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Predicting tipping points in complex
environmental systems
John C. Moorea,b,1

Ecologists have long recognized that ecosystems can
exist and function in one state within predictable
bounds for extended periods of time and then
abruptly shift to an alternate state (1–5). Desertifica-
tion of grasslands, shrub expansion in the Arctic, the
eutrophication of lakes, ocean acidification, the forma-
tion of marine dead zones, and the degradation of
coral reefs represent real and potential ecological re-
gime shifts marked by a tipping point or threshold in
one or more external drivers or controlling variables
within the system that when breached causes a major
change in the system’s structure, function, or dynam-
ics (6–9). Large or incremental alterations in climate,
land use, biodiversity (invasive species or the overex-
ploitation of species), and biogeochemical cycles rep-
resent external and internal drivers that when pushed
too far cross thresholds that can could lead to regime
shifts (Fig. 1). Seeing the tipping point after the fact
and ascribing mechanisms to the change is one thing;
predicting them using empirical data has been a chal-
lenge. The difficulty in predicting tipping points stems
from the large number of species and interactions
(high dimensionality) within ecological systems, the
stochastic nature of the systems and their drivers,
and the uncertainty and importance of initial conditions
that the nonlinear nature of the systems introduce to
outcomes. In PNAS, Jiang et al. (10) confront these is-
sues using a dimension-reduction framework that uses
empirical data from 59 complexmultidimensional plant–
pollinator mutualistic networks, some of which contain
scores of species and interactions, to develop simpler
2D models for studying and predicting tipping points.

General system theory is replete with examples of
tipping points and regime shifts and approaches that
have been developed to study them. Ecologists have
used these ideas to identify and predict tipping points
and explain the mechanisms behind them in real-
world situations using a combination of models and
observations from long-term datasets or short-term
experiments (11–13). Time-series data may reveal an
abrupt change or shift system. Simplified models of
the system that include the essential components,

interactions, and drivers and an element of stochastic-
ity are constructed. The initial conditions of the mod-
els are informed by first principles and the empirical
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Fig. 1. Tipping points and ecological regime shifts are
difficult to predict. A and B represent hypothetical time
series of the trajectories of the mean and variation about
the mean of variables of interest or the states of
different ecosystem (blue and red), while the shaded
gray area represents the transition region. (A) An external
driver is incrementally changing and altering the state of
the each ecosystem until a threshold is breached,
representing tipping point after which the ecosystems
transition to new states. The blue and red ecosystems both
exhibit a change in state that tracks the incremental
change in driver, but the blue ecosystem provides no early
warning of approaching the tipping points, while the red
exhibits an early warning in the form of increased variation
about its mean state. (B) Both ecosystems possess
relatively stable states until an abrupt disturbance occurs
which initially alters their states. The blue ecosystem
recovers from the disturbance and returns to its original
state, while the red ecosystem is pushed beyond a tipping
point and transitions to an alternate state.
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data, the drivers are incrementally or dramatically altered, and the
ensuing changes to the system are recorded. This approach has
shown conflicting outcomes. For certain types of ecological systems
an analysis of the model and real-world time series reveals that there
are indeed leading indicators of regime shifts in the form of in-
creases in the variance of populations or process variables (e.g.,
decomposition and mineralization) or changes in the underlying
dynamics of the system. Other types of models, particularly those
that have multiple attractors or the potential for chaos, exhibit
abrupt changes with no advanced warning in the time series.

Jiang et al. (10) studied tipping points with an approach that uti-
lizes first principles and empirical data to describe the dynamics of
59 complex plant–pollinator networks (real networks) that vary in the
number of species (plants and pollinators) and interactions and then
used the information to construct a simple 2D analog (2D reduced
network) containing only a plant and pollinator. For each of the 59 real
networks the population dynamics of each of the plants and pollina-
tors within the networkwere describedby a set of first-order, nonlinear
(ODEs). The ODEs included intrinsic growth rates for plants and pol-
linators, terms for intraspecific and interspecific competition among
the plants and among the pollinators, a function for mutualistic inter-
actions that saturate as both partners increase in abundance (akin to a
Holling type II functional response in a predator–prey system), a spe-
cific death rate of the pollinator, and immigration terms for plants and
pollinators. For the 2D reduced networks the empirical data are used
to reduce the complexity of the system to two dimensions in the form
of a set of two nonlinear ODEs describing the dynamics of the polli-
nators and the plants that were based on averages of the population
sizes and parameter values used to construct the real networks.

To study tipping points, two resilience functions—one based
on the fraction of removed pollinators and the interactions that
they engaged in and one based on the decay rate of individual
species—were calculated to account for the disappearance of pol-
linators and concomitant mutualistic interactions they engage in
and the increase in species loss in a deteriorating environment,
respectively. Remarkably, the 2D reducedmodels accurately reflected
the average population densities and responses of plants and polli-
nators captured in the 59 real networks. In cases where incremental
increases in the resilience functions with and without stochastic distur-
bances did anddid not generate tipping points in the 59 real networks
the 2D reduced networks followed suit. In all cases the 2D model
accurately predicted the tipping point, although its accuracy was de-
pendent on the method of averaging that was used for the parame-
ters describing the mutualistic interaction strengths of the plants
and pollinators.

Jiang et al. (10) then argue that these results indicate that the
low dimension and tractable 2D reduced network models captured

the dynamics of the high dimension and not tractable 59 real net-
work models with both slow and abrupt changes in environmental
conditions sufficiently to study the emergence of tipping points.
Eigenvalue-based stability analyses of parameter regimes that did
not possess tipping points generated steady-state population esti-
mates consistent with the simulations. A closer examination of the
parameter regimes that did generate tipping points could tie the
thresholds to changes in specific parameters. When the resilience
function was incrementally increased to reflect the removal of pol-
linators from the system and the intrinsic rates of growth for plants
and pollinators were low the system exhibited a tipping point with
dynamic behavior without hysteresis behavior. When the resilience
function based on the decay rate (death rate) of the pollinators was
increased, the tipping point exhibited hysteresis behavior.

The approach presented by Jiang et al. (10) provides a frame-
work to study tipping points not limited to plant–pollinator systems
but across a variety of complex systems. There are a couple of
important implications. First, simple models have been criticized
for lacking sufficient information (read complexity) to capture the
complexity and nuances of the contexts of individual systems to
address challenges. However, the insights that simple models can
provide when informed by and used in conjunction with more com-
plex empirically based models as shown here can be invaluable.
Their work should not be interpreted to say that all systems can
be reduced to two dimensions but rather should challenge us to
discern the utilities of simple versus complicatedmodels of complex
systems. Second, this approach could be very useful in understand-
ing the thresholds that precipitate regime shifts in environmental
systems and their connections to humanwell-being (2). For example,
Rockström et al. (14) applied the concept of ecological thresholds
when proposing nine planetary boundaries based on the key Earth
system process of climate change, ocean acidification, stratospheric
ozone depletion, freshwater use, land-system change, atmospheric
aerosol loading, alteration of biogeochemical (N and P) cycles, and
the rate of biodiversity loss as concomitant control variables and
thresholds. They argued that transgressing one or more “may be
deleterious or even catastrophic due to the risk of crossing thresh-
olds that will trigger non-linear, abrupt environmental change [read
ecological regime shift] within continental- to planetary-scale sys-
tems.” However, for many boundaries, the positioning of the
boundary is unclear. The dimension-reduction approach advanced
by Jiang et al. (10) provides a means of establishing and studying
these boundaries.
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