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 STABILITY OF GRAZING SYSTEMS: AN APPLICATION OF
 PREDATOR-PREY GRAPHS

 BY IMANUEL NOY-MEIR

 Department of Botany, The Hebrew University of Jerusalem, Jerusalem, Israel

 INTRODUCTION

 In a now classical paper, Rosenzweig & MacArthur (1963) have shown how the general
 stability properties of simple predator-prey systems can be studied by graphical tech-
 niques, supplemented by mathematical analysis of the behaviour near equilibrium points.
 A similar, graphical analysis of predation functions was suggested by Holling (1965).
 The stability analysis of predator and prey isoclines in the predator-prey 'phase diagram'
 has been discussed further by MacArthur & Connell (1966) and Rosenzweig (1969, 1971).
 The mathematical and graphical analysis of stability in predator-prey systems, and even
 three-trophic-levels systems, have been extended by Canale (1970), Rosenzweig (1973),
 Hubbell (1973), May (1971, 1972), Vandermeer (1973), Strebel & Goel (1973) and
 Maynard Smith & Slatkin (1973).

 Thus a considerable body of theory has been developed to deal with systems of popu-
 lations at two or more trophic levels, or 'exploitation' systems (Rosenzweig 1973). So
 far only few attempts (Salt 1967; Maly 1969; McAllister, Le Brasseur & Parsons 1972)
 have been made to apply this theory to real ecological systems, whether by directing
 experiments or observations to test it, or even by comparing its predictions with existing
 data. Partly this slowness in application may have been due to the feeling that these
 theoretical models are still too simplified to be expected to apply directly to the many-
 species, variable-environment and spatially heterogeneous predator-prey systems found
 in nature. However, as pointed out by Rosenzweig (1973), scientific theory often starts by
 testing rather simple models, even of complex systems.

 Grazing systems used and controlled by man, from intensive pastures to extensive
 range, may be considered as a special case of'predator-prey' systems. Much of the theory
 was developed with explicit or implicit reference to two animal populations (e.g. Rosen-
 zweig & MacArthur 1963; Holling 1965). But herbivore ('predator')-plant ('prey') inter-
 action is sufficiently similar in its general features to make the same approach useful.
 Some important modifications are necessary, on the basis of biological considerations,
 but some results are directly transferable between predator-prey and herbivore-plant
 systems. Grazing systems have some advantages as relatively simple test cases for general
 ecological theories: the number of species is limited (usually only one herbivore, in some
 cases one or a few plant species), environmental heterogeneity within a system is often
 low and movement of animals is controlled. There is a large and increasing number
 of observations and experiments on pasture and range systems in many parts of the world.
 On the other hand, grazing systems are one of the types of ecosystems which are of great-
 est importance to man; if theoretical ecology could contribute to their understanding
 and to the solution of their practical management problems, this would be a very useful
 contribution indeed.

 F
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 460 Stability of grazing systems

 The aim of this paper is to analyse the stability properties of a simplified, yet in some
 ways rather general, model of a grazing system. In particular, answers to the following
 questions will be sought.

 (a) What are the conditions for a specific grazing system (a given animal with a given
 vegetation) to be stable at a constant 'stocking rate' (animal density)?
 (b) How does stability change with stocking rate ?
 (c) What is the relation between productivity, stability and stocking rate?
 (d) What are the conditions for stability in a range system, in which the animal

 population is left to fluctuate ?

 All these questions can be answered in general terms by graphical analysis alone.

 DEFINITIONS AND ASSUMPTIONS

 (1) V is the 'quantity' of vegetation (per unit area) which is available both for con-
 sumption by the animals and for producing plant growth. It is usually, but not necessarily,
 measured as green biomass. This definition implies an assumption: that the quantity of
 vegetation which is relevant to the processes involved can be expressed by a single
 variable.

 (2) H is the herbivore population density which is effective in consuming vegetation.
 It is usually expressed as individuals per unit area, but also derived units could be used
 (e.g. assigning to young animals fractional equivalents of mature animals). This definition
 again implies that effective animal density can be expressed by a single variable.

 (3) The growth rate of the vegetation (primary productivity) at any moment, G,
 depends only on the quantity of vegetation present at that time; all other factors affecting
 growth are constants in time.

 (4) The rate of consumption of green vegetation per animal unit, c, depends only on
 the quantity of available vegetation, V. Therefore the same is true of the total consumption
 rate by the animal population, C = cH. The rate of net change in plant biomass is thus
 growth less consumption

 dV
 d G - C = G(V)-c(V)H. (1)
 at

 (5) The general shape of the growth function relating net growth to plant biomass,
 G(V), is convex with a single maximum (Fig. 1). The increase in the low-biomass range
 expresses the increase in photosynthetic capacity with increasing leaf area. The levelling
 off to a plateau and the decrease in the higher range expresses self-interference effects
 (shading, competition); at the point V = Vma,, 'maintenance' losses equal photosyn-
 thesis and G = 0. Vmax is the maximum (stable) biomass in ungrazed vegetation. This
 general form of the plant growth curve is well established, both theoretically and empiri-
 cally (Donald 1961; Brougham 1955, 1956). In some cases the plateau may be broad and
 the decline rather moderate (de Wit, Brouwer & Penning de Vries 1970), but qualitatively
 the shape of the function is the same. Of the explicit forms the best known is the logistic

 G = gV(1- V/Vmax) (2)

 but other functions are possible.
 (6) The general shape of the consumption function relating the rate of plant consump-

 tion by animals to V, c(V) or C(V), is a saturation curve, increasing at low Vand reaching
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 FIG. 1. Plant growth (G) as function of plant biomass (V). (a) Logistic growth; G,-
 maximal growth, Vx-biomass at which growth is maximal. (b) and (c) Other possible
 curves.

 FIG. 2. Consumption per animal (c) as function of plant biomass. cm-Maximal consump-
 tion. (a) Linear to satiation. (b) Gradual satiation curve (e.g. Michaelis). (c) Sigmoid.

 a plateau at high V (Fig. 2). At low V, intake is limited by forage availability and in-
 creases with it while, at high V, a saturation of intake capacity (digestion rate) is reached.
 Various types of such functions ('ramp', smoothly convex, sigmoid) have been found
 experimentally for predators (Holling 1965, 1966) and for herbivores (Willoughby 1959;
 Allden 1962; Ivlev 1961). Some explicit forms are the Michaelis equation

 V
 C = ax(3)

 and

 C = Cmax (1-e-k) (4)

 where ax,, is the maximum (satiation) consumption rate per animal; thus C,,ax = CmaH
 is the maximum consumption of the herbivore population. For a given function c(V), as
 H is varied, a set of curves of similar shape but different height is obtained (Fig. 3).
 The steepness of the slope in the first part of the curve expresses the 'grazing (searching)

 efficiency' of the herbivore, i.e. the extent to which it can find food to meet its require-
 ments at low food densities.

 Fig. 3 Fig. 4

 C - H=4

 H 3 C

 H 2

 =I 10 H I

 H=0-5

 V V

 FIG. 3. Consumption per unit area (C) as function of plant biomass (V) and herbivore
 density (H).

 FIG. 4. Superimposition of growth G(V) and consumption C(V) functions of plant
 biomass.
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 462 Stability of grazing systems

 (7) Herbivore (secondary) productivity, P, which may represent weight gain or off-
 spring, is related to total consumption, either by a linear function:

 Pg = kC (gross) (5)

 Pn = kC-mH (net), (6)

 or by any other monotonically increasing function.
 (8) The possibility that not all plant material capable of producing growth is also

 available to grazing is introduced in either of two ways (which are graphically equivalent,
 Fig. 5(c)). It is assumed that there is a constant residual ('reserve') biomass Vr which
 produces growth but cannot be consumed (c = 0 when V = Vr); or that there is a
 constant residual growth rate Gr (G = Gr when V = 0). This may represent both in-
 accessible green material or non-green reserve organs (wood, roots, bulbs).
 Of these assumptions, 5, 6 and 7 are well supported by factual evidence and probably

 true in most, if not all, real grazing systems. The generality of the model is limited only
 by assumptions 1, 2, 3 and 4 (particularly 1 and 3), and possibly 8. These assumptions
 are strictly true only for rather special grazing systems, which fulfil all of the following
 conditions:

 (a) a single plant species, or a set of species which have identical growth functions and
 are equally grazed; no differences between plant parts;

 (b) a single herbivore species;
 (c) grazing is on green vegetation in the growing season; plant growth is continuous

 and the environmental factors affecting it are constant;
 (d) herbivore requirements and consumption functions and the environmental and

 physiological factors affecting them are constant in time.

 The predictions of the model are thus applicable without reservations only to such
 constant-growth, constant-requirements, single-plant, single-herbivore systems-for
 instance, a uniform area of a perennial grass (or evergreen shrub) in a tropical (or warm
 irrigated) environment, grazed by a group of even-aged, non-reproducing and genetically
 similar herbivores. However, from current experience with such general models there is
 good reason to believe that the main qualitative results of the model will not be highly
 sensitive to moderate deviations from these assumptions. They may hold also for a
 much wider range of grazing systems for which these assumptions are true only as very
 rough approximations.

 GRAPHICAL ANALYSIS

 Constant herbivore density

 In this section an additional assumption will be made:

 (9) Effective herbivore density, or 'stocking rate' is kept constant at a level Ho; all
 production and reproduction (or mortality) is continuously balanced by removals (or
 additions).

 This assumption is a good approximation of reality in most intensive grazing systems
 and grazing experiments.

 The first stage of the graphical analysis is to superimpose the growth and consumption
 functions of a given plant-herbivore system with given Ho (Fig. 4). The difference
 between them G-C = dV/dt gives the net change in V, which may be an increase or a
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 IMANUEL NOY-MEIR 463

 decrease depending on the level of V. Intersections of the two curves indicate points of
 plant-herbivore equilibrium. From the graph it is easily determined whether such a
 point is a stable equilibrium (or steady-state), to which the system returns after a distur-
 bance, or an unstable equilibrium (or turning point) from which it diverges upon any
 slight change in V.
 It is now possible to consider all possible combinations of G- and C-curves (within the

 restrictions on their general form mentioned above), in terms of the productivity and
 stability properties of the grazing system which they represent.
 Only five basically different situations can be distinguished (apart from some special

 marginal situations-see below) (Fig. 5).

 (a) (b) /-

 /

 e V V

 Vr V /V t e V

 I/ \/ ^I

 v ^ v! v v!. vt ^ v
 (e) (f)

 c;r/i I I

 V ~ I I J

 v, vt ve v vZt ve v

 FIG. 5. Possible stability combinations of G- and C-curves at given H. (a) Undergrazed,
 stable steady-state (Ve). (b) Overgrazed to extinction. (c) Overgrazed to a low biomass
 steady-state (V,); V,-reserve (ungrazed) biomass, Gr-residual growth potential. (d)
 Steady-state and unstable turning point (Vt) to extinction. (e) Two steady-states (Ve, VI)
 separated by turning point. (f) As (e), but caused by sigmoid C-curve, not by ungrazeable

 plant reserve.

 A. Undergrazed steady-state (Fig. 5(a))
 This occurs when the consumption curve is below the growth curve at all biomass

 levels below that producing maximum growth (V,). They must in any case intersect at
 some higher level of V; this is the single equilibrium point. It is a stable equilibrium or
 steady-state, as any accidental or intended deviation from it in either direction will cause
 net changes in V tending to restore it. It is an undergrazed state, as plant growth, animal
 consumption and secondary productivity at it are below the maximum possible level
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 464 Stability of grazing systems

 Gmax. On the other hand, plant biomass Ve at this steady-state is high, though somewhat
 lower than at the ungrazed steady-state. Presence or absence of an ungrazed plant reserve
 is immaterial in this case.

 B. Overgrazing to extinction (Fig. 5(b))
 If stocking density and/or the steepness of the consumption curve (the searching

 efficiency of the herbivore) are much higher than in situation A, consumption may exceed
 growth at all levels of V. A necessary (but not sufficient) condition for this to occur is
 Cmax >Gmax. If there is no inaccessible plant reserve capable of producing new growth,
 this situation will inevitably lead to extinction of the vegetation. This will happen regard-
 less of the initial state of the vegetation though, if initial V is high, high levels of secon-
 dary productivity may be achieved temporarily.

 C. Overgrazing to a low biomass steady-state (Fig. 5(c))
 This is similar to situation B, except that the vegetation has some ungrazeable reserve

 biomass which prevents its complete extinction. In this case a stable plant-herbivore
 equilibrium does exist and will be attained. It differs from case A in that the steady-state
 plant biomass V, is much lower than Vmax, and may be only slightly higher than the
 reserve biomass. Primary (G) and secondary (P) productivity may be low but not
 necessarily as low as may appear from the low V.

 D. Steady-state and turning-point to extinction (Fig. 5(d))
 This occurs if the consumption curve is steeper than in situation A, but the stocking

 rate (and Cmax) lower than in situation B, so that the initial part of the C-function is more
 strongly convex than the G-function. In this case the two curves intersect at two points.
 One of them is a steady-state at high V, (Ve) similar to that in case A. The other (at lower
 V), is Vt, an unstable equilibrium point, as any small deviation from it will cause net
 changes in V that will amplify. In fact it is a 'turning point' between the steady-state and
 extinction. As long as V is greater than Vt, the system will restore itself to Ve. As soon as
 V decreases below V, it will continue to decrease till plant extinction. This is because the
 green biomass is too sparse to maintain a growth rate that will exceed the grazing rate.
 Productivity at the unstable equilibrium V, may be less than at Ve or almost equal to it
 (if satiation is already reached at lower V).

 E. Two steady-states (Fig. 5(e) and (f))
 This occurs when the consumption function is similar to situation D, but an ungraze-

 able plant reserve is present.
 Curves C and G intersect three times, producing a stable steady-state at high plant

 biomass (Ve), another steady-state at low plant biomass (V,), and a turning point V,
 (unstable equilibrium) between them. Productivity at V, will always be lower than at V,
 and Ve.

 The stability properties of this most complex (and in a way most general) grazing
 situation can be best visualized by a mechanical (ball-in-container) analogue (Fig. 6).
 The high biomass, high-productivity steady-state is stable to fluctuations within a certain
 range. But too strong a push in one direction will bring it over the turning point into the
 low-biomass, low-productivity steady-state. A push in the opposite direction is necessary
 to come back to the high steady-state. Any one of the two states may be the more stable
 one, in the sense that a stronger push is necessary to get out from it than to get into it.
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 IMANUEL NOY-MEIR 465

 Some neutrally stable situations may arise when the two curves are tangential to each
 other or coincide for part of their range (Fig. 7). The situation in which both primary and
 secondary productivity are at their maximum (C = Cmx = Gmax = G) is such a case
 (Fig. 7(a)).

 FIG. 6. A physical model of the two-steady-states situation.

 (a) (b) C
 IC

 ( 9 , \ G ) G
 CD G

 V V

 FIG. 7. Marginal cases. (a) Maximum growth equals maximum consumption. (b) Growth
 and consumption are equal over a wide range of V.

 (a) (b) -/ (c)

 //I t / /
 I I /--- / ------

 V V V

 (d) (e) -

 v v

 FI. 8. The effects of varying herbivore density H on the combinations of G and CV).
 FIG. 8. The effects of varying herbivore density H on the combinations of G(V) and C( V).
 (a) C satiated at high V. (b) As (a), with plant reserve. (c) C satiated at low V. (d) As

 (c) with plant reserve. (e) C sigmoid.

 The effects of stock density
 Since C = cH, the height of the consumption function (but not its shape) depends

 on herbivore density (Fig. 3). The stability properties of a given fixed-density plant-
 herbivore system may therefore depend on Ho. The effects of Ho may be examined on a
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 466 Stability of grazing systems

 given G(V) graph superimposed on a family of C(V) graphs with different Ho (Fig. 8).
 The (V, Ho) values of the intersection points on this graph may also be plotted onto a
 'phase graph' (H versus V; Fig. 9), to give the zero-change isocline of the vegetation, i.e.
 the line joining the combination of H and Vvalues at which plant biomass is not changing
 (Rosenzweig & MacArthur 1963).
 These graphs show that, at low stocking rates, all conceivable plant-herbivore systems

 will be in situation A, i.e. will have a single, stable equilibrium point with high plant
 biomass. There are five possible responses of a system to increased Ho, depending on the
 shape of the consumption function c(V), and on the presence of an unconsumable plant
 reserve.

 Case 1

 With increased stocking rate the high steady state passes gradually into a low steady- state, until a critical level of Ho where extinction occurs: A * C -* B (Figs 8(a) and 9(a)).
 (a) l (b) (c)

 low
 extinction extinction

 ( ds) extinction t-st exc)

 Hlow s t-s t

 ., -H H
 st-st st-st

 \ \ low st-st
 -iLX^.J s\yl -/t two two

 l \ high - ? h~h ! ~-s hiSh st-sttst-st
 V V

 FIG. 9. Possible responses of plant-herbivore systems to increased herbivore density: the
 isocline of zero plant growth in the V-H plane; (a)-(e) correspond to (a)-(e) in Fig. 8. (a)
 Continuously stable to extinction. (b) Continuously stable, no extinction. (c) Discontinu-
 ously stable between high- V steady-state and extinction. (d) Discontinuously stable between
 high-V and low-V steady-states. (e) As (d), extinction also possible.

 This will result when the consumption function is linear or nearly so in the range of V
 below V~, i.e. when the herbivore does not show any signs of satiation in this range.

 Case 2

 This case is similar to case 1 in that there is a gradual and continuous decrease in
 steady-state V with increasing H (Figs 8(b) and 9(b)). It differs only in that complete
 extinction of the vegetation does not occur even at high stocking rates (A -* C), owing to
 the existence of an ungrazeable residual plant reserve or growth potential.

 Case 3: A - D - B

 At low stocking rates there is a high steady-state, at very high ones there is extinction.
 But at intermediate Ho the system is conditionally stable: it is stable as long as the amount
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 IMANUEL NOY-MEIR 467

 of vegetation is above a threshold V, and goes to extinction when V drops below it
 (Figs 8(c) and 9(c)). The higher the stocking density, the higher the critical level Vt.

 Case 4: A -- E -- C

 This case differs from the previous one in the existence of a plant reserve. Thus a low
 steady-state replaces extinction as the outcome of high stocking rates, or a drop below the
 critical V at intermediate ones (Figs 8(d) and 9(d)).

 Case 5: A -B E - C -- B

 This case differs from case 4 in that, at very high stocking rates, there is a change from
 a low steady-state to extinction (Figs 8(e) and 9(e)). It may occur if the consumption curve
 is sigmoid, or if there is a plant reserve not absolutely immune to grazing, or if it is
 exhaustible by continuous cropping of the growth produced by it.

 (a) (b) (c)

 P P P

 M M M

 H H H

 (d) (e)

 P P

 M AM

 H H

 FIG. 10. Gross herbivore productivity at steady-state, P, as a function of herbivore
 density H. M is maintenance; net productivity is the difference between P and M. Cases
 (a)-(e) correspond to (a)-(e) in Figs 8 and 9. Broken vertical lines delimit the range of H
 in which two alternative steady-states, with different P, are possible.

 In general, plant-herbivore systems can thus be classified by two criteria: they may be
 divided into systems liable to extinction (cases 1, 3 and 5) and those not liable to extinc-
 tion (2 and 4); and into systems which are continuously stable upon changes in H or V
 (1 and 2) and systems which are discontinuously stable (3, 4 and 5). Discontinuously
 stable systems are systems with more than one domain of attraction (Holling 1973)
 separated by a critical boundary ('rim'). Cases 4 and 5 may also be characterized as
 systems which have two distinct non-zero steady-states, while 1, 2 and 3 have only one.

 Productivity and animal density
 If it is assumed that gross animal productivity Pg is linearly proportional to total
 consumption, its level at each equilibrium point can be read directly off graphs like Fig. 8.
 The dependence of C on stocking rate H for each type of plant-herbivore system can be
 read off Fig. 8 and plotted as a graph of C(Q Pg) against H (Fig. 10). The maintenance
 requirements in such a graph are a straight line, so that the difference between the
 P(H) curve and this line gives the net animal productivity (per unit area), Pn.
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 468 Stability of grazing systems

 The effect of herbivore density on steady-state productivity is rather different in con-
 tinuously stable and discontinuously stable systems. In continuously stable systems
 (Fig. 10(a) and (b)), productivity rises with increasing H to a maximum, then gradually
 decreases with further increase in H. Gross productivity may or may not reach zero at
 some level of H (depending on whether the vegetation is liable to extinction), but net
 steady-state productivity will always reach zero at some high H, beyond which net loss
 will occur. This P versus H curve is similar to some curves of production per unit area
 versus stocking rate which have been derived theoretically (Petersen, Lucas & Mott
 1965; Owen & Ridgman 1968; Shaw 1970), and to some found experimentally (e.g.
 Harlan 1968).
 The P(H) function predicted for discontinuously stable systems (Fig. 10(c), (d) and

 (e)) is similar only in the first part, increasing in a continuous convex form (i.e. decreasing
 marginal productivity with increased H) to a maximum. However, when H is increased
 beyond the level of maximum productivity, Hm (or a level slightly above it), steady-state
 productivity drops suddenly to a much lower level or even to zero. Furthermore, over a
 certain range of densities approaching Hm, productivity may also drop drastically if V
 is below a critical level V, either owing to initial conditions or to a chance fluctuation.
 Over this range of H, two levels of steady-state productivity are possible, depending on
 the history of the system.
 Thus, in discontinuously stable grazing systems, animal productivity may remain very

 high even when the system is on the verge of a catastrophical collapse. In such a system,
 animal condition is not a sensitive indicator of the state of the system, as no deterioration
 in animal condition may be observed until after the crash. The level of plant cover V
 is the only sensitive indicator which can give warning of an approach to the critical
 threshold.

 Fig. 10(d) and (e) also lead to some conclusions about the effects of stocking rate
 within the intermediate range where two levels of productivity are possible. The higher the
 stocking rate, the larger the difference in productivity between the two states, and the
 nearer is the theshold to the higher level (i.e. the higher the probability of a transition
 from high to low relative to a transition from low to high).

 Effects of plant characteristics
 The characteristics of the plant in the grazing system affect the shape of both growth

 and consumption functions, and through them the properties of the system. Simple
 graphical considerations (Fig. 11) lead to the following conclusions about the effects of
 various growth characteristics (other things being equal).

 (a) An increase in the growth rate at all V, without change in the shape and position
 of the G(V) curve, results in higher productivity at all H and higher maximum H with
 which the vegetation can be in equilibrium. Such differences in the overall growth rates
 (faster-growing variety, higher temperature) do not affect the qualitative stability
 properties, i.e. whether the system is continuously or discontinuously stable, but they do
 affect threshold values. If it is discontinuously stable, there will be a discontinuous
 response of productivity and biomass to increased growth rate (g or Gmax) at constant H,
 if H is in the intermediate range.
 (b) The level of Vmax and the steepness of the decline in G between Vx and Vmax does

 not affect qualitative stability, but only the relative sensitivity of the high steady-state
 to changes in H and V.
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 IMANUEL NOY-MEIR 469

 (c) The level of plant cover at which growth is maximal (Vx) and the slope and
 convexity of the initial response of G to V in the range of low V (at given Gmax) are
 critical to the stability of the system. Vegetation with high Vx and an initially flat (or
 concave) growth function is more likely to create discontinuous stability, over a wider
 range of H, than vegetation in which maximum growth is achieved at relatively low bio-
 mass and in which the approach of the G-function to this point is convex and initially
 steep. A change in the vegetation or the environment which increases Vmax and Gmax
 ('enrichment' or maximum productivity) but not the initial slope of G(V) ( = the maxi-
 mum relative growth rate g) will raise Vx and therefore may turn a continuously stable
 system into a discontinuously stable one.
 (d) The presence of an ungrazeable reserve biomass or a residual growth potential

 enables a vegetation to avoid extinction at high H and to maintain a low steady-state
 instead. Furthermore, the larger the reserve or the residual growth, the smaller is the

 (a) _ (b) (c)

 / r 1/- 1/.---
 2-2 / / ~~2 2

 (d) ( (e)

 2 2

 V V

 FIG. 11. The effects of plant characteristics on the combination of G(V) and C(V). (a)
 Varying g and Gmax. (b) Varying Vmax. (c) Varying V,,g, and the initial convexity of G(V).
 (d) The effect of a residual plant biomass or growth potential. (e) Varying the level of V

 which allows herbivore consumption to be satiated.

 chance of the vegetation being discontinuously stable under grazing, and the smaller
 the range of H in which discontinuity occurs (if at all).
 (e) Vegetation attributes affect also the shape of the consumption curve. The steeper
 and more convex the curve, the easier it is for the herbivores to find and graze down the
 vegetation even when its biomass is already low; and the lower the level of Vat which the
 herbivore can graze enough to be satiated. Tall, erect vegetation will generally be more
 accessible to grazing at low V than low, prostrate vegetation (or vegetation that is taller
 than the herbivore itself), and therefore prone to 'crash' (discontinuous stability) over a
 wider range of H.

 Effects of herbivore characteristics
 (a) The steepness and convexity of the consumption curve (in a given vegetation)
 express the grazing efficiency of the herbivore, i.e. its ability to search, find and collect
 food at low levels of availability, and to maintain intake at or near maximum as plant
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 biomass decreases. Efficient grazers have steeper and more convex curves, and therefore
 are more likely to create discontinuously stable situations than inefficient grazers (Fig. 8)
 (e.g. sheep and goats versus cattle ?).
 A sigmoid (initially concave) consumption function, such as may be caused by a

 'learning' effect (Holling 1965), reduces the chances for discontinuous stability.
 (b) The maximum intake rate per animal, Cmax, does not affect the shape of the con-

 sumption curve but only its height. Therefore its effects are identical to those of the stock-
 ing density H and the two parameters are interchangeable; only the product Cmax =
 CmaxH is important (e.g. 2 animals with Cmax = 5 equal 5 animals with Cmax = 2). To this
 extent the practice of using 'animal units' to compare stocking rates in mixed herbivore
 situations (e.g. 1 cow = 5 sheep, 1 ram = 1.5 sheep) is justified. However, if the shape of
 the consumption curve is different these equivalence relations may be inapplicable and
 misleading at low V.

 Effects of management practices
 (a) A policy of stock removal whenever V reaches a specified minimum (apart from

 obviously precluding plant extinction) will generally reduce the range of H over which a
 crash can occur in a discontinuous system. But it will turn a discontinuous system into a
 continuous one only if the minimum is set to Vx (or higher).
 (b) The effects of rotational versus continuous grazing cannot be included explicitly

 in the graphical analysis, which is based on continuous processes. However, a rough
 assessment can be made if we consider that rotation imposes fluctuations in H and V
 around the steady-state. If, in a discontinuously stable system the pasture is in a high
 steady-state under continuous grazing, such fluctuations can only push each division
 (in a grazing period) across the turning point towards extinction or a low steady-state. In
 the best case the divisions will recross the turning point during the rest period; but average
 production will certainly be lower. In the worst case the rest period will not be sufficient
 and the vegetation in each division in turn will remain trapped in the region around low
 steady-state or become extinct.
 However, if the pasture is in a condition which under continuous grazing would main-

 tain it in a low-production steady-state, rotation can be in certain cases beneficial. Then
 there is a chance that during a rest period each division crosses the turning point towards
 the high-production steady-state thus increasing average production. It may possibly
 remain on the high side even during the subsequent grazing periods.
 The effects of rotation in discontinuously stable systems can be summarized by refer-

 ence to the physical model (Fig. 6). If the ball is on the right (high-production) side, we
 may only lose by rocking it; but if it is on the left (low-production) side, we may
 only gain.
 Similar predictions on the effects of rotation in a discontinuously stable system were

 obtained also by simulation experiments with an explicit growth-consumption model
 (Noy-Meir 1975).
 In a continuously stable system there should be no significant difference between

 rotational and continuous grazing.
 (c) A discontinuously stable system is highly labile at the stocking rate which allows the

 highest productivity (Fig. 7). Thus such a grazing system can be maintained at or near
 this maximum production rate only by very frequent, almost constant, adjustments of
 stock density in response to fluctuations in vegetation. A somewhat lower stocking rate
 will ensure more stable, though on the average somewhat lower, production.
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 Variable herbivore density

 Let us now replace assumption 9 (a constant Ho) by:

 (9a) The effective herbivore density H changes in proportion to animal production
 and reproduction, which in turn is a function of available vegetation and herbivore
 density only.
 This assumption may approach reality in extensive range systems, where animal num-

 bers are not tightly controlled and depend mainly on natural reproduction and mortality.
 In this case overall stability requires both H and V to be simultaneously stable. Thus

 in the H/V graph we must consider the zero-isocline of the herbivore (as well as that of the
 plant), i.e. the set of H and V values at which there is no net change in herbivore density
 (AH = 0). Some possibilities are as follows.

 (a) Net change in herbivore density depends only on vegetation availability; there is
 a certain level of vegetation Vs at which gross productivity, consumption and reproduc-

 (a) (b) (c)

 Hi // H/ A/ H/

 Vs V V V

 (d) (e)

 H H
 V V

 FIG. 12. The isocline of zero plant growth (continuous) and various forms of the isocline of
 zero herbivore growth (broken) in the V-H plane (after Rosenzweig & MacArthur 1963;

 MacArthur & Connell 1966).

 tion of the herbivores is balanced by the population 'maintenance' requirements (in-
 cluding mortality). When V is above this level, H increases; below it, it decreases. The
 herbivore isocline is a straight line (Fig. 12(a)). This is the simplest case treated in detail
 by Rosenzweig & MacArthur (1963) and MacArthur & Connell (1966).
 (b) At high herbivore densities, their net increase is limited independently of the amount
 of vegetation available, e.g. by some other factor such as drinking water (Fig. 12(b)).
 (c) Herbivore increase is limited at very low herbivore densities, e.g. by a decrease in
 mating probability (Fig. 12(c)).
 (d) Herbivore net increase depends on the relation between available vegetation and
 herbivore density (i.e. the 'grazing pressure') so that the herbivore isocline is inclined
 (Fig. 12(d)).

 (e) Various combinations (Fig. 12(e)).
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 The stability properties of predator-prey systems in which both populations are
 variable have been treated graphically and analytically by Rosenzweig & MacArthur
 (1963) (see also Canale 1970; May 1972). Most of their conclusions can be translated and
 applied directly to grazing systems. For instance:

 (1) When AH depends only on V (case a, straight herbivore isocline), there is a single
 equilibrium point, where the Vs line crosses the plant isocline. If this is in the declining
 part of the plant isocline (Vs > Vx) it is stable; if in the rising part it is unstable (Vs< Vx)
 and extinction (or a stable limit cycle near extinction) will occur (Fig. 13). The conver-
 gence to steady-state or divergence to extinction is oscillatory when the slope of the plant
 isocline is moderate, and asymptotic when it is steep. When Vs = Vx there are neutral
 oscillations.

 (2) When Vs< Vx but plant extinction is prevented by a plant reserve (or 'refuge'), the
 system will oscillate in a stable 'limit cycle'. A similar stabilization would be achieved by
 the management practice of stopping grazing when V reaches a certain minimum (pre-
 ferably not below Vs).

 a bl c| db

 ?i/

 Fig. 13. The effects of the relative positions and slopes of the herbivore and plant isoclines
 on stability near their intersections (after Rosenzweig & MacArthur 1963).

 (3) Any limitation of herbivores by their own density (or by any other resource than
 vegetation; cases b, d) will stabilize the system and may allow stable oscillations even
 when Vs < V,. This may also be achieved by management which does not allow H to rise
 above a certain ceiling, or which sets a maximum 'grazing pressure'.
 (4) A large increase in vegetation productivity (increase in G,, Vx,,, Vx) may turn a
 stable system into an unstable (or oscillating) one, as Vy increases above Vs. This has
 been called 'the enrichment paradox' by Rosenzweig (1971; see also McAllister et al.
 1972; Gilpin 1972; Fredrickson et al. 1973).
 (5) Herbivores with high grazing efficiency and low maintenance requirements are

 more likely to create unstable (or oscillating) plant-herbivore systems.

 COMPARISON WITH REALITY

 Applicability of the model
 As discussed above, the model is strictly applicable only to plant-herbivore systems

 with a single species at each level, where the environmental factors affecting plant growth
 and animal grazing are constant and where ungrazeable reserves are constant. However,
 there is reason to believe that its qualitative predictions about stability conditions may be
 relevant also in many other cases, for instance:
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 IMANUEL NOY-MEIR 473

 (a) More than one species is grazed but a single one is dominant; or there are several
 codominant species which do not differ greatly in growth and palatability characteristics.
 (b) Plant growth and animal requirements vary with time, but change only moderately

 during a defined growth-and-grazing season. In this case the model may be applied to the
 stability of the interaction during this period alone, or to the overall stability if it depends
 critically on this period.

 The model should at least help to understand this extended class of grazing systems,
 even those in which its predictions cannot be applied automatically and without some
 modifications. But in some other grazing systems its assumptions may be far from reality,
 for instance:

 (a) Competition between two or more plants with very different growth and palata-
 bility is a dominant process. In this case there might be more than two equilibrium points
 (see Austin & Cook 1974).

 15

 3(G2)

 t /
 % // \3a(GI)

 2(\4) \
 ^ 5 - 3b(G3)

 200 400 600 800
 V (g/m2)

 FIG. 14. Plant growth in New Zealand ryegrass-clover pastures as function of biomass;
 curves reconstructed from experimental data by Brougham (1955, 1956). 1, May-June;
 2, April; 3, October; 3a, October, ryegrass only; 3b, October, clover only (symbols in paren-

 thesis for comparison with Table 1).

 (b) Growth is seasonal but grazing is year-long, and the interactions in the period of
 grazing on dry vegetation are critical for plants (e.g. seeds) or animals. Then the combina-
 tion of the two periods for overall stability could introduce qualitatively new features.

 Bearing in mind these limitations, it is nevertheless worthwhile to search the extensive
 literature on grazing systems and experiments for evidence which would test the main
 predictions of the model, in particular about the special properties of discontinuously
 stable systems. A limited survey showed that most papers do not present information
 in a form suitable for this purpose. But there is some directly relevant quantitative infor-
 mation on intensive pastures, and some vaguer qualitative evidence from both pastures
 and extensive range.

 Evidence from intensive (pasture) systems
 Firstly, it may be asked whether most real grazing systems are expected to have growth

 and consumption functions leading to discontinuous stability, or to continuous stability.
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 474 Stability of grazing systems

 Curves of growth as a function of green biomass may be reconstructed from data by
 Brougham (1955, 1956) on ryegrass-clover pastures in New Zealand (Fig. 14) and David-
 son & Donald (1958) on subterranean clover in Australia. Curves of intake as a function
 of green biomass are given by Willoughby (1959) for sheep on Phalaris-clover pasture, by
 Arnold (1963) for sheep on Phalaris-annuals-clover, and by Allden (1962) for sheep on
 ryegrass-clover (Fig. 15), all in Australia.

 1500

 3a

 1000

 3 3

 500

 200 400 600
 V (g/m2)-

 FIG. 15. Consumption per sheep as function of plant biomass; 1, Allden (1962), ryegrass-
 clover; 2, Willoughby (1959), Phzalaris-clover; 3, Arnold (1963), Phalaris-annuals-clover;

 3a, winter-shorn sheep.

 100

 "EJ  61

 t ffy^ >-^:>:<:1C2

 ~ 500
 o. / V // \ __I I I /

 100 200 300 400
 V (g/m2)

 FIG. 16. Superimposition of experimental growth and consumption curves, standardized
 to Gmax = Cmax m= 100%. GI, ryegrass in New Zealand, October (Brougham 1956); G6,
 subterranean clover in Australia, October (Davidson & Donald 1958). Consumption by

 sheep: Cl (Allden 1962); C2 (Willoughby 1959); C3 (Arnold 1963).

 By superimposing some of these growth and consumption curves, standardized by the
 maximum growth and consumption rates (Fig. 16), it can be seen which combinations
 would be continuously stable and which discontinuously stable (C greater than G over
 a range just below Vx). The results (Table 1) show that animals with the consumption
 curve reported by Allden would allow continuous stability in such pastures at all seasons
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 IMANUEL NOY-MEIR 475

 given. The New Zealand ryegrass pasture in June (possibly also in April) and the
 Australian subterranean clover in October would be continuously stable with all animals
 given. However, the sheep tested by Willoughby and Arnold would cause discontinuous
 stability in October in ryegrass, ryegrass-clover, and possibly in clover pastures.

 Table 1. Stability conditions that would arise from superimposition of various
 observed growth and consumption functions of sheep on grass and clover

 pastures

 G1-G6: growth functions (see Fig. 14).
 C1-C3: consumption functions (see Figs 15 and 16).
 Entries in table: C, continuous stability; D, discontinuous stability.

 Growth function
 G1 G2 G3 G4 G5 G6

 Consumption C1 C C C C C C
 function C2 D D C C C C

 C3 D D D C? C C

 In general it seems that discontinuous stability is quite possible (though not necessary)
 with sheep grazing pastures of these types.
 The most striking and direct evidence for discontinuous stability in an intensive

 pasture has been presented by Morley (1966a), in a careful analysis of the results from a
 replicated grazing experiment with sheep at 3 stocking rates x 2 grazing systems (con-
 tinuous and rotational) x 3 replicates. The variation in sheep liveweight per plot (in

 SR Fig. 17 Fig. 18
 I SFSR4

 u 5 * * /

 ?z 6 _ _ He \
 U7 ***/^ --- ^ -

 6 ? e /
 7 July liveweit ()

 July liveweight (kg) Availability

 FIG. 17. Results of a replicated grazing experiment (from Morley 1966a). SR (stocking
 rate) = 5, 6, 7 ewes/acre; ROTAT, 3-paddock rotation; CONT, continuous grazing.

 FIG. 18. Plant growth and animal consumption as functions of plant availability and
 stocking rate, showing stable and unstable equilibria (from Morley 1966a).

 winter) between replicates within some treatments (moderate and high continuous
 stocking) was usually high and showed a bimodal, or discontinuous distribution (Fig.
 17). Morley concluded that animal performance was a 'threshold' or 'crash' function
 of stocking rate. At stocking rates near the threshold small differences in plant produc-
 tivity between plots caused large differences in animal response. This led to a compre-
 hensive analysis of the factors affecting stability of production in pasture systems. The
 effects on stability of the functions relating plant growth and animal consumption to leaf
 area (plant availability) were discussed with reference to a graph of a discontinuously
 stable system (Fig. 18). Finally Morley (1966a, b) pointed out that a conventional
 statistical analysis of 'average effects' would have masked the discontinuity in the results

 G
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 (and the theoretical insight derived from them). Thus it is possible that similar effects
 have been overlooked in the results from other grazing experiments.

 Evidence from extensive (range) systems
 Direct experimental evidence from range systems is almost non-existent; even quanti-

 tative observations which could be relevant to testing the model are very scarce. Further-
 more, range systems are usually much more complex than intensive pastures and the
 factors dominating their stability may often be quite different from those considered in
 this model (e.g. species composition, erosion). Nevertheless, it is interesting (though
 certainly not conclusive) that some qualitative observations on ranges, and some con-
 cepts in range management, are at least consistent with the possibility of discontinuous
 stability and some of the features associated with it.
 Safe stocking rate. The distinction between 'safe' and 'maximal' stocking rate or carry-

 ing capacity, which is sometimes made by range managers on the basis of experience
 (e.g. Stoddart 1960), implies that at the stocking rate at which steady-state productivity
 is highest, it is also less stable than at somewhat lower stocking. This is true for discon-
 tinuously stable grazing systems (Figs 7(a), 10(c), (d) and (e)).
 Range readiness. A practice much recommended by range experts is to delay the intro-

 duction of animals onto a range for some weeks after growth starts, until some minimum
 foliage builds up (Stoddart & Smith 1955). Such a practice would be critical in discon-
 tinuously stable systems, where it could mean the difference between a low-productivity
 and a high-productivity steady-state (at the same stocking rate) throughout the season.
 The point of 'range readiness' should then be just above the 'turning point' Vt between
 the two equilibria.
 Grazing pressure. Grazing pressure is often defined as the ratio of stocking rate to

 available pasture, HIV, and considered by range managers to be a more significant para-
 meter than either H or V separately (e.g. Mott 1961). In the H versus V plot, points of
 equal grazing pressure are on a straight line passing through the origin, the slope of which
 depends on the grazing pressure. In a discontinuously stable system the critical biomass
 threshold V, increases with H, so that the range of critical values (the unstable part of the
 plant isocline) may be well approximated by a constant 'critical grazing pressure'
 (e.g. in Fig. 9(d) and (e)).
 Forage condition v. animal condition as indicators. Range scientists claim that the cover

 or 'vigour' of the main palatable plants is a better indicator of the state of the range
 system than the animal condition. 'Research has shown that range deterioration may
 progress for considerable time before the change is reflected in livestock condition.
 Forage condition is a more sensitive indicator' (Stoddart & Smith 1955). One prediction
 by the model for discontinuously stable systems was that animal productivity may remain
 high just up to the 'crash point' (Fig. 10).
 Effects of rotation. The reports on the effects of rotational versus continuous grazing on

 plant and animal production are conflicting, yet it seems that one generalization is
 possible (Heady 1961): rotational grazing is often beneficial in restoring deteriorated
 ranges to high productivity, while in ranges in good condition it usually results in lower
 productivity than continuous grazing (or at best the same). This again is consistent with
 what is expected for discontinuously stable systems (see above).
 Discontinuities in range productivity. Paulsen & Ares (1961) presented data on the

 changes in vegetative cover and on range productivity (expressed as annual surface-acre
 requirement for one animal) over 40 years in subdivisions of the Jornada Experimental
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 FIG. 20. Fluctuations in animal numbers in districts of arid Australia (from Perry 1968).
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 478 Stability of grazing systems

 Range in semi-arid new Mexico. Fluctuations in cover generally follow rainfall fluctua-
 tions. Productivity in most plots shows a smooth trend with small fluctuations (10-30%)
 except for a few dry years in which there is a sudden decrease by a factor of 2-4 (Fig. 19)
 which is much greater than the decrease in rainfall. This might indicate discontinuous
 stability.

 Perry (1968) presented graphs of sheep and cattle populations in regions of arid Aus-
 tralia from the time of settlement. The yearly fluctuations in each region seem for some
 periods to be around a high steady-state level (immediately after settlement, or after
 improvement in management) and for subsequent periods around a 'low' level, which is
 lower by a factor of 2-3 (Fig. 20). The drop from high to low densities is rather sudden
 and occurs in a severe drought.

 Finally, some general concepts and phrases which are widely used by range ecologists
 and managers, and which are presumably based on experience, implicitly indicate an
 awareness of the possibility of discontinuous stability. Such are any references to the
 'precarious ecological balance' or 'equilibrium' of the range, which may be 'upset' by
 overgrazing, even if temporary, leading to the initiation of 'range deterioration' which
 can be irreversible, or reversible only by special treatment.

 While each of these pieces of evidence is rather meagre, cumulatively they indicate that
 some (probably many, though certainly not all) range and pasture systems are discon-
 tinuously rather than continuously stable. The graphical production-consumption model
 presented here offers one very simple hypothesis to explain such phenomena. However,
 many of them could have been caused by different mechanisms, in particular by changes
 in species composition.

 CONCLUSIONS

 The graphical analysis of stability of predator-prey systems is a rather theoretical
 approach developed by theoretical population ecologists (Rosenzweig & MacArthur
 1963). Applied to a simple plant-herbivore model, this approach has yielded a series of
 general conclusions about stability and productivity. These appear to be relevant at
 least to some classes of real-world pastoral systems and to some problems in their
 practical management. Some of the conclusions are very similar to those reached by a
 pasture ecologist in a theoretical analysis spurred by some strange experimental results
 (Morley 1966a). The far-reaching implications of that analysis may not have been fully
 appreciated yet by most pasture scientists and managers.

 The analytical techniques used here were the most rudimentary. More sophisticated
 mathematical techniques are available and are beginning to be applied to population
 systems. With them it should be possible to analyse somewhat more complex (and more
 realistic) models of grazing systems than the very simple one presented here; also more
 detailed conclusions may be possible. Anyway, the fact that even the simplest techniques
 and simplest model can give interesting results relevant to real pastoral systems is
 encouraging.

 These preliminary results suggest that much more contact and feedback between the
 two disciplines of pasture and range ecology, and theoretical population ecology, could
 be useful to both sides. Theoretical ecologists could find in commercial grazing systems
 and in grazing experiments at least inspiration for new ideas and probably also oppor-
 tunities for field tests of models of population systems at several trophic levels. Pasture
 ecologists and practical workers could look to theoretical ecology at least for a broader

This content downloaded from 
�����������68.202.204.150 on Thu, 15 Feb 2024 15:59:15 +00:00����������� 

All use subject to https://about.jstor.org/terms



 IMANUEL NOY-MEIR 479

 and clearer understanding of the problems of grazing systems, and probably also for
 guidelines to their management.
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 SUMMARY

 A general model of simple grazing systems can be based on the general form of the
 functions relating both plant growth and herbivore consumption to vegetation biomass.
 Graphical considerations lead from this model to predictions on the existence and num-
 ber of plant-herbivore equilibrium points, whether they are stable or unstable and the
 relations between herbivore density, plant biomass and productivity at these points.
 Some predictions can be transferred directly from the existing theory of predator-prey
 graphs to plant-herbivore systems, while others need to be modified. The stability of
 grazing systems depends on animal density and plant biomass either continuously, or
 discontinuously, depending on the properties of the vegetation and the herbivore.
 Evidence from real pasture and range systems suggests that at least some of them are
 discontinuously stable, with significant implications for their management.
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 LIST OF SYMBOLS

 c Consumption (intake) rate per animal
 Cmax Maximum (satiation) consumption rate per animal
 C Consumption rate (by herbivore population at given H) per unit area
 Cmax Maximum consumption per unit area
 G Plant growth rate (biomass/time)
 Gmax = Gx Maximum growth rate
 Gr Residual growth rate when V = 0
 g Maximum relative growth rate
 H Herbivore density
 Ho Fixed level of herbivore density
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 Hm Maximum herbivore density that can be in equilibrium with vegetation
 m Maintenance rate per animal (in productivity units)
 M Maintenance rate of herbivore population per unit area
 P = Pg Gross productivity of herbivore population per unit area
 Pn Net productivity of herbivore population per unit area
 V Plant biomass per unit area
 Vmax Maximum plant biomass
 Vx Plant biomass at which growth is maximal
 Ve Equilibrium plant biomass (high level)
 VI Equilibrium plant biomass (low level)
 Vt Critical threshold (turning point) of plant biomass
 Vs Plant biomass density sufficient for herbivore population maintenance
 Vr Residual (ungrazed) plant biomass
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