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Northern Forest Ecosystem Dynamics Using
Coupled Models and Remote Sensing

K. J. Ranson,* G. Sun,† R. G. Knox,* E. R. Levine,* J. F. Weishampel,‡
and S. T. Fifer§

Forest ecosystem dynamics modeling, remote sensing real species since the end of the Wisconsin Ice Age (Pas-
data analysis, and a geographical information system tor and Mladenoff, 1992). There is now evidence that
(GIS) were used together to determine the possible growing season duration and vegetation growth are in-
growth and development of a northern forest in Maine, creasing in the high latitudes (Myneni et al., 1997). In-
USA. Field measurements and airborne synthetic aper- creasing harvesting pressures coupled with the ever-pres-
ture radar (SAR) data were used to produce maps of for- ent impacts of forest fires and insect outbreaks are
est cover type and above ground biomass. These forest changing the face of forests everywhere. The nature and
attribute maps derived with remote sensing data, along extent of the impacts of these changes, as well as the
with a conventional soils map, were used to identify the feedback on global climate, are not well understood, but
initial conditions for forest ecosystem model simulations. may be addressed through modeling the interactions of
Using this information along with ecosystem model re- the vegetation, soil, and energy components of ecosys-
sults enabled the development of predictive maps of for- tems (Pastor and Post, 1988; Bonan et al., 1995; Trum-
est development. The results obtained were consistent bore et al., 1996). The use of combined ecosystem and
with observed forest conditions and expected successional remote sensing models presents an especially efficient
trajectories. The study demonstrated that ecosystem mod- and tractable method to study regional and global envi-
els might be used in a spatial context when parametrized ronmental changes.
and used with georeferenced data sets. Elsevier Sci- The Forest Ecosystem Dynamics (FED) Project at
ence Inc., 2001. All Rights Reserved. Goddard Space Flight Center (GSFC) involves the de-

velopment and integration of models to understand soil,
vegetation, and radiation dynamics in northern forest

INTRODUCTION ecosystems. Through the use of simulation models, re-
mote sensing, field investigation, and GIS, the vegeta-The circumpolar boreal forest is one of the Earth’s major
tion, soil, and energy components within northern forestsvegetative ecosystems, accounting for nearly 20% of the
are being investigated, and their responses to globalterrestrial plant carbon and covering one-sixth of the
change and other disturbances are being explored andEarth’s land surface (Bolin, 1986). The northern and
quantified (e.g., Levine et al., 1993; Levine and Knox,southern margins are especially sensitive to climate
1997). The development and implementation of a frame-change as evidenced by the northward migration of bo-
work for combining models that simulate various ecosys-
tem processes (Workbench for Interactive Simulation of
Ecosystems, WISE) was described by Knox et al. (1997).* NASA Goddard Space Flight Center, Greenbelt, Maryland
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Goward et al., 1994; Ranson and Sun, 1997b). Intensive plot is considered homogeneous horizontally, but vertical
heterogeneity (canopy height and vertical distribution offield measurements coinciding with aircraft and satellite
leaf area) is simulated in some detail. Establishment andoverflights, as well as ancillary data, were obtained and
annual diameter growth is first computed under optimalincorporated into a GIS. The GIS is used to provide
(nonlimiting) conditions, and then reduced based on thedriving variables for the models, initialize model runs,
constraints of available light, soil moisture, soil fertility,validate model predictions, and identify areas requiring
and temperature. Annual climate effects are summedmore intensive study.
across simulated months. Seedling establishment, mortal-In the present study we demonstrate a technique for
ity, and regeneration are computed stochastically, whileconnecting models of forest dynamics and soil processes
growth is largely deterministic. Simulations can start oralong with remotely sensed forest attributes in a spatially
stop at any point within the life cycle of a forest. How-explicit manner. Kasischke and Christensen (1990) out-
ever for simulations beginning from other than barelined, in general terms, steps to connect forest ecosystem
ground, details on existing forest status (e.g., speciesmodels with radar backscatter models. They suggested
composition diameter breast height, size class distribu-the use of forest growth models to help develop and vali-
tion) are necessary for model initialization.date backscatter models that predict the radar signature

based on tree stand characteristics. The objective of their
Soil Process Modelingproposed technique was to provide inputs to forest mod-
The goal of simulating the soil system beneath the forestels. He and Mladenoff (1999) have developed a spatially
is to understand the controls and feedbacks that operateexplicit landscape model to study fire history in Wiscon-
within the soil as well as between the soil and the rest ofsin that uses forest cover derived from classified Landsat
the forest environment. This includes physical, biological,data as input. We describe the use of remote sensing de-
chemical, and mineralogical characteristics and mecha-rived maps of forest type and biomass used with ancillary
nisms that vary at short-, medium-, and long-term tem-data to initialize and test a forest dynamics model.
poral scales within soils. The FroST (Frozen Soil Tem-This article is organized into four sections including
peratures) model (Levine and Knox, 1997), whichthe introduction. The Background section provides brief
includes the physical processes occurring within the soil,descriptions of the modeling components, the coupled
was used within the FED modeling framework. FroSTmodel environment, and the remote sensing and field
is a simulation model of soil properties which producesdata. The Methods section describes the implementation
estimates of water content, matric potential, tempera-of the forest succession model, the analysis of remote
ture, and ice content within each soil horizon. FroST wassensing data, and the prediction of forest dynamics. The
developed from the Residue model of Bidlake et al.maps derived from remote sensing and predictive maps
(1992) which couples surface residue to the soil–atmo-of forest dynamics are discussed in the Results section.
sphere system, and uses network analysis to describe
heat and moisture transfer, and phase changes in water.

BACKGROUND Short-wave and long-wave radiative transfer, changes in
energy status, rainfall interception, infiltration, redistri-Forest Dynamics Modeling
bution, evaporation, and drainage are all accounted for.

Mathematical models that simulate forest dynamics have Climate input requirements include global short-wave ra-
gained widespread acceptance and use over the past two diation, air temperatures, average wind speed, and pre-
decades. The most successful models (in terms of gen- cipitation. General site, canopy, and soil characteristics
eral applicability to diverse forest types) are individual for individual horizons are also needed. Enhancements
tree-based models called gap models (Shugart et al., to the Residue model to produce FroST included algo-
1992; Botkin, 1993; Deutschman et al., 1997). The rithms for calculating surface runoff, transpiration, Pen-
strength of these models lies in their versatility to predict man demand, and a simple snow model. In FroST, sur-
qualitative successional patterns related to species com- face residue from the Residue model is configured to
position and forest structure. simulate above ground characteristics of forested sites.

The gap model, ZELIG (Urban, 1990), is an individ- Snow properties are simulated by changing the charac-
ual tree simulator that simulates the annual establish- teristics of the surface soil node from soil characteristics
ment, annual diameter growth, and mortality of each tree to snow characteristics. Precipitation increases the node’s
on an array of model plots. Model states are recorded in thickness (i.e., snow cover), and a simple melt factor is
a tally of all trees on a plot, with each tree labeled by used to melt the snow. Once the snow has melted, node
species, size (diameter), height to base of live crowns, characteristics are reset to that of soil (Levine and Knox,
and vigor (based on recent growth history). The competi- 1997). The ability of the model to handle moisture and
tive environment of the plot is defined by the height, leaf temperature profiles also makes it suitable for use in per-
area, and woody biomass of each individual tree deter- mafrost simulations as we move our studies to true bo-

real environments.mined by allometric relationships with diameter. The
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Modeling Environment
To interactively integrate and use the forest succession
and soil process models, both models were incorporated
into the Forest Ecosystem Dynamics’ WISE (Workbench
for Interactive Simulation of Ecosystems) modeling envi-
ronment. WISE supports interactive configuration, man-
ages the transfer of variables among models, and dynami-
cally displays results (Levine et al., 1993; Knox et al.,
1997). The modeling environment allows two or more
process models to be coupled using a generic query–
response system where parameter values from detailed
models in one discipline can be provided to drive models
of other disciplines. Models are encapsulated and then
run synchronously from a common external clock. Data-
baselike features added while encapsulating each model Figure 1. Location of study site in the northeastern USA.
allow models to query one another while running. Each
encapsulated model also has X-windows panels defining
a model-specific graphical “subinterface” and a version of
a configuration tool to check parameter values entered of incidence angle. A biomass map developed from SAR
interactively against rule sets defining allowable combi- data was used as current base map in this study (Ranson
nations of values. (Example WISE panels may be viewed and Sun, 1997).
over the Internet via http://fedwww.gsfc.nasa.gov). Cur-
rently, several models are encapsulated including ZELIG
and FroST. With this modeling tool, scaling parameters Study Area
from detailed models can be derived to improve values

The area under study is located at the International Pa-used in simpler models for the same parameter.
per Northern Experimental Forest (NEF) near How-
land, Maine, USA (Fig. 1). The site is located at approxi-Remote Sensing
mately 458159N latitude and 688459W longitude. The

During the NASA Multisensor Aircraft campaign in area comprises approximately 7000 ha containing several
1989–1990 SIR-C/XSAR Mission (1994), several AIRSAR intensive experimental sites, where detailed ecological
or SIR-C/XSAR images were acquired. These data, along and mensuration measurements have been obtained. It
with field measurements, were used to produce maps of contains an assortment of small plantations, multigenera-
forest cover type (Ranson and Sun, 1994a) and above- tion clearings, and large natural southern boreal-northern
ground biomass (Ranson and Sun, 1994b; 1997). Tempo- hardwood transition forest stands consisting of hemlock–
ral (winter and summer) multifrequency polarimetric

spruce–fir, aspen–birch, and hemlock–hardwood mix-
AIRSAR data were used to produce a map of the study

tures. Topographically, the region varies from flat to gen-area with general forest categories such as softwood,
tly rolling, with a maximum elevation change of less thanhardwood, regeneration, and other nonforest categories
135 m within a 10 km by 10 km study area. Due to thewith better than 80% accuracy (Ranson and Sun, 1994a).
region’s glacial history, soil drainage classes within aThe forest areas of this classification map were compiled
small area may vary widely, from excessively drained tointo three major forest categories, that is, conifer, decid-
poorly drained.uous, and mixture for the purpose of this study. Similar

There exists a wide variety of imagery, map data,maps could be produced using other remote sensing
and point data at the NEF and surrounding areas withindata, such as the Landsat TM data.
a Geographic Information System (GIS) for researchRadar provides a unique tool for accessing northern
purposes. These data include field, tower, aircraft andforest biomass since it is unaffected by cloud or low solar
satellite based measurements and are described and dis-zenith angle and penetrates farther into forest canopies
tributed from the FED project’s GIS database also avail-than optical wavelengths. Studies (e.g., Dobson et al.,
able through the Internet at http://fedwww.gsfc.nasa.gov.1992; Le Toan et al., 1992; Rignot et al., 1994) have

shown good correlations of radar backscatter and bio-
mass for different forest stands. Generally, it is found
that longer wavelength cross-polarization radar backscat- METHODS
ter was the most sensitive to woody biomass. Ranson and

In this article we demonstrate that parameter maps de-Sun (1994b) have shown that the combinations of longer
and shorter wavelength SAR data may reduce the effect veloped from remotely sensed data can be used to initial-
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vided in multilook compressed Stokes matrix format.
Upon receipt of the data from JPL, we extracted single
channel images and converted slant range to ground
range. The resulting images had a nominal resolution of
8.3 m and covered an area of about 8.5 km in the along
track direction and 12 km in the across track direction.
We used data that covered 9 km by 6.4 km to avoid data
at steep radar incidence angles (i.e., ,308).

Image Registration. Image registration was required
to use multidate AIRSAR images. Since our research
area has low topographic relief (maximum change in ele-
vation of 145 m over 10 km), and the flight directions
and incidence angle ranges of the pair of images were
similar, the registration was easily accomplished. A linear
interpolation with about 10 control points yielded results
superior to a cubic polynomial interpolation with 20 con-

Figure 2. Diagram of procedures for using maps of forest trol points. The conditions during the AIRSAR flights
attributes developed from remote sensing and soil survey apparently were quite stable and the distortion was lin-
maps to initialize a forest succession model and develop ear. The April AIRSAR image was registered to the Oc-maps of future forest type and biomass.

tober AIRSAR.
Forest Type Classification. Ranson and Sun (1994a)

produced a forest type map of the Howland area using
AIRSAR images. They found that combining summerize and test a forest succession model. Figure 2 outlines
and winter images produced better results than usingthe methods used for the study reported here. First, re-
data from a single date. They used principal componentsmote sensing data were analyzed for forest type and bio-
analysis to reduce the number of channels used with amass levels and maps were developed. Second, a forest
maximum likelihood classifier. In this study, all nonre-model (ZELIG) was coupled to the soil physics model
dundant channels from both dates were used with a su-(FroST) and run for a range of soil conditions found at
pervised minimum distance classifier.the site over a 500-year period (see Weishampel et al.,

A parallelepiped classifier (Moik, 1980), which ap-1999). Individual pixels from the forest type and biomass
proximates the hyperellipsoid decision boundaries ofmaps along with a soil type map were compared with the
Bayesian classifier by parallelepipeds, was used similar toresults of the forest model to determine the age of the
that reported by Ranson and Sun (1997). Nine landforest represented by the pixel. These age and forest
cover classes were selected from a generalized cover typeconditions were used for model initialization, and simula-
map provided by International Paper: water, bog, wet-tion results for 100 years in the future (using current cli-
land, grassland, clearing, regeneration, mixed forest,mate) were recorded. The individual steps of the method
hardwood forest, and softwood forest. The latter fiveare described in the following sections.
classes represent the state of the forest stands in the area
from harvest through regrowth (regeneration) to mature
“monospecies” or mixed stands.

Remote Sensing Analysis The classifier was trained for the nine classes by lo-
AIRSAR Data. We used data from the JPL AIRborne cating areas identified from forest cover maps, aerial
Synthetic Aperture Radar (AIRSAR) instrument because photos and field observations on the SAR imagery. As
it was readily available for our test site and there was described above, the AIRSAR image data was acquired
good supporting ground truth. The data was acquired to with 12 channels (C-, L- and P-band with HH, HV, VV,
support a SIR-C/XSAR study (see Ranson and Sun, VH polarizations). The set of channels for this analysis
1997). AIRSAR was flown over the NEF onboard a DC-8 used only one cross polarization channel (VH) for each
aircraft on 15 April 1994 and 7 October 1994 [see Way frequency. The registered forest type map was placed in
and Smith (1991) for a description of aircraft and sen- the GIS for further use.
sor]. The AIRSAR acquired backscatter data at C-band Above Ground Biomass Mapping. Forest stands,
(wavelength55.6 cm, frequency55.3 GHz), L-band measured during 1992 and 1994, were located on AIR-
(23.9 cm, 1.25 GHz), and P-band (67.0 cm, 0.44 GHz) SAR images, and 333 block of pixels were extracted
in four polarizations (HH, VV, HV, VH). Both flights ac- from which the average backscatter was calculated. The
quired data at about 10:00 a.m. local time (EDT) under field biomass data was acquired from stands of predomi-
warm and dry weather conditions. The AIRSAR data nantly spruce and hemlock and mixtures of hemlock and

hardwood species.were processed by JPL’s Radar Data Center and pro-
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An earlier analysis of AIRSAR data over the Maine using the FroST model (Levine and Knox, 1997). Param-
eters for 10 soil types mapped in the study area (Fig. 3)study area estimated above ground standing biomass

from a combination of radar channels (Ranson and Sun, were used. The spatial scale of the ZELIG simulations
were performed to represent a patch size of 30 m3301994b). A combination of P-band HV and C-band HV

(i.e., PHV–CHV in dB) was found to have the best sensi- m to correspond to the scale of typical remotely sensed
data. This was done by running the model for nine spa-tivity to total above ground biomass. Briefly, the proce-

dure involves developing a linear regression equation tially independent 10 m310 m plots (Weishampel et al.,
1999). Because gap models possess underlying stochas-with biomass and SAR backscatter. We used a cube root

transformation for the dependent variable (biomass) and ticity in their regeneration, mortality, and weather rou-
tines, 15 separate runs of the nine plots were performedcombined SAR channels as the independent variable.

The cube root transformation equalizes the variance and to generate a range of stand responses from which stand
averages were calculated. The simulation results were re-produces a normal distribution of biomass data (e.g.,

Ranson et al., 1997). The relationships between SAR corded at 5-year intervals up to 500 years.
backscatter values (in dB) and the cubic root of forest Biomass for simulated trees was calculated from
biomass were determined using linear regression. Mea- modeled dbh using allometric equations developed for
surements from 17 homogeneous stands large enough to central Maine, USA forests (Young et al., 1980). The av-
provide representative radar signatures were used to de- erage biomass was then determined for the simulated
velop the regression model. An additional 28 stands were 30 m plots.
used for testing. The equation using a combination of
AIRSAR bands (i.e., PHV–CHV) was

Predictive Imagesb1/352.18610.259 (PHV–CHV), r250.78. (1)
The basis of modeling forest dynamics and tying the sim-

This relation [Eq. (1)] was used on a pixel by pixel basis ulation to a real landscape is essentially a model initial-
to produce images of the predicted biomass from the ization problem. Knowledge of the set of soil and vegeta-
AIRSAR images. To reduce the effects of speckle, the tion attributes at the date of remote sensing imagery
average backscatter value from an array of points were enables the prediction of future vegetation attributes for
used as the center pixel backscatter value from which the a given location based on the long-time series of ZELIG
biomass was calculated. The biomass map was also added model results. Referring to Figure 2, attributes of soil
to the GIS. type, forest biomass, and forest cover type are known,

as described above. These known attributes are used to
initialize the model for each location (pixel) in the re-

Forest Model Implementation mote sensing attribute and soil maps. Normally, model
initialization requires explicit knowledge of the dbh dis-The forest model ZELIG (Urban, 1990), adapted as de-

scribed in Levine et al. (1993), was used to simulate the tribution and species composition. This approach uses
mapped attributes to identify the ZELIG simulation bestsuccessional dynamics of the southern boreal/northern

hardwood forest transition zone found at the NEF. Be- representing the present state of a pixel location in terms
of soil type, cover class, and biomass.cause soil moisture is considered to be of primary impor-

tance in determining the structure (e.g., biomass and First the ZELIG model results were searched for
soil type, vegetation classification type, and biomass level.species composition) of these forests (Bonan and Shu-

gart, 1989), waterlogging effects (adapted from Botkin, To relate the SAR classification to the forest model re-
sults, only pixels classified as forest (i.e., hardwood, soft-1993) were included. This required connecting the

ZELIG model to a soil physics model that simulates wood, mixed, regeneration) and clearing were used. Pix-
els classified as regeneration were relabeled as hardwooddepth to saturated soils (see Weishampel et al., 1999).

Diameter at breast height (dbh), height, height to base since natural regrowth in disturbed areas is primarily de-
ciduous species. In the case of the pixels identified asof crown, and foliage density were recorded for each in-

dividual tree in nine (10 m310 m) ZELIG plots. clearing, the original forest cover class is unknown so
that the mapped soil type and matching biomass levelTo implement the model, site parameters (e.g., soil

fertility and monthly values of temperature and precipi- are used to select the class. Areas mapped as bogs, wet-
lands, grass, and water were assumed not to change overtation) and autecological parameters (e.g., height and di-

ameter maxima and growth tolerances) were derived the simulation period. Model results were coded as hard-
wood, softwood, and mixed forest based on the propor-from empirical data and published sources (e.g., Pastor

and Post, 1985; Botkin, 1993). Forest succession on 10 tions of deciduous (e.g., aspen, birch, maple) and conifer
(e.g., spruce, hemlock, pine, cedar) species. Mixed standssoil types (see Table 1) found at the NEF were simu-

lated starting from bare soil. Depth to water table and were labeled as those with less than 60% occurrence of
hardwood or softwood. Biomass was calculated for a sim-available water holding content of the soil were derived
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Table 1. Ten Soil Series and Associated Drainage and Taxonomic Classifications Found in the Maine Study Site and Used
for Forest Model Simulations

Soil Series Drainage Class Taxonomic Classification

Adams Somewhat excessively Sandy, mixed, frigid Typic Haplorthod
Boothbay Somewhat poorly Fine-illitic, nonacid, frigid Andic Dystrochrept
Colonel Somewhat poorly Coarse-loamy, mixed, frigid Andic Dystrochrept
Croghan Somewhat poorly Sandy, mixed, frigid Aquic Haplorthod
Dixfield Moderately well Coarse-loamy, mixed, frigid Andic Dystrochrept
Kinsman Very poorly Sandy, mixed, frigid Aeric Haplaquod
Marlow Well Coarse-loamy, mixed, frigid Typic Haplorthod
Peacham Very poorly Coarse-loamy, mixed, frigid Typic Haplohumod
Scantic Poorly Fine-illitic, nonacid, frigid Typic Haplaquept
Westbury Poorly Coarse-loamy, mixed, frigid Aeric Haplaquod

ulated stand by using dbh based allometric equations rect. Hardwood showed 86.5% correct classification and
mixed forest showed 84.0% correct classifications.that were developed for Maine forests species (Young et

al., 1980). Biomass estimation results were also consistent with
ground observations. Comparing biomass predicted withThe simulation with the matching soil type, match-
Eq. 1 against the 28 field measurements resulted ining class type, and minimum difference between mapped
Eq. (2):and modeled biomass was selected as the present state

of a given pixel location. The simulation period was re-
Predictedbiomass51.9541Measuredbiomass*1.064, r250.87.stricted to the first 200 years based on field observations

(2)
of the forest age structure. The simulation period that
most closely matched the known attributes became the We found that the biomass method worked best for bio-
initial stand age. Then the model results for the next 100 mass values below 15 kg/m2.
years were used for the prediction of forest attributes of
biomass and forest type at that pixel location.

Under certain conditions, no ZELIG simulation run Forest Modeling
matched the mapped set of attributes for a pixel location. Figure 4 presents the average biomass trajectories simu-
If no simulation runs were found that matched both the lated from 15 30 m3 30 m (900 m2) stands growing on
soil type and cover type, then the pixel was labeled as three of the 10 NEF soil types used in the simulation.
“nomatch” and is not included in further analyses. In ad- The range of biomass simulations illustrates the impor-
dition, if the forest class was matched, but the biomass tance of considering soil types in our study area. Gener-
difference was larger than 5 kg/m2, then this pixel is la- ally, well or moderately well-drained soils (e.g., Dixfield
beled as “unknown” and not included for further analy- in Fig. 4) produced higher biomass values in less time,
ses. The possible reasons for no-match and unknown whereas poorly drained soils required much more time
conditions include: The soil map is wrong for a particular to establish maximum biomass values. Soil type also con-
location; the ZELIG model does not grow trees of a cer- trolled the forest type composition with better drained
tain species on a particular soil, although the species is soils establishing significant proportions of hardwoods
actually found there; and remote sensing forest classifica- (e.g., Dixfield, Fig. 4). Poorly drained soils tended to
tion and biomass values for the pixel are incorrect. The have populations dominated by softwoods (e.g., Kinsman,
“unknown” and “no-match” classes comprise about 9% of Fig. 4), although somewhat poorly well drained soils such
the image. as Colonel (Fig. 4) were populated by hardwoods at early

successional stages. Because of the stochastic timing of
tree birth and death, replicate simulations can exhibit
considerable variation about the averages shown in Fig-RESULTS
ure 4. The simulated biomass trends and the underlying

Remote Sensing Analysis patterns of dominance by softwood and hardwood spe-
cies were consistent with field measurements reportedMaps of forest type and biomass were developed from

the AIRSAR data (not shown). The forest type classifica- by Ranson and Sun (1994a,b) and Levine et al. (1994).
A total of 15,000 simulations were recorded (10 soiltion results from the AIRSAR data compare favorably

with the with field information (Ranson and Sun, 1997). types315 replications3100 time steps).
Using the forest type, biomass, and soil maps to ini-Briefly, all non-forest classes were 100% correctly identi-

fied. Forest type classification for softwood was 94% cor- tialize the forest succession model produced the forest
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Figure 3. Maps of forest type (top right), above-ground biomass (top left) developed from remote sensing analysis and
the ZELIG model (bottom) soil survey map. These maps define the initial conditions for spatially explicit forest growth
model simulations.

type and biomass images shown in Figure 3. These maps elsewhere in the study area. The initialization results
were consistent with the remote sensing images exceptcover an area where detailed soils information was avail-

able within in the study area, including the small isolated in the cases of no-match and unknown pixels as seen in
Figure 3. This indicates that this approach can be usedarea to the east (see soil map in Fig. 3). This area was

included in the mapping because it is located on an esker to simulate the initial condition of the landscape in our
study area.with somewhat excessively well-drained soils not found
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instance, the SAR classification labeled a stand as hard-
wood growing on a poorly drained soil again resulting in
a no-match condition. Inspection of available forest cover
maps revealed this stand to consist of northern white ce-
dar, a conifer or softwood species. This forest type was
not trained for in the classification procedure. In this
case the forest modeling helped improve the forest clas-
sification. For unknown pixels, most were classified as
low biomass softwoods growing on soils where the forest
model shows the class should be hardwood. For example,
one can see from Figure 4 that forests on the Dixfield
soil type will most likely be dominated by hardwoods
over the first 50 years of growth.

Predictive Images
The predictive images can be used to assess forest dy-
namics as the change in forest type and biomass over
time. Assuming that no areas of forest are harvested dur-
ing the 100-year period (although this can be included
in the analysis), the forest can be expected to develop,
under current climate conditions, as shown in Figure 5
and Table 2. Average biomass, accumulated over forest
type, increased by about 50% over the first 25 years and
then increased slowly over the next 50-year period with
a gradual decrease in standard deviation. These results
indicate that the forest is mostly mature, slowly growing
stands. Hardwood biomass increased the most over the
100-year period but, because of the very small area cov-
ered, contributed minimally to the total biomass.

The trends in forest types seen in Figure 5 and Ta-
ble 2 indicate that the hardwood stands change into mix-
tures of hardwood and softwood or into softwood stands.
The percentage of mixed stands increases during the first
50 years and then declines over the next 50 years. This
is consistent with observations of the forest in central
Maine. The forest types of recently disturbed areas gen-

Figure 4. Example results of the forest simulation model erally start out as hardwood or mixtures then develop
(ZELIG) with mean yearly biomass of softwood and hard- into softwoods. Poorly drained soils support stands of
wood forest stands growing on soils with different drainage

softwood, while well-drained soils sustain development ofclasses. The biomass trajectories illustrate the effect of soil
hardwoods. Existing stands of hardwoods on the site aretype on the analysis.
growing on fire disturbed areas and are mostly nearing
maturity and subsequent decadence. Of course, detailed
analyses of individual stands are required to confirm that

As discussed above, about 9% of the pixels covering these observations are valid at the local level
the study area fell outside the simulation results and Since the initialization procedure assumes that the
were classified as unknown or no-match (see Fig. 3). The age of the stand on a given soil type can be estimated
majority of no-match pixels were classified as hardwood from the forest type and biomass level for a known soil,
on soils that, according to the forest succession model it is instructive to examine areas of known age in the
results, cannot sustain hardwood forest. For example, study area. Age data is difficult to compile, but we had
224 pixels were classified as low biomass (,10 kg/m2) two sources of information available. Timber harvesting
hardwood growing on very poorly drained Kinsman soil. in the form of clear cutting has been conducted in the
From Figure 4 (Dixfield soil) it can be seen that this imaged area since 1982. Comparing the initialization age
condition should not occur because of the need for a with the age of these clearings reveals if the technique

can be used to estimate the age of young stands. Thebetter drained soil to support hardwood stands. In one
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Figure 5. Predictive maps developed from remote sensing and ecosystem modeling for 25, 50, 75 and 100 years from remote
sensing data acquisition (1994). (Upper) forest type; (Lower) biomass map. See Figure 3 for map legends. North is
at top. Image area is about 6 km36 km.
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Table 2. Simulated Forest Type and Average Biomass for
Forest Areas in Study Area over a 100-Year
Simulation Period

Simulation Year

Forest Type 0 25 50 75 100

Percent of Forested Area

Hardwood 23.4 22.0 5.7 1.1 0.9
Softwood 61.5 65.7 70.6 79.0 85.1
Mixed 15.2 12.2 23.7 20.0 14.0

Forest Type Biomass—Mean, kg/m2

(Std. Dev., kg/m2)

Hardwood 5.3 11.5 17.3 20.8 23.4
(4.1) (2.0) (2.5) (2.6) (4.6)

Softwood 10.6 12.0 14.2 14.8 16.0
(4.5) (3.9) (3.1) (2.8) (3.5)

Mixed 4.5 14.5 14.0 16.4 17.1 Figure 6. Comparison of measured stand mean age with
(4.9) (4.9) (2.6) (3.1) (3.1) model results.

Combined 8.5 12.2 14.3 15.1 16.3
(4.5) (3.7) (2.9) (2.8) (3.4)

ods can be examined by extending the duration of the
model runs.

AIRSAR data was used in this study because of itssecond source of age data was measurement from five
availability during the times of our ground measure-plots acquired by GSFC personnel in the spring of 1994.
ments, and reasonable forest attribute maps could be de-For these data the same measurements were acquired as
veloped. It should be emphasized that these data werefor the biomass estimation method described above. In
used as proof of concept and that the extension of theaddition, two codominant trees in each of nine sample
results to other forests should not require AIRSAR data.plots were cored, and the tree rings analyzed later in a
Landsat data should be suitable for forest cover type ap-laboratory. Up to 18 samples were available for each plot
plications as demonstrated by He and Mladenoff (1999).in each site. These sites were located on a map of stand
Hall et al. (1997) describe a technique to estimate conif-age produced from the model initialization. That is, each
erous forest biomass with Landsat data. Other successfulpixel value represents the age of the stand selected from
above-ground biomass mapping has been demonstratedthe model simulations based on forest type, biomass, and
mostly with multipolarization and multifrequency SARssoil type. A 333 array of pixels were extracted from the
(e.g., Le Toan et al., 1992; Dobson et al, 1992; Ransonimage and averaged to estimate the predicted age for a
and Sun, 1997). The P-band radar available on AIRSARsite. Figure 6 presents a plot of the measured and mod-
can be used to improve biomass estimates of forests, buteled height results. The data values are clustered at the
unfortunately it will not be available for broad scale cov-young ages for the clear cut data and at older ages from
erage in the foreseeable future. There are plans tothe sample plot data; therefore, no attempt was made to
launch multipolarization C-band radars (ASAR: Europedevelop a statistical relationship. However, the scatter of
and Radarsat-2: Canada) and a multipolarization L-bandthe data about the 1 to 1 line is small. These results are
radar (ALOS: Japan) within the next few years. In addi-promising and indicate this technique may be suitable
tion, new Lidar technology such as NASA’s Vegetationfor estimating stand age for the purpose of model initial-
Canopy Lidar promises to improve biomass estimates inization.
the near future.

The results presented are reasonable in terms of the
SUMMARY initial forest classification and biomass estimates. A pre-

liminary analysis of stand age and predicted age also in-A procedure to use forest type and biomass maps devel-
dicates that the technique presented here is valid. De-oped from remote sensing data to initialize a forest
spite the uncertainties of the actual soil type for a pixelgrowth model for a northern forest in Maine, USA was
and errors in the remote sensing maps the results dem-described. The remotely sensed forest attributes were
onstrate the potential for using remote sensing in combi-used together with a soils map to identify the stand age
nation with ecosystem models to simulate forest dynam-within a forest model simulation. This approach enabled

the development of predictive maps of forest type and ics. The technique could be used to augment ground
data in remote area if the model can be parametrizedbiomass for up to 100 years in the future. Longer peri-
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Goward, S. N., Williams, D. L., and Peterson, D. L. (1994),for the appropriate soil and forest type. The forest
NASA multisensor aircraft campaigns for the study of forestgrowth model can also indicate the likely type of forest
ecosystems. Remote Sens. Environ. 47:107–108.growing on a particular soil. This information can be

Hall, F. G., Knapp, D. E., and Huemmrich, K. F. (1997), Phys-used to improve the classification of remotely sensed
ically based classification and satellite mapping of biophysi-data. Additional stand age related variables such as leaf
cal characerisitics in the southern boreal forest. J. Geophys.

area index and canopy height can be added to the proce- Res. 102(D24):29,567–29,580.
dure by inclusion of appropriate remote sensing data sets He, S. H., and Mladenoff, D. L. (1999), Spatially explicit and
such as Landsat and eventually the Vegetation Canopy stochastic simulation of forest-landscape fire disturbance
Lidar. and succession. Ecology 80(1):81–99.

This approach is also amenable to studying carbon Kasischke, E. S., and Christensen, N. L. (1990), Connecting
forest ecosystem and microwave backscatter models. Int. J.flux dynamics as they are controlled by forest structure.
Remote Sens. 11:1277–1298.More realistic dynamics may be provided by models that

Kimes, D. S., Ranson, K. J., and Sun, G. (1977), Inversion ofexplicitly follow the carbon budgets of individual trees
a forest backscatter model using neural networks. Int. J. Re-(e.g., Friend et al., 1997). Since forest type maps and
mote Sens. 18:2181–2199biomass maps can be generated for any set of simulation

Knox, R. G., Kalb, V., and Levine, E. R. (1997), A problem
conditions, the approach described may be useful for un- solving workbench for interactive simulation of ecosystems.
derstanding the effects of management practices on for- IEEE Comput. Sci. Eng. 4(3):52–60.
ests and the response of forest dynamics to changing cli- Levine, E. R., and Knox, R. G. (1997), Modeling soil tempera-
mate. The technique of using coupled models and ture and snow dynamics in northern forests. J. Geophys.
remote sensing will be applied to data sets that cover Res. 109:29,407–416.

Levine, E. R., Ranson, K. J., Smith, J. A., et al. (1993), Forestlarger areas of boreal forests in the USA and Canada.
ecosystem dynamics: linking forest succession, soil process
and radiation models. Ecol. Model. 65:199–219.
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