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Abstract
Agricultural land use has recently peaked, both globally and across country income groups, after
centuries of expansion and intensification. Such shifts in the evolution of global land use have
implications for food security, biodiversity loss, and carbon emissions. While economic growth
and land use are closely linked, it is difficult to determine the extent to which the relationship is
causal, deterministic, and unidirectional. Here we utilize gridded datasets to study long-term
global land use change from 1780 to 2010. We find evidence for an economic tipping point, where
land use intensifies with economic development at low income levels, then reverses after incomes
reach a critical threshold. Cropland peaks around $5000 GDP per capita then declines. We utilize a
Markov model to show that this reversal emerges from a variety of divergent land use pathways, in
particular the expansion of protected areas and a reduction in land use lock-in. Our results suggest
that economic development remains a powerful driver of land use change with implications for the
future of natural ecosystems in the context of continued population and income growth.

1. Introduction

Land use patterns have changed dramatically since
the Industrial Revolution in response to changes
in resource usage, food production and agricultural
intensification, population growth and urbanization,
and global interdependence and trade. These rapid
changes have shaped the natural environment at a
local and global level, fundamentally altering nutri-
ent cycles, terrestrial cover, and biodiversity (Turner
and Meyer 1994, Vitousek et al 1997, Tilman et al
2001, Sanderson et al 2002, UNEP 2002, Foley et al
2005).

Global human-appropriated land area has
plateaued since 1950 after more than a century
of exponential growth (SI 1 (available online at
stacks.iop.org/ERL/16/125012/mmedia)). This rapid
shift in the dynamics of land use change repres-
ents a potential regime shift in global land use,
and understanding its causes and future evolution
is necessary for addressing biodiversity loss, food
security, and climate change. For the latter, land
use dynamics inform assessments of past and future

climate change (Feddema et al 2005, Betts et al 2007,
Stehfest et al 2019, Hurtt et al 2020) given that land
use change is a major driver of emissions, contrib-
uting almost half of the cumulative emissions from
fossil fuels (Houghton 1999, Friedlingstein et al 2019,
Gasser et al 2020).

Tipping points are critical thresholds beyond
which a system’s behavior changes with long-term
consequences (Scheffer et al 2009), and are an
important feature of the climate system (Lenton
et al 2019), ecological systems (Folke et al 2004,
Andersen et al 2009, Runyan and D’Odorico 2016),
and social systems (Kopp et al 2016, Van Ginkel
et al 2020). Within the context of coupled social-
environmental systems, tipping points generally have
multiple causes and cascading effects, undermin-
ing a capacity to predict future system behavior
(Milkoreit et al 2018). In this paper, we investig-
ate recent land use change as the potential con-
sequence of a tipping point within local and global
social-environmental systems, and the role of a single
driver, income levels, to explain and predict these
changes.

© 2021 The Author(s). Published by IOP Publishing Ltd
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Historical land use patterns are a product of
the landscape’s natural characteristics like climate,
vegetation, and soil suitability, as well as human
factors including population levels, economic devel-
opment, technological availability, and policy. Agri-
culture is the primary driver of land use change, with
one-third of the world’s habitable land used for either
cropland or pasture (Ramankutty et al 2008). Pres-
sure on terrestrial resources for food and biomass
will increase as economic development raises more
people out of poverty, especially if global demand
increases for land-intensive livestock products (Sage
1994, Popp et al 2017). Globally, 70 Mkm2 of non-
desert and non-tundra land remains unappropriated
to human use, compared to the current global crop-
land extent of 14–18 Mkm2 (Ramankutty and Foley
1999, Klein Goldewijk et al 2011) and pastureland
of 28 Mkm2 (Klein Goldewijk et al 2011). In light
of this remaining land potential, the recent plat-
eau in land use appropriation is all the more sur-
prising. While broad patterns of anthropogenic land
use change have been generalized (Ellis et al 2010,
Mustard et al 2012), they vary across time, biomes,
and spatial scale, and the economic mechanisms are
often poorly understood (Irwin andGeoghegan 2001,
Lambin et al 2001).

In this paper we analyze the long-term trends in
land use and their relationship to economic devel-
opment over the course of centuries. In particular,
we aim to provide empirical evidence to address a
theory of sequential land use change developed and
referenced in several papers including DeFries et al
(2004), Foley et al (2005)and Mustard et al (2012).
In this conceptual model, hereafter the ‘MDF model’,
economic development coincides with a sequence
of land-use transitions: natural ecosystems become
frontier clearings and then small-scale or subsistence
agriculture and then intensive agriculture. At latter
stages of development there is a concurrent increase
in urban and protected land. Such patterns have been
observed in the continental US and Europe where
agricultural land has reverted to forests (Williams
1992, MacCleery 1993, Barrett 1994, UNECE 1996)
driven by productivity improvements. More recent
examples of forest recovery include Puerto Rico
(Grau et al 2003), Ecuador (Rudel et al 2002),
and China (Ramankutty and Foley 1999), among
others.

Our core finding is that land use responds to
economic development in a broadly consistent man-
ner across regions and time frames. We show that
a regime shift has occurred in aggregate and local
land use change, and that an economic tipping point
exists which drives this regime shift. Our results help
inform multiple land use debates, including the Bor-
laug hypothesis, forest transition theory, and the
potential displacement of resource production from
rich to poor countries.

2. Materials andmethods

We construct a land use dataset consistent with the
categories in the MDF model by combining grid-
ded historical land use data (Klein Goldewijk et al
2011, Meiyappan and Jain 2012) with protected area
(UNEP-WCMC, IUCN 2018) and socioeconomic
data (Klein Goldewijk et al 2017, Inklaar et al 2018)
(see SI 2). The resulting product is a decadal dataset
from 1780 to 2010 at 0.5◦ resolution (a grid cell spa-
cing of approximately 55 km at the equator).

We use this dataset to test whether observed
land transitions follow the pattern presented in
the MDF Model, and to what extent such changes
are driven by economic development. This empir-
ical analysis presents a fundamental challenge:
while rising incomes are expected to influence land
use, land use change is a key driver of economic
development—presenting a feedback loop or endo-
genous relationship.

A further challenge stems from the multi-scale
nature of land use change, with local interactions
between people and the land they live on, as well as
migration and economic drivers at the regional and
global scales. The ongoing global redistribution of
agricultural activity could, in principle, shift lands
into and out of agriculture while leaving net agricul-
tural area unchanged globally. While the MDFmodel
isolates local-scale dynamics, this study engages with
scale explicitly, identifying land use dynamics at the
grid cell, national, and global levels and their inter-
connections.We investigate the limitations of the spa-
tial resolution of our data in SI 3.

To address these methodological challenges, we
utilize two approaches to study tipping point dynam-
ics and scale issues. First, we present a regression-
based approach, where we control for the feedback
drivers across time and space. This allows us to test
for the presence of a land use tipping point, in which
cropland area increases with income growth up until
a point of development after which it declines. Model
specification details are in SI 7.

Second, we treat the combined land use-
economic system as a unit and study the characteristic
transitions using a Hidden Markov model approach
(Usher 1981, Depauw et al 2019, McClintock et al
2020). Markov chain models allow us to study
the properties that result in a tipping point as an
emergent phenomenon including path dependence
at the pixel level (Geoghegan et al 1998) and the
potential for lock-in, non-determinism, and non-
unidirectional change. This analysis produces an
empirical analog to the state-based MDF model. The
premise behind such phasedmodels of land use is that
the human appropriation of land follows a common
pattern across otherwise dissimilar regions. To trans-
late that intuition into an empirical model, we estim-
ate a set of characteristic land use states consistent
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Figure 1. Change in density of cropland (top), and pasture (middle), and natural land (bottom) as a proportion of total land area,
1850–2010. Right panel shows average change by latitude. Natural lands exclude land uses involving a high level of human
appropriation (i.e., urban, cropland, and pasture).

with observed grid cell-level transitions. The outcome
of this process is a Markov model, where states reflect
the common landuses characterized both by the share
of each land use class and by the probability that they
transition to other hidden states. A simplified dia-
gram of the method is shown in figure SI 5.1 and
details are in SI 5.

3. Results

3.1. Historical trends
The defining feature of global land use since 1850
has been the loss of natural lands and the increase
in agricultural lands, as visualized in figure 1. While
pastureland increased more than cropland, both have
increased across all habitable regions: croplands grew
to encompass an average of 5% of the land span-
ning each 0.5◦ latitude band with a human pres-
ence, while pastureland grew to encompass 13%, on
average. But significant variation in this pattern exists

at the temporal and regional level. For most of the
last 170 years, the area of natural lands (defined as
non-agricultural and non-urban land), decreased at
an accelerating pace. Figure 2(a) shows that this pat-
tern changed around 1960 when aggregate land con-
version halted and natural lands began to recover.
The global extent of agricultural land, including pas-
ture and cropland, shows the inverse pattern, increas-
ing until 1960 before plateauing. Several studies
have noted this global plateauing in cropland area
(Ausubel et al 2013, Ramankutty et al 2018) and
decline in agricultural land across regions like North
America, Eurasia, and China (Ramankutty and Foley
1999).

It is worth noting that while abandoned
agricultural lands generally revert to historical
vegetative cover, primarily forest or grassland,
this does not imply a recovery in the ecolo-
gical health and biodiversity of the prior undis-
turbed state (Rudel et al 2005, Queiroz et al 2014,
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Figure 2. (a) Aggregate trends by land use categories. (b) Aggregate trends by land use categories decomposed by income levels
with countries grouped into terciles using mean GDP per capita from 1990 to 2010 with cutoffs of $5300 between low and middle
income and $15 300 between middle and high income. For (a) and (b), ‘agriculture’ sums the area of pasture, crop (intensive),
and crop (non-intensive) lands. (c) Left: y-axis is total global hectares of each land use category in log scale. Right: change in
hectares of each land use category by decade (i.e., the difference between a decade and the previous decades’ value). For
(a)–(c), ‘Natural+ protected’ is inclusive of frontier lands, protected land, and tropical forest, and excludes water and isolated
lands (i.e., deserts and tundra).

Runyan and D’Odorico 2016). Likewise, this reduc-
tion in agricultural land has coincided with agri-
cultural intensification, and while intensification
does not directly contribute to land use change,
it has environmental impacts through habitat loss
(Tscharntke et al 2012), nutrient run-off (Bodirsky
and Müller 2014), greenhouse gas emissions (Smith
et al 2013), fire activity change (Andela et al
2017), and surface water area (Pekel et al 2016).

Furthermore, the increase in protected areas con-
tributes to this observed trend, but we do not attempt
to measure the quality of protection. Some protected
areas may simply be ‘paper parks’ with few actual
protective mechanisms or government enforcement
(Bruner et al 2001).

Urbanization has grown quickly in relative terms
but remains a very small portion of human land
appropriation. However, urbanization has an impact
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Figure 3. Average land use patterns for grid cells that have transitioned from natural to over 50% human-appropriated land use.
Labels along x-axis added for comparison to the MDF model. Under pre-settlement, pastureland gradually grows to about 10%.
The frontier period is dominated by the rapid growth of pasture and cropland, but populations remain small, so most of that land
is classified as intensive agriculture. During the intensifying period, the majority of land is appropriated to agriculture but land
use change begins to decline. The populating period is characterized by higher populations, resulting in more area characterized as
non-intensive cropland. In the last stage, called greening, populations stabilize and protected areas expand. As agricultural
productivity continues to increase, less cropland is required.

on land use beyond its immediate footprint via effects
on demand for food, water, biomass, energy, and
waste services, environmental amenities, and adjacent
land prices (Vitousek et al 1997).

As shown in figure 2(b), we see a stabilization
in agricultural land use and in natural and pro-
tected lands across income levels. Richer countries
reached their peak level of agricultural expansion in
1960 and declined thereafter. While poorer countries
are still modestly increasing their agricultural land
area, the rate of land conversion dropped significantly
starting in 1960. Middle income countries did not
peak until 2000, and they are still in the process of
converting their low intensity croplands to intensive
use3, while low income countries are still expanding
non-intensive cropland. While tropical forest loss has
declined to historical lows, it has yet to fully plateau
in low income countries (mainly inCentral Africa and
Indonesia).

In line with forest transition theory (Mather and
Needle 1998, Rudel et al 2005), wealthy regions of
Europe and North America underwent significant
reforestation after a period of agricultural intens-
ification in the late 19th and early 20th century
(MacCleery 1993). As detailed later, our empirical
methods support the hypothesis that this pattern is
driven by economic growth, and that continued eco-
nomic growth will further increase the extent of nat-
ural land. Taken together, we argue this represents a
regime shift in the drivers of global land use change,

3 Our measure of low intensity croplands is distinct from subsist-
ence agriculture (see section SI 2.1).

characterized by increasing food production through
changes in land management rather than increasing
lands under cultivation.

At the local level, a similar shift has occurred.
Figure 3 charts the average evolution of land use for
a grid cell that went from being completely natural
to a majority of human-appropriated land use within
our historical record. While there is general align-
ment with the MDFModel, some distinct differences
emerge (see SI 6). First, natural lands remain a large
proportion of grid cells (>25% on average), even as
human land use patterns mature. Second, intensive
agriculture is a common land use early in the appro-
priation process, and is not necessary preceded by
subsistence or non-intensive agriculture—although
this could reflect the recent time span under con-
sideration. Once agriculture amounts to 50% of a
grid cell’s land use, further ‘intensification’ is charac-
terized by the growth of human population centers.
Third, we identify a final period of land use change
in the most recent decades, greening, characterized
by stabilizing and declining agricultural land use and
increasing protected lands.

The last two centuries have also seen a massive
increase in wealth, with incomes rising almost every-
where in the world. Average real PPP-adjusted GDP
per capita are estimated to have increased ten-fold
between 1820 and 2010 (Bolt et al 2014). As an
alternative approach to assessing the MDF model,
we can study the evolution of land use as a func-
tion of income, rather than time (see figure SI 4.1).
We again see a pattern where natural land is increas-
ingly converted to cropland up until a point of wealth
when agriculture use plateaus and protected lands
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Figure 4. (a) The y-axis is the effect of a change in income on cropland in terms of proportion of cropland per grid cell, relative to
income at the peak agricultural land use. Only grid cells with some cropland are included. For clarity, the x-scale is restricted to
values under $60 000, which includes 99.8% of observations. Median GDP across countries and over time is $4900 (inflation
adjusted to 2011 $USD). (b) Plot of the income-cropland curve by World Bank region. Europe and the Middle East are combined
into one region. For the North American plot, the right side of the curve extends downward to−0.19 at the highest GDP levels,
but axes are truncated at−0.03 to facilitate overall visualization. The distribution of country incomes by continent is included in
figure SI 8.2.

increase. Countries that were colonized, including
Australia, SouthAfrica, and those in the Americas, see
the greatest reductions in natural land coverage dur-
ing our study period.

We replicate this analysis using biomes and cli-
mate zones rather than countries in SI 8. Taken
together, a story emerges suggesting that a tipping
point in global land use has been reached in which
agricultural land use is declining and natural and pro-
tected lands are increasing.

3.2. Land use tipping point
The regression models specified in SI 7 show that
income is significantly associated with land use
change. Figure 4(a) plots the average effect of income
(GDP per capita) on land use change. Since our
income data is at the national level, this result
describes the expected change in land use within a
country given a change in its average income. As
countries get wealthier from a poor baseline, natural
lands are converted to agriculture at a rate that slows
and then reverses. Cropland area peaks at $5000 GDP
per capita and then declines as incomes rise. Like-
wise, loss of natural land area peaks around this same
income level (see figure SI 7.1).

The underlying dynamics of this tipping point
appear to be similar across time periods and regions.
Technology has shaped global land use: the mold-
board plow in the late 19th century facilitated the
mass conversion of deep-rooted grassland to cro-
pland, and breakthroughs in crop genetics during
Green Revolution in the 1960s increased the pro-
ductivity of marginal lands. However, the inverted-U
relationship has remained consistent over our data-
set. Figure 4(a) splits the sample into time periods,
one through 1945, one after 1945, and one after 1965.
We see similar concave curves for cropland change in

each era, with the pre-war curve the steepest. We next
test this relationship across global regions and find
that the inverted-U curve holds in each case except
for Europe and the Middle East.

While our results suggest that income is a major
driver of land use, it is worth noting that policy also
plays a major role. Policy factors could help explain
the different pattern we observe in Europe and the
Middle East—especially if governments are encour-
aging certain land uses for political, aesthetic, or stra-
tegic reasons. European agriculture, for example, is
highly subsidized through the EU’s Common Agri-
cultural Policy, where the average hectare of agricul-
tural land receives $358 per year, an amount that is
48% greater than in the US (CRS 2021). European
countries have had higher agricultural subsidies than
the rest of the world since 1960, on average (see figure
SI 8.6). And as major food importers, some Middle
Eastern countries have prioritized food security and
enacted policies involving large subsidies to farmers
and public investments in irrigation (Lippman 2010).

Other examples of large-scale policies that altered
land use trends include the Homestead Act in the US,
which encouraged the conversion of millions of acres
from prairie and forest to agriculture in the late 19th
century, the USSR’s frontier lands program in the
1950s, and liming and fertilization initiatives of the
Cerrado of Brazil in the 1980s to make it suitable for
agriculture (Correa and Schmidt 2014). On the other
hand, China has undertaken a massive reforestation
program in recent decades affecting over ten million
hectares of former cropland (Delang and Yuan 2016).
We include an empirical test of the role of agricul-
tural subsidy policy on cropland area in the Possible
Drivers section.

Given that GDP per capita represents a national
average and says little about the distribution of
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Figure 5. (a), (b) States identified by the hidden Markov model (bars), and their major transitions (arrows). The x-axis is the
percent of a pixel’s land use. The labels for each hidden state (along left) are provided for interpretation. Transition probabilities
are per decade. (a) The Markov model is estimated using land use information alone, including transition probabilities greater
than 2.5%. (b) The Markov model is estimated using land use information and income quantiles. Boxes denote states in each
tercile of the income distribution, with labels ‘poor’, ‘medium’, and ‘rich’ denoting these terciles, including transition probabilities
greater than 2.5%. (c) The probability for each state (labeled on left) of transitioning to a state with more natural and protected
land (right of 0% label) or less (left of 0%).

income,we also test the tipping point by country-level
income inequality in SI 8, where we find the
curve becomes more pronounced at greater levels of
inequality.

3.3. Markovmodeling
Wenext estimate aHiddenMarkovmodel that repres-
ents the characteristic land use transitions observed
at the local (grid cell) level. This complements the
regression analysis by disaggregating land use regime
transitions that lead to the tipping point. The ana-
lysis is performed in two ways: first using land use
types only, which assumes that any effect of income
on land use dynamics is reflected in the observed land
use pattern, as in the MDF model. Second, we expli-
citly include an income metric to define the hidden
states.

Without including income, we identify 11 states
as shown in figure 5(a) which show strong sequential

steps consistent with the MDF model from pristine
lands (100% natural) to the early settlement state.
From the early settlement state, we observe a bifurc-
ation in which the most likely states that follow
are pre-pastureland (13% of cells per decade) and
intensifying (4%). If a cell enters the pre-pastureland
state, then pastureland rapidly expands to appro-
priate the majority of available land. Pastureland
shows considerable lock-in: of the 10% of pixels that
enter a pastureland state or one of its immediate
precursors, 79% never exit. Pastureland lock-in is
at least partly an emergent process, and does not
appear to be predetermined by climatological condi-
tions (see figure SI 9.5). Unlike lock-in dynamics of
urban land use studied elsewhere (e.g. Barter 2004,
Reyna and Chester 2015), pastureland lock-in is likely
driven by environmental and institutional changes
(Milchunas and Lauenroth 1993, Specht 2019). Land
that enters the intensifying state generally proceeds to
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Figure 6.Map of hidden Markov states for the year (a) 1850 and (b) 2010. Each state is associated with patterns of land use. Note
legend colors do not correspond to the colors in other land use figures.

the densely populated state. We also identify a distinct
state with a majority of protected land use.

We map the spatial patterns of the hidden states
in figure 6 in 1850 and 2010. Much of the world
in 1850 is classified as unsettled, pre-settlement, and
early settlement due to the high portion of nat-
ural land. By 2010, much of this area is con-
verted to pastureland, with pristine and unsettled
states concentrated in extreme environments, near
the poles and the Sahara. Bordering unsettled areas
are pre-settlement and early settlement lands. Else-
where, a concentric layered pattern appears, with
densely populated regions couched within intensive
areas, which border expanses of pastureland.

When income is explicitly included as a
state attribute, 16 hidden states are identified
(see figure 5(b)). Here, most transitions occur across
income groups and between corresponding land
use states at different income levels. For example,
pre-settlement poor land commonly transitions
to the pre-settlement middle state and then the
pre-settlement rich state due to rising incomes in the

surrounding country. However, this path depend-
ence is less deterministic than in the pastureland
lock-in described previously: amongst pixels that
occupy a given land use type after the income has
grown to middle or rich levels, 64% are observed
to leave their land use type. Moreover, the areas
that do transition to other land uses are concen-
trated in rich countries (e.g. US, Canada, Europe,
Australia), suggesting that this dynamic reflects the
rapid growth in income as opposed to land use
lock-in.

To relate these results to the regression analysis
above, we consider the probability that unappropri-
ated land (natural and protected land) increases or
decreases following each state. While only one state
in each of the poor and middle income groups shows
a greater probability of increase in unappropriated
land, half of the high income group states do. Natural
land is found to decrease in low and middle income
groups, but increase at high incomes.

The Hidden Markov model can also be used to
simulate land use changes by iteratively applying the

8
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transition matrix to a state vector (see figure SI 9.4).
While the reduction in natural land occurs more rap-
idly in the model accounting for income, this model
eventually projects a reversal of natural land appro-
priation. The model without income shows no such
reverse.

Overall theMarkov analysis suggests that land use
is greatly influenced by land use in earlier periods and
by income growth. We find that land use dynamics
are different in Europe and Asia than in the Americas
and Australia, and that these differences persist. Key
bifurcations early-on can shape prospects for future
land intensification and urbanization, suggesting that
land uses generally shift more slowly than incomes
rise. At higher incomes, however, most state trans-
itions are characterized by increases in natural land,
and the potential for lock-in is less.

3.4. Possible drivers
Wenow examine possiblemechanisms for the tipping
point relationships found above. We know that as
incomes and population levels have increased across
our study period, demand for agricultural products
has increased. The recent decline in agricultural land
area corresponds to a shift from extensification (i.e.
increasing production through expanding cropland)
to intensification i.e. (increasing production through
inputs and management changes). Multiple explan-
ations are plausible for this extensive-intensive shift
in relation to changes in income, population, agricul-
tural productivity, and trade, some of which can sup-
port a reversal in the loss of natural land. Using data
from the last 60 years, we now provide evidence to
inform our theoretical explanations which is further
expanded upon in the Discussion section below.

Economic theory provides insights into the
drivers of land use change (Lewis 1954, Ranis and
Fei 1961, Harris and Todaro 1970). As societies get
wealthier, higher consumption levels require more
land devoted to food production. With economic
growth, more capital is available for agricultural
intensification. Increased productivity spurs popu-
lation growth, further pressuring natural resources.
Arable land eventually becomes scarce and the relat-
ive return on intensifying existing cropland increases.
Once a certain level of income is reached, birthrates
decline and people increasingly concentrate in urban
areas as non-farm wages rise with economic pro-
ductivity. Despite increasing consumption, a declin-
ing (or stable) rural population combined with a
highly productive agricultural sector begins to ease
land pressures. Marginal cropland reverts to its nat-
ural state. At the same time, wealthier places may
value environmental amenities and land conserva-
tion more highly, driving increased investments in
protected area (Jacobsen and Hanley 2009, Frank
and Schlenker 2016). Together these dynamics sug-
gest a economic tipping point in which cropland

plateaus and declines while natural and protected
lands recover.

Our tipping point is related to the ‘Kuznets curve’
concept, developed to explain why inequality tended
to increase and then decrease with economic develop-
ment (Kuznets 1955). This model has been applied to
explain the increase and subsequent decrease in envir-
onmental degradation with income levels. Grossman
and Krueger (1995) find that pollution begins to
decline at a per capita income of $8000, and in the
context of land use, Cropper and Griffiths (1994)
find that deforestation declines in Latin America and
Africa once incomes surpass $5000 per capita. While
this forest-income relationship has been questioned
(Koop and Tole 1999), we note an overall similarity
of these values and our land use tipping point estim-
ate of $5000.

However, several important features distinguish
our analysis from the environmental Kuznets curve
(EKC) literature. First, while traditional EKC work
describes a trade-off between economic production
and an immediate social ill (i.e., pollution), changes
in land use provide less immediate benefits and
may entail different motivations. Second, EKC ana-
lyses often look at ‘flows’ in terms of pollution rates
while we focus on ‘stocks’ of land. Our paper shows
a reversal process in which land is removed from
human use, not just reductions in rates. Finally, land
use patterns have long-term consequences for eco-
nomic growth, just as economic growth has con-
sequences for land use change. This feedback loop
motivates our Markov analysis. Unlike most EKC
interpretations, we propose that the full description
of the system includes how land use and income
change together.

Population and income growth are strong drivers
of land use change, but act in opposite directions. We
find that population growth, which was at its highest
rate in the second half of the 20th century, is posit-
ively associated with recent cropland expansion and
food import growth (i.e., moremouths to feed), while
income growth is negatively associated with changes
in cropland area and food imports, implying a pro-
cess of intensification. Results are shown in panels (a)
and (b) of figure 7.

To assess the role of agricultural productivity, we
compare country-level growth in yield and harvested
area of several staple crops using FAO data over fifty
years from 1960 to 2010. Yields have increased greatly
in nearly every country, with a mean increase of 84%
for corn and 64% for soybeans. While most coun-
tries increased soybean area, corn area remained con-
stant or declined in many cases. Overall we see little
correlation between yield and area under production,
as shown in panel (c) of figure 7 for corn and soy-
beans and figure SI 8.4 for wheat, suggesting that yield
trends alone do not drive expansions or contractions
in agricultural area.
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Figure 7. Country-level growth relationships from 1960 to 2010. Panel (a) plots growth in population (y-axis) and growth in
cropland area and cereal imports (x-axis), whereas (b) plots growth in income per capita on the y-axis. Panel (c) plots growth in
crop area (y-axis) and yield (x-axis) for corn (left) and soybeans (right), whereas (d) plots import growth for cereals (left) and
oilseeds (right) on the x-axis. Colors denote World Bank regions. Size of point corresponds to country population for panels (a),
(b) and cropland area for panels (c), (d). Growth rates are the log difference of the values for 2010 and 1960. For either end point,
a five-year forward window is averaged (i.e, 1960 is the average of 1960–1965) to reduce the effect of country-year anomalies and
data gaps. Countries with no cropland are excluded and scales are trimmed to omit countries with negligible cropland area. Data
on crop production and import growth from FAOSTAT.

Reductions in cropland in rich countries could
also reflect a shift in production to poorer coun-
tries, with a corresponding increase in imports. We
evaluate the relationship between growth in crop-
land area and imports of both cereal crops and oil
seeds, the main sources of human and livestock cal-
oric intake. Again, we see no strong relationship, as
shown in panel (d) of figure 7. If anything, there

is a positive correlation in which countries simul-
taneously increase cropland area and food imports.
European countries, which have been experiencing
considerable declines in cropland, see relatively small
growth in imports.

Looking specifically at forests, we plot growth
rates in cropland and forest area at the country-
level from 1960 to 2010 in figure SI 8.5. We see
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a slight negative correlation, which aligns with the
observation that cropland gains during the last cen-
tury often came at the expense of forest land. This
relationship holds for both temperate and tropical
forest-dominated countries. We also plot the 1960
income tercile of each country, and see that richer
countries tended to lose cropland (and lose relatively
less forest), while poorer countries increased their
cropland (and lost relatively more forest)—overall
lending support to a tipping point in land use driven
by economic development.

Finally, given the important role of policy in
shaping land use decisions, as discussed earlier, we
now analyze the relationship between one popular
policy tool, agricultural subsidies, and cropland area
growth.We use ameasure from theWorld Bank’s Rel-
ative Rate of Assistance (RRA) database (Anderson
et al 2013). RRA is computed as: RRA= (1+
NRAagtrad)/(1+NRAnonagtrad)− 1, whereNRAagtrad is
the country-level subsidy rate of primary agricul-
tural products (production-weighted by value) and
NRAnonagtrad is similarly the subsidy rate of the coun-
try’s non-agricultural, tradable products. Therefore,
a higher RRA implies that a country is subsidizing
the agricultural sector relatively more and its non-
agricultural sector.

Figure SI 8.6 plots country-level cropland area
growth and average RRA from 1960 to 2010. Inter-
estingly, we see a negative relationship, meaning that
countries that subsidized agriculture more saw lower
(or negative) cropland growth. This implies that such
policies may even be used to mitigate cropland loss in
places where it is already happening for the economic
reasons we discuss in this paper.

4. Discussion and conclusion

As agricultural land use has plateaued in recent dec-
ades, the loss of natural land in many regions has
begun to reverse. These changes reflect a dimension
of land use closely related to economic growth. In
regions with incomes above $5000 GDP per cap-
ita, economic growth is associated with more nat-
ural land. This tipping point dynamic is supported by
both regression analysis and aMarkovmodel analysis.
Such an improved understanding of the income-land
use dynamic can help inform conservation priorit-
ies, agricultural policy, as well as integrated climate
models whose land use projections vary greatly based
on the economic growth assumptions (Stehfest et al
2019).

Our findings contribute to the debate on how to
meet the resource demands of a growing population
that is getting richer (Sage 1994). Additional sup-
plies of food and biomass can come from the intens-
ive margin (i.e. increasing yields via crop genetics,
agricultural inputs, mechanization, and irrigation) or
the extensive margin (i.e. harvesting biomass from

virgin forests and converting them to agriculture)
(Foley et al 2005, 2011, Rudel et al 2009, Burney et al
2010, Steinfeld and Gerber 2010, Tilman et al 2011).
The extent to which food production will require
conversion of additional natural lands to cultiva-
tion has important ecological, social, and economic
implications.

The Borlaug hypothesis holds that increased
yields stemming from improved crop technologies
and intensification can produce the extra calor-
ies without requiring a major reduction in nat-
ural habitat (Borlaug 2007). The hypothesis has
garnered some recent support (Stevenson et al 2013,
Ramankutty et al 2018), but others contend that
agricultural area must increase significantly to meet
the needs of a growing global population (Tilman
1999, Alexandratos and Bruinsma 2012, Ray et al
2013, Laurance et al 2014, Molotoks et al 2018).
Future work will be needed to reconcile these pro-
jected increases—ranging from 69 million hectares
(Alexandratos and Bruinsma 2012) to 288 million
hectares (Tilman 1999) in 2050—with the decrease in
agricultural land we propose in this paper.

Our findings generally support the Borlaug hypo-
thesis: cropland area has plateaued globally and
across income group while crop production has
continued to rise. However, such outcomes do not
speak to intensive-extensive margin dynamics. The
intensification–land-sparing theory, closely related to
the Borlaug hypothesis, contends that rising yields
should be accompanied by a decline in cultivated
areas. Analyzing trends in corn, soybean, and wheat
production, we see no obvious relationship in line
with the findings of others (Rudel et al 2009). Yields
increased greatly in nearly every country, but area
under production wasmixed. As such, there aremany
country-level examples that support intensification–
land-sparing theory, and many that do not.

Declines in the agricultural footprint of rich
countries may be enabled by imports from poor
countries expanding their cropland area. Such shifts
could be driven by trade in food products and
globalization forces (Lambin and Meyfroidt 2011,
Meyfroidt et al 2013). If such a ‘land grab’ hypotheses
were true, we would expect greater increases in food
imports in places that reduced their cropland area.
However, we do not find evidence of such a rela-
tionship; if anything, we find a positive correlation
in which countries simultaneously increase cropland
area and food imports. Taken together, this evidence
suggests that cropland change alone cannot explain
the regime shift observed. Instead, the income-driven
shift away from pastureland and growth in protected
lands are important components.

Our findings also lend support to forest trans-
ition theory, which seeks to explain why countries
go from net forest contraction to forest expansion.
The theory is that forest transitions are driven by
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farmers concentrating production among the most
productive lands, resulting in the abandonment
of formerly-farmed marginal lands which then
regenerate to forest naturally or through tree crop
planting (Mather and Needle 1998, Rudel et al
2005). In line with the literature, we observe forest
transitions in much of Europe and North America
(MacCleery 1993), andmore recently in several devel-
oping countries, most notably China, where food
production and forest cover simultaneously expan-
ded (Lambin and Meyfroidt 2011). Our results also
align with the increase in net tree cover observed at
the global level (Song et al 2018). To the extent that
agricultural intensification is related to economic
growth, forest transition theory resembles a tipping
point curve for deforestation in which forest cover
would decline and then increase with a development
(Cuaresma et al 2017).

Tropical forests, given their importance for biod-
iversity and as carbon sinks, deserve special attention.
Our results show that while overall tropical forest
loss has declined to historical lows, it has yet to fully
plateau in low income countries, mainly in central
Africa. We note that our dataset ends in 2010 follow-
ing a period of declining Amazonian deforestation
and strong economic growth; however, since 2010
deforestation has picked back up, returning to a rate
of more than 10000 km yr−1 in 2021 (Junior et al
2021). There is evidence that reductions in tropical
deforestation can occur alongside increased agricul-
tural production under the proper policy environ-
ment (Macedo et al 2012).

While many areas remain threatened by agricul-
tural conversion, our findings suggest a reason to
be optimistic about the prospects for natural ecosys-
tems at a regional and global scale. National policies
incentivizing smart agricultural planning and land
conservation remain critical, but as more and more
countries approach and pass an income threshold
of $5000 per capita, we anticipate reduced pres-
sure to convert natural lands to cropland and a
greater demand for natural amenities and protected
lands.
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