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Abstract

Spatial patterns of forest canopies are fractal as they exhibit variation over a continuum of scales. A measure of fractal

dimension of a forested landscape represents the spatial summation of physiologic (leaf-level), demographic (population-

level), and abiotic (e.g., edaphic) processes, as well as exogenous disturbances (e.g., ®re and hurricane) and thus provides a

basis to classify or monitor such systems. However, forests typically exhibit a spectrum of fractal parameters which yields

further insight to the geometric structure of the system and potentially the underlying processes. We calculated multifractal

properties of longleaf pine ¯atwoods, the predominant ecosystem of central Florida, from canopy pro®le data derived from an

airborne laser altimeter and ground-based measurements in The Nature Conservancy's Disney Wilderness Preserve located

near Kissimmee, Florida. These metrics were compared for six �500 m transects to determine the level of consistency

between remotely sensed and ®eld measures and within a forest community. Multifractal techniques uncovered subtle

differences between transects that could correspond to unique, underlying abiotic and biotic processes. These techniques

should be considered a valuable tool for ecological analysis. # 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many ecological processes (e.g., species growth,

invasion, competition, facilitation, mortality) are dic-

tated by existing spatial conditions (i.e., both biotic

and abiotic) and lead to the generation of new spatial

conditions (see Tilman and Kareiva, 1997). Hence,

pattern and process are perpetually intertwined. In

order to understand how nature works, ecologists must

be able to classify patterns and develop process-based,

spatially explicit models that can produce observed

patterns at multiple scales.

Recognizing the limitations of Euclidean geometry

to describe natural features (e.g., tree crowns, forest

patches, or landscapes), fractal geometry has been

embraced by forest (e.g., Zeide, 1991; Lorimer

et al., 1994; Vedyushkin, 1994) and landscape (e.g.,

Milne, 1991) ecologists to quantify spatial patterns.

However, just as classical geometry is unable to

accurately depict many natural structures (e.g., the

Forest Ecology and Management 128 (2000) 121±127

* Corresponding author. Tel.: �1-407-823-6634; fax: �1-407-

823-5769.

E-mail address: jweisham@mail.ucf.edu (J.F. Weishampel).

0378-1127/00/$ ± see front matter # 2000 Elsevier Science B.V. All rights reserved.

PII: S 0 3 7 8 - 1 1 2 7 ( 9 9 ) 0 0 2 7 9 - 0



shape of a fern or the coastline of Florida), traditional

fractal analysis techniques may also fall short in fully

describing natural patterns. Upon closer examination

of a pattern it is possible to ®nd subsets that may have

their own unique, local scaling exponents. Thus, it is

often found that there are fractals embedded within

fractals. These patterns, termed multifractals (Man-

delbrot, 1988), are associated with nonlinear phenom-

ena such as ¯uid turbulence, galaxy clustering, and the

dynamics of forested systems (SoleÂ and Manrubia,

1995) and are being detected and analyzed in remotely

sensed and geospatial data (Pachepsky et al., 1997;

Pecknold et al., 1997).

Our objectives were to characterize patterns of

canopy height measures in a longleaf pine savanna

in Central Florida. We compared these patterns of

canopy height measured from both a laser altimeter

and with ground-based techniques to determine the

level of consistency between remotely sensed and ®eld

measures and within a forest community. Multifractal

analysis can be used to characterize patterns resulting

from ecological processes which operate across a wide

spectrum of time-scales.

2. Methods

2.1. Remotely sensed and field measurements

Transects of laser pulse returns from the Scanning

Lidar Imager of Canopies by Echo Recovery (SLI-

CER; Blair and Harding, 1998) were acquired from

the Disney Wilderness Preserve (DWP) after leaf off

in November 1995 (Weishampel et al., 1997). The

DWP is a�4600 ha preserve located in central Florida

straddling the Osceola/Polk county line (Fig. 1). It was

conceived as a mitigation site for wetland disturbance

by the Walt Disney World Corporation and the Greater

Orlando Aviation Authority in early 1990s. Since then,

the former cattle ranch has undergone extensive

hydrological/vegetation restoration. It is comprised

of patches of wetlands (e.g., bayhead swamps and

cypress domes) in a matrix of more xeric upland,

savanna-esque communities (e.g., pine and scrubby

¯atwoods).

The SLICER ¯ight line consists of ®ve across-track

circular laser footprints 10±12 m in diameter nomin-

ally spaced 10 m along and across the ¯ight track. The

footprint diameter which is roughly equivalent to the

crown width of a mature longleaf pine was a function

of the beam divergence and the altitude of the plane;

footprint spacing was de®ned by the aircraft ground

speed and the laser pulse repetition rate. The larger

footprint size compared to earlier altimeters (e.g.,

Nelson et al., 1988) increases the likelihood of record-

ing the crown apex. Three parallel along-track trans-

ects, separated by a 10 m footprint, were divided into

six, contiguous 50 footprint segments which inter-

cepted the upland vegetation classi®ed as pine or

scrubby ¯atwoods. These open, ®re-driven commu-

nities which dominate the preserve and much of

Fig. 1. SLICER flightline through Disney Wilderness Preserve (DWP) consisting of five transects of laser pulses. Sections of the studied

transects are highlighted and labeled A±F.
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central Florida are characterized by a longleaf pine

(Pinus palustris Mill.) overstory and an understory

comprised largely of saw palmetto (Serenoa repens

Bartr.) and wiregrass (Aristida stricta Michx.) with

scattered gallberry (Ilex glabra L.) and oak (e.g.,

Quercus myrtifolia Willd., Q. chapmanii Sarg.)

shrubs.

The laser altimeter developed at NASA Goddard

Space Flight Center was ¯own aboard the NASA

Wallops Flight Facility T-39 Sabreliner aircraft. The

onboard kinematic GPS, the inertial navigation sys-

tem, and the laser respectively provided information

on the aircraft position, laser pointing direction, and

distance to the ground which permitted the ground

location of each pulse to a horizontal accuracy of

approximately 10 m. The center of each footprint in

the six segments was located using a real-time differ-

ential correcting Timble Pro-XR GPS. At these loca-

tions, the highest leaf/branch in each 10 m diameter

cylinder projected above the footprint was determined

using a clinometer and a sonic range ®nder. The

SLICER waveform has a vertical resolution of

11 cm; canopy height estimates were derived with

software developed by Lefsky (1997) for ground

detection.

2.2. Multifractal analysis

2.2.1. Derivation of multifractal methodology

Standard fractal analysis techniques generally

involve examining the change in a measure over a

range of scales. Thus at ®ner scales, more and more

mass (or density) is quanti®ed. One technique often

utilized is box counting, where the number of occu-

pied boxes are counted at a range of different box

sizes. A typical formula for fractal analysis using this

method is:

Df � ÿ lim
e!0

log N�e�
log e

(1)

where N is the number of occupied boxes of size e and

Df the fractal dimension.

However, not all boxes in the grids contain equal

measures so averaging these subsets eliminates poten-

tially valuable information that could shed light on the

underlying pattern-generating processes. Finer exam-

ination of patterns may reveal that each subset has

different scaling exponents. These patterns are often

termed multifractals and are a composition of many

fractal sets. Multifractal sets involve a spectrum of

scaling indices; the mass or density around different

points is characterized by different (local) fractal

`dimensions' or measures. Thus, multifractals may

be thought of as fractals within fractals.

One way to base multifractal analysis proposed by

Falconer (1990) is through the expression:

F�q; t� � E
XN

i�1

p
q
i e
ÿt
i

 !
(2)

where q and t are real numbers and pi and ei are

random quantities representing, respectively the mea-

sure and size factors. The sum is extended over all the

separated parts, N, composing the object and E repre-

sents the expectation (or average). Thus, F(q,t) repre-

sents the coupled moments of measure (q) and size (t).

So the transition from fractal to multifractal

involves replacing the regular dimension (or scaling

exponent) from Eq. (1) with a family of exponents t(q)

(Keitt, 1996). This spectrum of scaling exponents,

t(q), is found by examining the power-law relation-

ship between scale (box size, e) and the various

statistical moments (q) of local measures on the multi-

fractal pattern using:

t�q� � lim
e!0

log E
PN�e�

i�1 p
q
i �e�

log e
(3)

which is often replaced by the more familiar a(q)

spectrum:

a�q� � dt�q�
dq

(4)

where a is called the HoÈlder exponent. Thus, when the

family of scaling exponents, a(q), is considered over a

range of q statistical moments, it is possible to illus-

trate how local scaling exponents differ for a given

multifractal pattern. For an exact or simple fractal,

aq �Df for all q, yielding a straight-line a(q) versus q

graph.

Another component of multifractal analysis that is

often considered is that of the f(a) spectrum of multi-

fractal measures. This spectrum can be obtained by a

Legendre transform of a by:

f �a� � qaÿ t (5)
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When coupled together, we may examine how the

multifractal measures f(a) correspond to a set of

scaling exponents a. In plotting f(a) versus a, we

obtain a complete multifractal spectrum. For purely

multiplicative processes this spectrum will have a

concave down, parabolic shape and will have mini-

mum and maximum a values on the x-axis. The

maximum f(a) corresponds to the fractal dimension,

Df.

For an exact or simple fractal, not only will the a(q)

spectrum be the same for all q values, but the f(a)

versus a multifractal spectrum collapses into a single

point (i.e., Df) (SoleÂ and Manrubia, 1995). For a

multifractal, however, the measure is different in every

subset, therefore each of these has a unique scaling

exponent a, and associated multifractal measure f(a).

In summary, the primary focus of multifractal ana-

lysis is to consider how the measure of mass (pi) varies

with box size (ei). Another key point is to realize the

importance of the range of statistical moments (q) of

local measures in discerning differences between dif-

ferent subsets of the overall pattern. By considering

the complete spectrum of multifractal measures f(a)

corresponding to a set of scaling exponents a, we may

be able to gain insight into the local patterns

embedded within a larger pattern that may be pro-

duced by ecological processes operating at very dif-

ferent time scales (e.g., growth, reproduction,

mortality, etc). Thus, this method can substantially

aid in the characterization of forest stands or land-

scapes.

2.2.2. Application of multifractals to canopy height

data

Field-and lidar-detected height data from the six

transects were analyzed using the multifractal tech-

niques mentioned above using software developed by

Mach and Mas (1997). For this analysis, we were

interested in how the HoÈlder or scaling exponent (a)

varied over a range (i.e., from 0.05 to 2.0 at 0.05

intervals) of the statistical moments (q).

To test for possible nonrandom behavior in these

canopy height patterns, a Monte Carlo analysis was

performed. Heights from each of the transects (®eld-

and lidar-detected) were randomly arranged along the

transect 20 times and the same multifractal techniques

were performed on these permuted data sets. The

maximum and minimum random values were plotted

against the a(q) values for the ®eld and lidar-detected

transects so that signi®cantly nonrandom (P < 0.05)

areas could be identi®ed. To further compare the

multifractal spectra of measures for both ®eld and

lidar-detected height transects from the longleaf pine

community, we plotted the multifractal measures f(a)

against their associated scaling exponents, a.

3. Results

The a(q) spectra of scaling indices plotted over a

range of q values for each of the six ®eld-and lidar-

detected canopy height transects are shown in Fig. 2.

The letters (A±F) found at the beginning of each

Fig. 2. (a) Field (~)-and (b) lidar (^)-detected canopy height a(q) vs. q spectra of scaling indices. Open markers represent a(q) values that

fell outside the 95% random envelopes.
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spectrum correspond to the transect letters shown

in Fig. 1. Overall, the values of a(q) exhibited the

most change with q values below 1.0. In general,

the range in a(q) for low q values for the six transects

was greater for the lidar estimates of canopy

height.Values of a(q) for a speci®c q that fell outside

the Monte Carlo envelopes are designated with empty

markers. Only ®eld-measured canopy height transect

D had a(q) values below the 95% con®dence envelope

(Fig. 2a). Lidar-detected canopy height transects A, B,

D, and F all had measures that were out of the range of

spectra for randomized patterns (Fig. 2b). Only one

a(q) value, the ®rst for transect F was found above the

maximum range for the randomly permuted transects.

This transect was also the only one to exhibit sig-

ni®cantly low a(q) values for high values of q.

The plots in Fig. 2 represent only part of the overall

multifractal spectrum. As mentioned earlier, the a(q)

versus q spectrum speci®cally focuses on how the

divergence or scaling exponent a varies over differing

order q values. Plotting the Legendre-transformed f(a)

function (Eq. (5), Fig. 3), with a represents how the

multifractal measures, f(a), vary over a range of

diverging exponents, a. Thus, we are able to illustrate

a true multifractal spectrum.

The multifractal spectra for transects A±F are

shown in Fig. 3. The multifractal spectra, f(a) versus

a, for both ®eld-(~) and lidar-(^) measured canopy

height transects are plotted together. The maxima of

these concave spectra, represented by the dashed or

dotted asymptote lines, correspond to the traditional

fractal dimension Df. The Df values for lidar and ®eld

transects differed by <0.02 for all transects but B

which differed by >0.03. While most measures exhib-

ited a range of f(a) values, the pattern found with ®eld

measured height for transect D resembled a simple

fractal.

4. Discussion and conclusion

The spectra of scaling indices (Fig. 2) illustrate

similarities in both ®eld- and lidar-detected canopy

height transects. The general distributions of all spec-

Fig. 3. Multifractal spectra for field-(~) and lidar-(^) based height estimates. The dashed lines signify the fractal dimension, i.e., the apex of

the multifractal spectra, for the different transects and canopy measurement techniques.
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tra fall within a similar range of scaling exponent (a)

values (0.5±1.2), which is to be expected as they are

found in the same community type and therefore

subject to similar abiotic and biotic factors. Variability

among the a(q) values was higher with smaller q

values and most transects showed a peak in a(q) values

with q's between 0 and 0.4. Transects C and F

exhibited the highest maximum a(q) values in both

measurements of canopy heights. However, in general

the spectra for a given ®eld measured transect were not

concordant with the spectra for the corresponding

remotely sensed transect. This suggests that the laser

footprint and ®eld plot locations did not precisely

coincide or the measure of highest leaf/branch does

not correspond to the initial return of the laser pulse

above background noise. This problem is ampli®ed by

the open nature of the longleaf pine ¯atwoods where a

few meters discrepancy determines whether a longleaf

pine (�15 m) or saw palmetto (<1 m) crown was hit.

Though not the classic example of light-controlled

forest gap dynamics, longleaf pine savannas do exhibit

a cyclical gap-phase pattern across the landscape

(Brockway and Outcalt, 1998). Dispersion patterns

of longleaf pine seedlings and juveniles are highly

aggregated occurring in distinct, separated patches,

while adults tend to be more randomly scattered (Platt

et al., 1988). Thus, through mortality due to competi-

tion (for water and nutrients) and ®re, the spatial

patterns of cohorts change as trees mature. This

tendency towards a random pattern of canopy heights

may relate to Fig. 2, where the majority of a(q) values

fell within random envelopes.

Perhaps more interesting than the similarities are

the subtle differences of these transects. For transects

measured with the same technique (i.e., lidar), there

are remarkable difference in local responses. For

example transects B and C are found within close

proximity to one another, but have very different

spectra for both ®eld and lidar measures. These dif-

ferences in local scaling exponents between adjacent

transects may represent the importance of local abiotic

heterogeneity on patterns of canopy heights. Also an

important point is to note the nearly straight line

spectra found for ®eld transect D. Since there is very

little difference in local scaling exponents over a range

of statistical moments, this transect appears to have

self-similarity over many scales and therefore approx-

imates a simple (mono-) fractal.

By limiting our analyses to a single fractal dimen-

sion, we would have concluded that all of these

transects were essentially the same (i.e., Df � 0.89).

Although valid, by considering the multifractal

spectra composed of various multifractal measures

f(a)and their associated scaling exponents (a), we

uncovered local differences embedded within the

transects (Fig. 3). There is an overall general agree-

ment in the multifractal spectra of both ®eld-and lidar-

measured transects. The partial concave down shape

of these multifractal spectra is indicative of nonlinear,

multiplicative underlying processes (Mandelbrot,

1988). These processes in general are responsible

for the transition from a pattern characterized by a

single fractal dimension into one characterized by a

multifractal spectrum. An exception to this is

found for ®eld transect D, which appears to have little

more than a single point representing its spectrum,

resembling a monofractal. By examining the asymp-

totes it is clear that (a) nearly all transects have the

same regular fractal dimension (Df) and (b) this

technique is uncovering a great deal of information

regarding the ®ne scale differences in pattern within

these transects. These differences in pattern could

relate to subtle differences in abiotic and biotic pro-

cesses.

Multifractal techniques should be considered a

valuable part of a forest ecologist's toolkit which

enable the characterization or differentiation of forest

spatial patterns. However, these properties (e.g., f(a)

spectra) are not calculated because dimensions are

intrinsically interesting, but because they represent a

potential window to the pattern generating mechanism

(Mandelbrot, 1988) such as those resulting from

environmental (e.g., distribution of soil moisture or

nutrients) factors, exogenous (e.g., natural or anthro-

pogenic disturbance) or endogenous (e.g, succes-

sional) processes. Along these lines, Lorimer et al.

(1994) discussed the importance of abiotic heteroge-

neity in producing different fractal distributions of

trees, and SoleÂ and Manrubia (1995) showed via a

cellular automata gap model how changes in biotic

processes (i.e., mortality probability) may result in

different overall multifractal patterns of forested land-

scapes. Hence, in order to determine the inherent

causes of naturally occurring multifractal patterns in

forested systems, models that couple a template of

underlying multifractal generating abiotic conditions
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with multifractal generating biotic factors need to be

developed.

Acknowledgements

We wish to thank David Harding and the Laser

Altimeter Processing Facility at NASA Goddard

Space Flight Center for providing the SLICER

data, the DWP for GIS layers and permission to

use their preserve, and Jason Godin, George Husk,

and Jon Sloan for ®eld assistance. Support that

enabled this study was provided by the NASA Earth

Science Enterprise New Investigator Program (NAG-

W5202).

References

Blair, J.B., Harding, D.J., 1998. SLICER Ð Scanning Lidar Imager

of Canopies by Echo Recovery. Available at: http://

ltpwww.gsfc.nasa.gov/eib/slicer.html.

Brockway, D.G., Outcalt, K.W., 1998. Gap-phase regeneration in

longleaf pine wiregrass ecosystems. For. Ecol. Manage. 106,

125±139.

Falconer, K.J., 1990. Fractal Geometry: Mathematical Foundations

and Applications. Wiley, New York, p. 288.

Keitt, T.H., 1996. Spectral representation of neutral landscapes.

Available at: http://www.santafe.edu/sfi/publications/

96wplist.html.

Lefsky, M.A., 1997. Application of lidar remote sensing to the

estimation of forest canopy and stand structure. Ph.D.

dissertation, University of Virginia, Charlottesville, Virginia.

Lorimer, N.D., Haight, R.G., Leary, R.A., 1994. The Fractal Forest:

Fractal Geometry and Applications in Forest Science. NC-170,

US Department of Agriculture, Forest Service, St. Paul,

Minnesota.

Mach, J., Mas, F., 1997. MFRAC v2.0 Software for fractal and

multifractal indices calculation. Available at: http://

www.qf.ub.es/area5/jordi/mfrac.html.

Mandelbrot, B.B., 1988. An introduction to multifractal distribu-

tion functions. In: Stanley, H.E., Ostrowsky, N. (Eds.), Random

Fluctuations and Pattern Growth: Experiments and Models.

Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 279±

291.

Milne, B.T., 1991. Lessons from applying fractal models to

landscape patterns. In: Turner, M.G., Gardner, R.H. (Eds.),

Quantitative Methods in Landscape Ecology. Springer, New

York, pp. 199±235.

Nelson, R., Krabill, W., Maclean, G., 1988. Using airborne lasers to

estimate forest canopy and stand characteristics. J. For. 86, 31±

38.

Pachepsky, Y.A., Ritchie, J.C., Gimenez, D., 1997. Fractal

modeling of airborne laser altimetry data. Remote Sens.

Environ. 61, 150±161.

Pecknold, S., Lovejoy, S., Schertzer, D., Hooge, C., 1997.

Multifractals and resolution dependence of remotely sensed

data: GSI to GIS. In: Quattrochi, D.A., Goodchild, M.F. (Eds.),

Scale in Remote Sensing and GIS. CRC Press, Boca Raton, FL,

pp. 361±394.

Platt, W.J., Evans, G.W., Rathbun, S.L., 1988. The population

dynamics of a long-lived conifer (Pinus palustris). The Am.

Naturalist 131, 491±525.

SoleÂ, R.V., Manrubia, S.C., 1995. Are rainforests self-organized in

a critical state? J. Theor. Biol. 173, 31±40.

Tilman, D., Kareiva, P., 1997. Spatial Ecology: The Role of Space

in Population Dynamics and Interspecific Interactions. Prince-

ton University Press, Princeton, p. 368.

Vedyushkin, M.A., 1994. Fractal properties of forest spatial

structure. Vegetatio 113, 65±70.

Weishampel, J.F., Harding, D.J., Boutet, J.C., Drake, J.B., 1997.

Analysis of laser altimeter waveforms for forested ecosystems

of Central Florida. In: Narayanan, R.M., Kalshoven Jr., J.E.

(Eds.), Advances in Laser Remote Sensing for Terrestrial and

Oceanographic Applications. Proceedings of SPIE, vol. 3059,

pp. 184±189.

Zeide, B., 1991. Fractal geometry in forestry applications. For.

Ecol. Manage. 46, 179±188.

J.B. Drake, J.F. Weishampel / Forest Ecology and Management 128 (2000) 121±127 127


