacity, happen to carry pest numbers
above N.inany one year, then the population will explode towards
the upper equilibrium point at N,. A subsequent crash is likely (the
complicationsthatmakethe dynamicsofdifferenceequations more
unsteady than those of differential equations are discussed in the
conclusion), with the population returning to the neighbourhood
of Ng. The pest population may thus exhibit a periodic or episodic
pattern of “outbreaks”, followed by relatively longintervalsatlow
densities.

Southwood** *° has recently given a more quantitative dis-
cussion, and he and others have incorporated the practical
conclusions into a morphology of strategies appropriate for the
control of various kinds of insect pests*” ¢,

For example, Southwood and Comins** have interpreted
Clark’s thorough studies of the eucalyptus psyllid (a plant louse)
Cardiaspina albitexturain thelight of Fig. 5. Using Clark’s data for
egg-to-adult survival for 29 generations, along with information
about the depression of natality by direct crowding and by host
plant deterioration, they estimate the shape of the N(r + 1)-versus-
N(1) curve. They find the curve to be of ‘intermediate P’ type, and
assignto Ng, N-and N, valuescorrespondingto2.8,22and 107eggs
per shoot, respectively. Not only does this give a qualitative
explanation of the observed episodic outbreaks, but it is in
remarkable quantitative agreement: Clark’s field data give an
average of 3.0 eggs per shoot at low densities, suggest a “‘rapid
increase to outbreak level™ beyond 10-15e/s, and have a mean for
12 high density populations of 110 e/s (with a range 23-280).

Sufficient data have also been published on the European spruce
sawfly. Diprion hercyniae. in New Brunswick for a tentative
analysis of thiskind. Southwood*” suggests the present situation is
one of ‘intermediate P°, with the sawfly controlled by a com-
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bination of virus disease and parasitoids: life-table estimates and
field observations agree on a value of N¢ around 0.2 larvae m ™2
fluctuations to higher densities result in runaway to around
Na ~ 1larvae m™ 2. which is economically acceptable. Before the
advent of the virus disease, the sawfly in New Brunswick seems to
have been*” in a “low P situation, with outbreaks to densities
around 20 larvae m ~? followed by crashes.

Insect pests: the spruce budworm

One of the best studied of all insect pests is the spruce budworm.,
Choristoneura fumiferana, in Canada. This forest defoliator
irrupts at approximately 40-year intervals, causing much damage
in northern coniferous forests, and economic stress in the fumber
industry. The massive amount of data gathered by Morris®! and
his associates has been subjected to much analysis by Holling and
his collaborators'*>*2 (and D. Ludwig, D. Jonesand C. S. Holling,
to be published) at UBC and at the International Institute for
Applied Systems Analysis (IIASA). One of the most pleasing
features is the way the models have become progressively simpler
as the basic mechanisms have become better understood. Thus the
carlier “systems models” have given way to Ludwig et al.'s®3 3-
componcent model (budworms: average leaf area per tree: energy
reserve determining the condition of trees and foliage): the present
review gives a crude 2-component model (budworms: leaf area)
that retains the essentials.

Consider first the dynamics of the budworm population, N(r).
Yetagain, thisis plausibly described by Fig. 2 (with N replacing V),
with the nct population growth rate counterpoised between a
natural growth term and losses due to predators. The general
features described by Fig. 2 may be typified by the specific equation
(3). which now reads

AV (N BPN )
T K] NN

Here r is the intrinsic growth rate for budworms, and K is the
carrying capacity. which depends on the average leaf area per tree,
S:wewrite K = k8. Nois the characteristic budworm population
at which the predator attack rate saturates (to the constant level 8
per predator). This characteristic value for predator switching will
usually depend on budworm density per unit leaf area rather than
on absolute budworm numbers, so that we may write No = 5S.
Finally. for a given value of average leaf area S. it is convenient to
use the rescaled variables X = N/kS, t = rtand ; = BP/rkS to
rewrite equation (5) in dimensionless form as

dX/dt = X() = X) =y X7 /(2% + X?) (6)

Here ais Tormally defined as o = n/k, but biologically it retains the
meaning it had inequations(2)and (4): forany given value of S, ais
the ratio between the budworm density that saturates the predator
attack capacity and the maximum budworm density that the
vegetation can sustain. Equations (4) and (6) are identical.

As before, it is clear, cither from the general Fig. 2 (which is
drawn for small x) or from the specific equation (6) (provided
a < 173 3). that the budworm system may have two alternative
stable states. If we fix the resource level S. and plot the stable
budworm density N as a function of the number of predators P, we
get exactly Fig. 3 (with N replacing V. and P replacing H).

It is more interesting, however, to fix the predator level P and
consider how the equilibrium value(s) of N varies with S. Thiscan
be done graphically from Fig. 2, or algebraically from equation (5).
Theresultis Fig. 6. A simpler way to arrive at Fig. 6 from Fig. 3isto
notice, from equation (6), that the equilibrium value(s) of N/S
dependsonlyony, oncexisfixed. Buty = fP/ruS. sothat Splaysa
part exactly like 1/P: small P is equivalent to large S, and vice
versd, whence Fig. 6 (with Sfor the v axis) follows from Fig. 3 (with
P or H for the x axis). Moreover this makes biological sense. For
budworms, the good life is few predators or lots of food ; low P or
high S. The bad life is the converse.

The main features of Fig. 6 need noelaboration. Atlow values of
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S, thereisa unique. and low, budworm density ; the system is under
predator control. At T2 a second stable state appears discon-
tinuously, and, for 7> < § < T, Nwilltend to one or other of the
two stable states, depending on which side of the "breakpoint’ locus
itstarts from. For Sabove T thereisagain a unique stable state, in
which the predators play little part.

This discussion of the budworm dynamics is not sufficient for a
full elucidation of the way the interactive system of budworms and
forest foliage behaves. We need also to consider how the average
leaf area per tree, S, depends on N.

The essentials of such a discussion can be carried out®,
independent of any further details, by noting that the characteristic
time scales for changes in NV and in S are very different. The time
scale for budworm population growth is months. or even weeks.
The basic time scale for change in the average leaf area per tree
depends on average branch area, and thence on the time scale for
tree growth, which is typically measured in decades. Thus N
changes on a relatively fast time scale, S on a slow one.

S
-

A

Fig. 6 The equilibrium budworm population. N, shown as a
function of the average leaf area per tree. S. (This figure is based on
cquation (6). with 2 = 0.06.) The threshold and breakpoint features
are similar to those in Fig. 3. and are discussed more fully in the text.

T, S T,

Returning to Fig. 6, we further suppose that budworm pop-
ulations along the lower, *predator-controlled’ equilibrium curve
do not have a significant impact on the foliage, so that Sundergoes
slow natural growth in this regime. Conversely. we assume that the
large budworm populations along the upper equilibrium curve
have a significant adverse effect on $, decreasing it. The qualitative
nature of the system’s dynamical behaviour now follows. Starting
from any low values of N and S, the system will move rapidly (on
the fast time scale) on to the lower budworm equilibrium curve in
Fig. 6. S will now slowly increase, with N always quickly adjusted
to the current S value, and the system will move (on the slow time
scale) to the right along the lower equilibrium curve. When the
system arrives at the point 71, no further continuous change is
possible, and N jumps (on the fast time scale) to the upper
equilibrium branch. Now S decreases because of the uncontrolled
depredations of the budworms, and the system moves (fairly fast)
to the left on the upper equilibrium curve. Finally, when the point
T>is reached, N must fall (again on the fast time scale) back to the
lower equilibrium branch, and the cycle begins again.

The upshot is a cyclic pattern of budworm explosions and
crashes. as shown in Fig. 7. The system spends most of the cycle at
low budworm densities, traversing the lower equilibrium curve
from T2 to Ty. The cycle length is thus set by the slow time scale.
and is of the order of decades.

A more explicitly mathematical treatment can be given crudely
by assuming that the rate of change of S is given by a natural
logistic growth term (with an intrinsic growth rate p), offset by
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losses linearly proportional to the budworm density
dS/dr = pS() —S/Smax) — eN. (7

Under the assumptions discussed above, the locus of equilibrium
values of S (the points where dS/d/ = 0) are as indicated by the
dashed linein Fig. 7. The pair of equations (5) and (7) thenlead to a
stable limit cycle, as shown in Fig. 7. The limit p < r corresponds
to the foregoing distinction between slow and fast time scales, and
leads to a limit cycle with the almost discontinuous character that
was discussed above.

The work of Ludwig et u

/.52

is more detailed (involving three

Fig. 7 The (solid. dN/dr = 0)equilibrium curve for budworms. N,
as a function of foliage. S, is as in Fig. 6. The (dashed. dS:dr = 0}
equilibrium curve for Sasa function of N has the form of equation (7).
Under these circumstances, the system will settle (o oscillate in a
stable limit cycle, as indicated. The figureis for p = 0.01r, so that the
budworm growthtimescaleis lastcompared withthetimescalefortree
growth: as explained more fully in the text. this explains the main
features of the cycle.

differential equations), and is compared with field data. They
obtain numerical agreement with the observed 40-year cycle.

This model has implications for the management of budworm
populations. Notice first that a program aimed at stopping
budworm outbreaks has a propensity to hold the population
perpetually poised on the brink of explosion. around the threshold
point 71 on the lower equilibrium curve in Fig. 6. More quanti-
tatively, the effects of using insecticide against budworms can be
mimicked by adding an extra mortality term. —sN. to the right
hand side of equation (5). If we could maintain s > r for many
years, the budworms could in principle be eradicated. In the more
hikely event thatr > s, the new version ol equation (5) can again be
brought into the dimensionless form of equation (6). with «
replaced by o' = (r/r —s)a. We recall that the kinkinessin Figs 3.4
and 6, and the ensuing alternative stable states. depends on « being
small. Thus use of insecticides can increase the effective value of «
to such an extent as to straighten out the kink in Fig. 6 (that is, can
increase o' to a value o’ > 1/3, 3),leading to a uniquc stable state.
The price, however, is daunting: not only are we committed to
endless insecticide use, but the new equilibrium is necessarily
established at a budworm density somewhere intermediate be-
tween the original upper and lower equilibrium levels. Such a
budworm density represents a perpetual low-level outbreak.

It should be added that this discussion has ignored climatic
fluctuations. One argument in favour of trying to “hold the line’
with insecticides is that one may thereby buy time. waiting for a
year when unfavourable weather will carry the population back
down to very low values.

Human host—parasite systems

Similar threshold and breakpoint phenomena occur in the trans-
mission dynamics of many infections of humans and other
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animals, particularly when the transmission cycle involves in-
termediate vectors.

Malaria is probably the best-known example cxhibiting a
threshold®**°. Suppose that a single malarious mosquito is
introduced into a closed and previously malaria-free community
of people and mosquitoes. Each person bitten by this mosquito
may, with a probability that can be estimated, become victim td'the
disease. These infected people may in turn be bitten by uninfected
mosquitoes, which thereby (again with some probability factor,
and after the elapse of a latent period of around 10 days) arc
recruited as malaria vectors. The key question is whether the
original infectious mosquito produces, on the average, more than
one subsequently infectious mosquito, or not. If it does, the system
is ‘above threshold’, and the fraction of the human and of the
mosquito populations that have malaria at any one time will grow
until an cquilibrium is reached, at which new infections arc
balanced against recoveries and deaths. Conversely, if it does not,
the system is ‘below threshold’, and the introduced infection
cannot be maintained.

This discussion makes clear the underlying nature of the
threshold relation for malaria. The relation can bc written
explicitly in terms of the number of mosquitoes, biting rates. and
recovery and death rates o mosquitoes and people : as reviewed by
Macdonald**** and Conway®®, this threshold formula has many
implications for management.

The main fact. however, is that for simple models of the malaria
transmission process there is always a unique stable state: for
mosquito densities above threshold. there is some endemic level of
infection: below threshold the level is zero. For many helminthic
infections the situation is made more complicated by the parasites’
having a sexual stage in the human host. Thus, for example, an
adult female schistosome will produce eggs only if she has a mate,
which may be unlikely if the mean worm load per person is fess
than. or of the order of, unity.

—-—

Equilibrium worm load.m*

i
i
i
H
i
|
i

0 — .
5 T 10
Snail population density

Fig. 8 For a simple model of the transmission dynamics of

schistosomiasis. the equilibrium mean worm load per person. ni* . is

shown as a function of the snail population density (or other refevant

transmission factor). The threshold and breakpoint phenomena are
as discussed in the text. (From Bradley & May*®°.)

As first stressed by Macdonald®”-"®, the result is that for
schistosomiasis and other parasitic infections with a sexual stage in
the primary host there is. as before, a threshold transmission value
which depends on the population density of the snails or other
intermediate vector, on the rate of egg production in the primary
host, and on other transmission parameters. Below threshold,
there is only one equilibrium state, namely no infection. Above
threshold. there are two alternative cquilibrium states: if the initial
mean worm load per person, m, is sufficiently high, the infection
cycle is maintained; but if #1 is initially too small, the number of
mated females (which will scale as m?) may be insufficient for the
system to “take ofl” and attain its endemic equilibrium level. This
situation is illustrated in g, 8. which corresponds to simple
models for schistosomiasis®?->~ *®_ If the snail density (or other
relevant transmission factor) is below the threshold value T, the
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equilibrium level of adult schistosomes is zero. Above threshold.
the mean worm load per person moves either to the upper
equilibrium curve. ortozero, depending on whetheritsinitial value
lies above or below the “breakpoint™ line.

Figure 8isfor a closed system. with no immigration of infectious
snails or people from outside. If & small amount of such
immigration is included (l. Nasell, to be published) the lower
equilibrium curve in Fig. 8 must shift up to some small, but finite,
level of infection. and a figure similar to Fig. 6 is obtained (with m
replacing V. and snail density or the like replacing S).

The existence of a breakpoint holds important implications for
control of the system"’ 35 39 For diseases such as malaria, where
thereis always a unique equilibrium state, the only control strategy
is to reduce the mosquito numbers and/or the biting rate and other
parameters in such a combination as to take the system below
threshold. The system must. moreover. subsequently be kept
below threshold. But infections whose dynamics are as described
by Fig. & can in principle be eradicated by temporarily displacing
the mean parasite load below the breakpoint, thus taking advan-
tage of the two alternative equilibrium states. Thiscontrol strategy
has the advantage that the basic transmission parameters do not
have to be modified to, and maintained at, sub-threshold values. (If
theinfection dynamics of snails operates on a tast time scale. and of
humans on a slow time scale, the locus of the breakpoint depends
only on the level of infection among humans; more generally, the
breakpoint will depend on both snail and human infection
levels®® 3* It also depends on whether the adult parasites are
distributed among humans in random or clumped fashion®%*%.)

Current estimates are that about 200 million people have
schistosomiasis. and about 300 million suffer from the various
filarial infections (which include ‘river blindness’ and elephan-
tiasis). But empirical information on the overall transmission
dynamics of schistosomiasis and filariasis is scant. so that theoreti-
cal notions about threshold and breakpoints remain untested in
this context.

Conclusion

This review has drawn together a variety of mathematical models
for ecological systems, each of which is dealt with individually in
the scattered literature. The models are united by the common
theme of possessing a regime of dynamical behaviour in which
there are two alternative stable states, so that continuous variation
in a control variable can produce discontinuous effects. Thus
smooth changesin stocking rates can cause discontinuous changes
in the grazed vegetation: continuous changes in harvesting rates
can cause discontinuous collapse in fisheries: continuous changes
in environmental parameters or foliage growth or predation rates
can lead to discontinuous outbreaks of insect pests: continuous
changes in snail or dipteran population densities can cause
discontinuous appearance or disappearance of helminthic in-
fections.

These models can often be tied to empirtcal data. whence they
yield specific insights into the management of the system. (Some of
these insights can be recast in the language of catastrophe theory,
but this ts usually post hoc window-dressing. It is too often
forgotten that catastrophe theory is, strictly speaking, a local
theory: we want global descriptions of the dynamics.)

The review has been largely confined to the dynamical be-
haviour of a single population, albeit as a function of other
populations of resources and predators. As the number of
interactingdynamical variables, and of equations, increases things
get more complicated. Consider. for example. a predator—prey
system where the predator’s dynamics depends on the prey
population according to the backward-bending curve of Fig. 6 (N
versus S), and where the prey’s dynamics in turn depends on the
predator population according to Fig. 3{}V versus ff). These two
curves - -one for the predator equilibrium, the other for the prey
equilibrium—are in principle capable of intersecting at 9 points,
corresponding to no fewer than four alternative stable states
(separated by four saddle points and one central hilltop), each with
its own domain of attraction. As the dimensionality of the system
increases to encompass more and more species, the dynamical
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landscape can begin to look like the surface of the moon, and any
detailed comparison with field or laboratory data becomes very
difficult.

A different and additional complication is that systems with
discrete generations are described by difference equations, which
can exhibit kaleidoscopic dynamics. For such systems, of which
Fig. 5is an example, increasingly severe nonlinearities can make
the dynamical behaviour range from a stable point, through a
bifurcating hierarchy of stable cycles, into a regime which is in
many ways indistinguishable fram random noise®® °2. Similarly,
patterns of stable points or cycles giving way to chaos can be found
in systems described by differential equations with time lags, or
even in simple first-order ordinary differential equations once 3 or
more species are interacting®%:%2:%3,

These manifold complications can lead one to take a gloomy
view of the possibility of making predictions about multi-species
systems®®-°2. The one kindly light amidst this encircling gloom is
that many complex communities are, arguably, made up mainly of
loosely coupled lower-order systems'7-**:*3_ (o which the simple
models reviewed here are pertinent.
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