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A b o v e - g r o u n d  woody biomass is an important parame- 
ter for  describing the fimction and productivity of fi~r- 
ested ecosyste~r~s. Recent studies have demonstrated that 
synthetic aperture radar (SAB) can be used to estimate 
above-ground standing biomass. To date, these .studies 
have relied on extensive ground-tr~th nwasurements to 
construct relationships between biomass and SAR back- 
scatter. In this article we discuss' the use of models to 
help develop a relationship between biomass and radar 
backscatter and compare the predictions with measure- 
ments. A gap-type fi)rest s'uccession model was used to 
simulate growth and development of a northern hard- 
wood-boreal transitional fi)rest typical of central Maine, 
USA. Model results of species, and bole diameter at 
breast height (dbh) of indit;idual trees in a 900 m 2 stand 
were used to run discontinuous canopy backscattev mod- 
els to determine radar backscatter coefficients' fi~r a wide 
range of simulated fi?rest stancts. Us'ing model results, re- 
lationships of copolarized backscatter to fi)rest biomass 
were developed and applied to an airbomw SAR (AIB- 
SAB) image over a fi?rested area in Maine. A relationship 
derived totall!l f rom model results was fi?und to undervs- 
timate biomass. Calibrating the modeled backscatter with 
limited AIRSAB backscatter measurenwnts improved the 
biomass estimation when compared to field measure- 
ments. The approach of using a combination of forest 
succession and remote sensing models to develop algo- 
rithn~s fl)r inferring fi~rest attributes produced compara- 
ble results with techniques using only measurenwuts. 
Applying the model derived algorithm to SAR imager~j 
produced reasonable results when mapped biomass was 
limited to 1,5 kg / m  ~ or less. ©Elsevier Science Inc., 1997. 
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I N T R O D U C T I O N  

Reeently, several studies have shown the capabilities of 
synthetic aperture radar for estimating forest structural 
parameters including above-ground biomass. Studies that 
have shown good correlations of baekscatter and biomass 
for different tbrest stands include Dobson et al. (1992), 
LeToan et al. (1992), and Rignot eta].  (1994). Generally 
the above studies found that longer wavelength cross-po- 
larized radar baekseatter was the most sensitive to woody 
biomass. Ranson and Sun (1994) and Ranson et al. 
(1995a) used combinations of longer (i.e., P- or L-hand) 
and shorter wavelength (C-band) airborne and satellite 
SAR data to map above-ground woody biomass in north- 
ern forests in Maine and Canada, respectively. Dobson 
et ;ft. (1995) used h)rest type classification and radar 
channel combinations to develop relationships between 
SIRC/XSAR backscatter and several dift~rent h)rest at- 
tributes, including biomass and tree height, in a Michi- 
gan, USA forest. All of these studies required the collec- 
tion of extensive ground truth measurements from which 
to derive the appropriate bioinass and radar backscatter 
relationship or algorithm. Field measurements are ;4tal 
to any earefill study, but it is often extremely diNeult 
and expensive to acqnire sufficient measurements to 
characterize the full range of fbrest conditions, especially 
in remote and structurally diverse forests. 

An alternative to relying exclusively on field mea- 
surements for algorithm development is using radar 
backscatter models to help develop relationships be- 
tween radar data and forest parameters. Backscatter 
modeling of forest canopies has received much attention 
over the past decade with nulnerous investigators re- 
porting progress on backseatter modeling of fbrest 
stands. A number of radar baekscatter models (e.g., 
Richards et al., 1987; Ulaby et al., 1990; Dnrden et al., 
1989; Chanhan et al., 1991; Lang et al., 1994) have been 
developed for various kind of fbrests. These models treat 
the ~brest canopy as a horizontally homogeneous me- 
dium. For modeling forest stands of low to medium den- 
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sities, discontinuous radar backseatter models have been 
developed, treating each tree as an individual scatterer 
(Sun et al., 1991; McDonald and Ulaby, 1993; Wang et 
al., 1993; Whitt and Ulaby, 1994). A three-dimensional 
radar baekscatter model was developed by Sun and Ran- 
son (1995) for investigating effects of forest spatial struc- 
ture on radar baekscattering. These and other models 
have been used to simulate radar baekscattering from 
various forest stands, but few attempts have been made 
to use the models to develop algorithms for extraction of 
forest biophysical attributes from SAR data. 

Pierce et al. (1994) presented results of inversion of 
modeled baekseattering of aspen stands of different ages 
by using an artificial neural network. The inputs to the 
network included incidence angle and HH, VV, and HV 
baekseattering at L- and C-bands, and ratios of L H H /  
CHH, LVV/GVV, and LHV/CHV. A total of 55 stands 
were modeled for training the network and testing the 
inversion. Polatin et al. (1994) developed a general 
model-based iterative algorithm for use in the inversion 
of polarimetric radar data. The results of estimation of 
four canopy parameters, that is, soil moisture, trunk can- 
opy density, trunk height, and leaf canopy density, utiliz- 
ing four radar data channels (LHH, LVV, CHH, and 
CVV) were presented. In both studies the radar data 
were simulated with the radiative transfer model (MIM- 
ICS) of Ulaby et al. (1990) and used as input to the algo- 
rithms. However, the algorithms were not applied to ac- 
tual SAR data. In a study by Saatchi and Moghaddam 
(1994), a hybrid technique of image classification, model- 
ing, and inversion was developed for extracting vegeta- 
tion biomass from SAt/ data. Their methodology relies 
on an accurate land cover map and a physically based 
vegetation baekscatter model parameterized by field 
measurements. 

Another approach is to use forest succession models 
to provide inputs to radar backscatter models. Kasischke 
and Christensen (1990) outlined, in general terms, steps 
to connect forest ecosystm models with radar backseatter 
models. They suggested the use of forest growth models 
to help develop and validate baekseatter models that pre- 
dict the radar signature based on tree stand charac- 
teristcs. The objective of their proposed technique was 
to provide inputs to forest models. Ranson et al. (1994) 
demonstrated that radar baekscatter models can be pa- 
rameterized using a forest succession model and that the 
results closely followed observed trends. Optical and mi- 
crowave models have been used to develop algorithms 
for leaf area index and biomass, respectively (Smith et 
al., 1994; Ranson et al., 1995b). 

In this article, we expand upon the work of Ranson 
et al. (1994; Ranson et al. 1995b) and demonstrate that 
a forest growth model can be used to parameterize and 
exercise a radar baekseatter model with the goal of devel- 
oping algorithms for inferring forest attributes from SAR 
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Figure 1. Diagram of combined modeling approach. 

imagery. Figure 1 is a diagram of the approach followed 
here. First a forest model is run for a range of eonditions 
over 250 years. The resulting stand parameters are then 
input to a radar backseatter model and backscatter coef- 
ficients (r7 °) are simulated. The o and forest model sim- 
ulated biomass are used to develop a relationship or al- 
gorithm for estimating biomass from radar baekseatter. 
Using calibrated cr ° enables the testing of model results 
with field measurements and SAR image data. The re- 
sulting backseatter and modeled forest biomass are used 
to examine the relationships between individual and 
combinations of radar channels. In the following see- 
tions, we describe briefly our study area and data acquisi- 
tion. Some background information about forest ecosys- 
tem models is presented, and the approach and results 
from the modeling analyses are described. Finally, a dis- 
cussion of the model results and validation using SAR 
imagery is presented. 

STUDY SITE AND DATA 
The combined modeling work discussed in this article 
was conducted for forest types found at International Pa- 
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Figure 2. Location of the Northern Experimen- 
tal Forest is near Howland, Maine, USA. 

per's Northern Experimental Forest (NEF). This study 
site is located near Howland, Maine USA (45 ° 12'N, 68 ° 
45'W) (Fig. 2). The NEF is representative of a boreal- 
northern hardwood transitional forest consisting of 
aspen-birch, hemlock-spruce-fir, and hemlock-hard- 
wood mixtures. The 10 km x 10 km study area consists of 
large tracts of unmanaged forest stands, small planta- 
tions, and naturally regenerating clearings of various 
ages. Because the manageInent programs are ot}en ex- 
perimental, useful historical data on specific areas are 
available. Topographically, the region varies from flat to 
gently rolling, with a maximum elevation change of less 
than 135 m. Due to the region's glacial histoD ~, soil 
drainage classes within a small area may vary widely, 
from excessively drained to very poorly drained. Nearly 
450 ha of the central NEF consists of bogs and other 
wetlands. Consequently, a patchwork of forest connnuni- 
ties has developed, supporting exceptional local species 
diversity. Generally, the soils throughout the forest are 
glacial tills, acid in reaction, with low fertility and high 

organic composition. The climate is mostly cold, humid, 
and continental with lnean annual precipitation of about 
900 mm and a snow pack accumulation of np to 2 m 
from December through March. This site was the focus 
of a NASA Multi-sensor Aircraft Campaign (MAC) for 
the Forest Ecosystem Dynamics project at GSFC (e.g., 
Goward etal.,  1994) and was a backup Supersite tbr the 
recent SIIl-C/XSAIl missions. 

Attributes of several forest stands within the study 
area were sampled during 1992 and 1994. Candidate 
sites were identified from aerial photography and SAIl 
imagery and located by distance and bearing from obx4- 
ous landmarks. The sites were visited by field teams who 
identified tree species and measured the diameter breast 
height (dbh) for all trees within three to five 4-m-radius 
fixed-area plots. Because of the variability of soil ,types 
across the study area, forest stands of homogeneous 
cover (i.e., species composition, height and density) are 
relatively small. Average coefficient of variation (Stan- 
dard deviation/mean-100%) among sample plot biomass 
measurements was about 40%, which indicates that the 
forest stands have much variability. These data are de- 
scribed in more detail in Ilanson and Sun (1996). Bio- 
mass was calculated from dbh measurements using 
weight tables tbr Central Maine forests published hy 
Young et al. (1980). Figure 3a presents a histogram of 
species weighted by biomass density. Figure 3b shows 
the (tistribntion of measured stands in terms of the per- 
cent composition deciduous (broad leaf) and coniferous 
(needle leaf) species. These data show that over 60% of 
the biomass in the study areas is attributed to conifer 
species with hemlock aeconnting for nearly half of that 
total (Fig. 3a). The data presented in Figure 3h show 
that conifer species were dominant in about 65% of the 
stands with about 22% in roughly even mixtures and only 
13% doufinated by deciduous species. Of the seven 

Fif~ure 3. Forest composition of the NEF: a) histogram of species recorded for sample plots; b) distribution o f  measured 
stands as percent needle leaf (eonifer) and broadleaf (deciduous). Speeies codes are: PIRE--red spruce, TSCA--eastern hem- 
loek, THOC--northern white eedar, PlSP--white pine+red pine+jack pine, ABBA--balsam fir, ACt/U--red lnaple, POSP-- 
aspen, BESP--birch, FAGR--Ameriean beech, MISCIgreen ash+alder+,~411ow. 
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stands in the deciduous category three were regenerating 
clear cuts with very low biomass, leaving four stands with 
biomass ranging from about 4 k g / m  2 to 21 kg /m 2. For 
this reason this work does not consider differences in 
forest stnmture in the development of the biomass algo- 
rithm discussed below. 

The JPL airborne synthetic aperture radar (AIR- 
SAR) was flown aboard the NASA Ames DC-8 on 9 June 
1991 with P-, L-, and C-band frequencies and polariza- 
tions of HH, VV, HV, and VH. Radar data was collected 
for three image center incidence angles (25 ° , 35 ° , 45 ° ) 
while looking north over the Northern Experimental 
Forest test area. By flying a "race track" trajectory, two 
southerly looking views were also obtained (35 ° and 50 ° 
incidence). Preceding the overflights, field personnel po- 
sitioned five trihedral corner reflectors inside the study 
site for SAR image calibration. An image with center in- 
cidence angle of 35 ° looking toward the north (actual 
flight heading was 72 ° ) is used for this study. 

The data was received from JPL in compressed 
Stokes matrix format with 4 looks and a resulting ground 
range resolution of 19..2 m. The data was calibrated using 
routine procedures outlined in POLCAL (van Zyl et al., 
1990), using the corner reflectors. The radar incidence 
angles varied from 34.8 ° to 45.7 ° across the portion of 
the image occupied by the stands. The image data was 
displayed to determine the locations of each measured 
stand. A 5×5 block of pixels for each radar channel was 
extracted from the center of the stands using Image Pro- 
cessing Workbench routines (Frew, 1990). The relatively 
small number of pixels was used to ensure that the signa- 
tures were extracted from within the measured forest 
stands. The average baekscatter from a site was used later 
for calibration and field checking of the model results. 

FOREST MODELING 

Mathematical models that sinmlate forest dynamics have 
gained widespread acceptance and use over the past 2 
decades. The most suecessful models (in terms of gen- 
eral applicability to diverse forest types) are individual 
tree-based models called gap models (Shugart et al., 
1992; Botkin, 1993). For example, these models have 
been used to simulate tropical rain forest (Doyle, 1981) 
to boreal forest (Bonan et al., 1990) dynamics and the 
effects of different disturbance regimes, for example, fire 
(Shugart et al., 1980), flooding (Pearlstein et al., 1985), 
and hurricane (Doyle, 1981) as well as the effects of past 
(Bonan and Hayden, 1990) and potential (Pastor and 
Post, 1988) climate change on forest structure and com- 
position. Although this class of models has been used to 
predict ehanges in growth rates associated with changes in 
abiotic t~actors, this ability is largely untested (Hineldey et 
al., 1994). The strength of these models lies in their versa- 
tility to predict qualitative successional patterns related to 
species composition and forest structure. 

Although these models differ to a certain degree de- 
pending on the denizen species, the ambient environ- 
ment, and the objectives of the study, they all possess 
certain similar key features. The majority of gap models 
simulate the dynamics of a forest by computing the birth, 
growth, and death of individual trees in response to envi- 
ronmental conditions found on a plot with roughly the 
projected area of a dominant crown (i.e,, 0.01-0.1 ha) or 
gap which forms when such a tree dies. Growth of indi- 
viduals is deterministic based on species-specific time- 
tions that relate potential diameter increment to current 
size. This potential increment is reduced according to 
the constraints of the site conditions (e.g., temperature, 
available light, soil moisture, and soil fertility), which, in 
some cases (e.g., available light) are dependent on the 
structure of the trees inhabiting the plot. Birth and mor- 
tality, however, are stochastic. Relative sapling establish- 
ment probabilities for each species are constrained by 
the ambient conditions (e.g., available soil moisture and 
light reaching the ground). Likelihood of mortality is de- 
termined from the maximum expected longevity of each 
species and is increased for individuals failing to achieve 
minimal growth (e.g., those suppressed by shading). The 
dynamics of a forest stand are determined as the summa- 
tion of the dynamics of the individual trees. Thus, these 
models permit the simultaneous consideration of individ- 
ual- and population-level phenomena. This approach 
'allows inclusion of information collected at the individual 
tree level (e.g., physiologic proeesses, species silvics, and 
specific attributes of particular trees at different ages and 
sizes) to enable stand level predictions. Results detailing 
populations of simulated individuals can then be used di- 
rectly to represent intrinsic variation within and among 
forest stands. In addition, these data can be aggregated 
into stand attributes such as tree density or biomass den- 
sity. This elass of forest models is well established as suit- 
able for reproducing forest community dynamics to use 
in other applications, most commonly models of nutrient 
cycling. Their primary limitations are in representation 
of controlling mechanisms underlying this behavior (see 
Pacala et al., 1996). In this article the forest model is 
used as a structural simulator for a range of ages and 
soil conditions. 

Forest Model Implementation 
The forest model ZELIG (Urban, 1990), adapted as de- 
scribed in Levine et al. (1993), was used to simulate the 
successional dynamics of the southern boreal/northern 
hardwood forest transition zone found at the NEF. Be- 
cause soil moisture is considered to be of primary impor- 
tance in determining the structure (e.g., biomass and 
species composition) of the forests (Bonan and Shugart, 
1989), waterlogging effects [adapted from Botkin (1993)] 
were included. This required connecting the ZELIG 
model to a soil physics model that simulates depth to sat- 
urated soils (see Weishampel et al., 1996). 
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Figure 4. Results of fbrest model simulations of average biomass for l0 difti~rent soils over a time 
period of 250 years. 

To implement the model, site parameters (e.g., soil 
fertility and monthly values of temperature and precipi- 
tation) and autecological parameters (e.g., height and di- 
ameter m;Lxilna and growth tolerances) were derived 
from empirical data and published sources (e.g., Pastor 
and Post, 1985; Botkin, 1993). Forest succession on ten 
soil types (see Table 3) found at tile NEF were simu- 
lated starting from bare ground. Depth to water satu- 
rated soil and water holding capacity of the soil were de- 
rived using a soils process model (Levine et al., 1995). 
The spatial scale of the ZELIG simulations were per- 
formed at a resolution (30x30 m) to correspond to the 
scale of typical remotely sensed data. To do this, model- 
generated structural attributes [e.g., diameter at breast 
height (dbh), height, height to base of crown, and toliage 
density] were recorded for each individual tree in nine 
(10 m × 10 m) ZELIG plots. Model results were recorded 
at 5-year intervals up to 100 years and at 50-year inter- 
vals over 250 years. Because gap models possess underly- 
ing stochastici~ in their regeneration, mortality, and 
weather routines, 15 separate runs were performed to 
generate a range of stand responses. Figure 4 shows the 
average biomass trajectories simulated fbr 15 30 m×30 m 
(900 m :~) stands growing on the 10 NEF soil b])es over 
the 250-year simulation. The range of biomass simula- 
tions ilhlstrate tile importance of" considering soil t}1pes in 
our study area. Generally, better drained or mesic soils 
produced higher biomass values whereas poorly drained 

and wet soils produced lower biomass values (see Table 
3). Because of the stochastic timing of tree birth and 
death, replicate simulation can exhibit considerable varia- 
tion about these averages. The simulated biomass trends 
and the under l ing  patterns of dominance by needle leaf 
(conifer) and broadleaf (deciduous) species were consis- 
tent with field measurements reported by Ranson and 
Sun (1994) and Levine et al. (1994). A total of 3450 sim- 
ulations were rerecorded for use with the radar model 
(10 soil types × 15 replications×23 time steps). The silnu- 
lation results were used to provide input information to 
a radar backscatter model as discussed below. 

B A C K S C A T T E R  M O D E L I N G  

A discontinuous radar backscatter model described by 
Sun et al. (1991) was used in this study. In a discontinu- 
()us forest stand, a radar beam can interact with fbrest 
stands in three ways: 1) intersecting at least one tree 
crown; 2) intersecting no trees--that is, incident directly 
on the ground surface through gaps between trees and 
producing a direct surface backscattering; and ;3) encoun- 
tering a tree trunk and giving a strong fi)rward scattering 
involving trnnk-ground interaction, especially if tile sur- 
face is relatively smooth and wet. Tree crowns were 
modeled as ellipsoids consisting of a mixture of leaves 
and branches with various sizes and orientations. Trees 
were assumed to be randomly positioned in a stand with 
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the distribution of tree size assumed to be log-normal. 
Inspection of ZELIG model simulations showed that dis- 
tributions of simulated heights approximated log-normal, 
especially for stands 30-100 years in age. With these as- 
sumptions, a simpler formula can be used to estimate the 
probabilities of a radar beam passing through gaps or in- 
tersecting with the tree crowns (Sun et al., 1991). Radar 
backseattering and attenuation resulting from interac- 
tions within the forest canopy were dependent on these 
probabilities. These components are considered to have 
independent phases so that the Stokes matrices of these 

components may be added together to obtain the Stokes 
matrix of total baekscattering of the forest stand. 

Baekseatter Model Implementation 
The radar backscatter model was parameterized with the 
stand structural attributes generated from the forest suc- 
cession model discussed above. Forest model output pa- 
rameters include species, dbh, total height, and trunk 
height for every tree growing on a simulated plot. The 
backscatter model requires dbh, trunk height, total tree 
height, crown half-width and half-height, and branch and 

Table 1. M e a s u r e d  F o r e s t  P a r a m e t e r s  U s e d  by Baeksea t t e r  Mode l  for Broad  
L e a f e d  and  N e e d l e  L e a f e d  T r e e s  

Parameter Broadleaf Needle Leaf 

C r o w f l  a 

Half-width r=0.09592*h r=0.15607.h 
Half-height b=0.22517*h b=0.27813*h 

Branch I' 

Orientation 
Angles Angle (deg) Probability Angle (deg) Probability 

0-10 0.01 0-10 0.015 
10-20 0.01 10-20 0.02 
2 0 4 0  0.08 20-30 0.015 
30-40 0.23 30-40 0.03 
40-50 0.30 40-50 0.14 
50-60 0.19 50-60 0.25 
60-70 O.ll 60 70 0.22 
70-80 0.06 70-80 0.14 
80 90 0.01 80-90 0.17 

Branch Size': Diameter Length Diameter Length 
Distribution (cm) (cm) Probability (cm) (cm) Probability 

0.5 7.5 0.68 
1.5 22.5 0.15 
3.5 52.5 0.10 
6.0 90.0 0.05 
9.0 135.0 0.02 

Number  of branches (m a) 20 

Leaf 

0.2 15 0.86684 
0.4 30 0.10312 
0.6 40 0.01605 
0.8 75 0.00619 
1.1 90 0.00481 
2.4 165 0.00154 
3.0 260 0.00119 
3.5 350 0.00025 

105 

Width (cm) 6.4 0.08 
Length (tin) 6.4 0.8 
Thickness (era) 0.1 0.8 
Density, leaves (m 3) 400 196,000 
Orientation Planophile (assumed) Planophile J 

" Crown shapes are ellipsoidal. Equations for r and b from Strahler (1995). h - c a n o p y  height 
fi'om forest model. 

t, Branch orientation angles for broadleaf and needle leaf canopies derived from Hall et al. 
(1992). 

" Branch size distribution from Hall et al. (1992). The ratio of length to diameter was assmned 
to be 15 tbr all branches. Needle leaf branch size distribution from Chauhan et al. (1991). 

a Leaf angle from normal to leaf surfhce from Kimes and Smith (199]). 
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Table 2. Real and hnaginary Dialectic Constants for Tree Componeots for 
Baekscatter Modeling 

Bmadleaf Needle Leaf 

Folia~e Wood Foliac~e Wood 

(:-band 19.2, 6.61 11.68, 4.(t3 17.62, 6.08 13.64, 4.72 
L-band 23.23, 7.68 14.67~ 5.07 21.45, 7.16 16.96, 5.81 
P-band 26.49, 1;3. i I 17.37. 7.95 24.61, 12.06 19.88, 9.32 

[bliage parameters (i.e., size and orientation distributions 
of" leaves and branches). 

Diameter  breast height (dbh) from the forest model 
was used directly by the radar model. Although total tree 
height and trunk height were available from the [()rest 
model, they were calculated within the radar model from 
dbh and allometrie relationships developed from field 
measurements.  Crown h a l f  width and half-height were 
calculated as at t]mction of  calculated tree height and 
species bq?e provided from the forest model (Table 1). 
Branch and fbfiage parameters were determined and as- 
signed based on forest model species type (i.e., broadleaf 
and needle leaf) from data reported by Chauhan et al. 
119911 for hemlock (needle leaf) and Hall et al. 119921 
fin" aspen (broadleaf). Needle orientation distributions 
used were based on the work of  Kimes and Smith 11991) 
tbr hemlock and closely fbllowed a planoptfile (mostly 
borizontal leaves). The distribution of  broadleaf angles 
was assumed to be planophile. 

Surface baekscattering was calculated by use of  the 
IEM model (Fung and Pan, 19871 and the surface 
roughness was specified by an RMS height of  1 crn and 
a Gaussian correlation function with correlation length of  
6 era. Dif~brent surfhce soil moisture contents and di- 
electric constants were estimated for 10 representative 
soil types found in the study area based on published soil 
characteristics (USDA, 1990; Le~dne et al., 1994) and 
fiekl measurements.  The dielectric constants at C- and 
L-bands were calculated from soil texture and moisture 
using equations given by Hallikainen et al. 119851. Table 
3 gives the dielectric constants used fbr the 10 soil tyq?es. 

Since the empirical models of  Hallikainen et al. do not 
cover the frequency at P-band, the dielectric constants 
fbr P-band listed in Table 3 were assumed based on 
those at C- and L-bands. 

The backseatter model also requires dielectric con- 
stants for wood, foliage, and the ground surface. Dielec- 
tric constants of" woody and foliage components  listed in 
Table 2 were calculated from air temperature, dry mate- 
rial density (Wenger, 1983), and measured w)hlmetric 
moisture contents using the dual-dispersion model de- 
scribed by Ulaby and E1-Rayes 119871. The moisture 
contents tor tree components were assumed not to vm). 
as a fimction of  soil bqpe. 

All radar model simulations were run with an inci- 
dence angle of  40 °. This angle was chosen because it is 
in the middle of  the range of  image incidence angles 
(34.8 ° to 45.6) for the measured ~brest stands. Baekscat- 
tering coefficients of  t tH,  HV, and \.~.' polarizations at 
P-, L- and C-bands were simulated tbr the :3450 stands. 
Since the discontinuous model used in this study is a 
first-order solution of  the radiative transfer e(tuation, the 
cross-polarization returns tend to be underestimated, es- 
pecially at shorter wavelengths (Karam et al., 19941. The 
eopolarized radar channels also produce higher baekscat- 
ter levels and can be more accurately calibrated, so that 
only copolarized data were used in this study. The use 
of  eopolarized backscatter is a limitation in the applica- 
bility of' this procedure since it is well known that cross- 
polarized baekseatter is more sensitive to forest biomass 
(e.g., Dobson et al., 1992; LeToan, 1992; Ranson and 
Sun, 1994). However, the put]lose here is to demon- 

Table 3. Soil Moisture, Soil Texture, and Dielectric Constants (Real, 
hnaginaLy) Used in the Forest and Backscatter Modeling 

Series" 

Texture Dielectric Constants Real, hnaginamj 

% Water % Clay % Sand C-Band L-Band P-Band 

Adams 9.6 6.3 66.6 5.34, 0.65 6.02, 
Bootld)ay 28.1 20.0 16,6 13.53, 2.85 13.72, 
Cohmel 24.2 3.0 56.1 13.56, 2.70 14.60, 
Croghan 6.7 1.4 78.8 4.26, 0.40 4.97, 
Dixficld 17.0 2.N 59 9.14. 1.54 9.92, 
Kinsman 10.6 1.9 SILl 5.S7, 0.77 7.65, 
Marlow 19.70 3.7 48.2 10.50, 1.86 10.95, 
Peacham 21.8 5.1 51.5 11.72, 2.22 12.44, 
Scantic 39.4 33.2 12.5 20.28, 5.27 22.77, 
\,Vestbuly 15.3 4.4 59.8 8.15, 1.31 8.9(1. 

0,911 6,60. 1.211 
3,8l 14,20 3.60 
2.14 15.81/. 2.50 
/).68 5.50. 0.8/I 
1.53 10.50. 1.80 
0.98 8.00. 1.50 
1.82 ll.5(I. 1.7(I 
1.98 12.80. 1.6/) 
5.61 24,00 6.20 
1.39 9,20 1.42 
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Figure 5. Simulated PHH (a) and CHH (b) backscattering versus total dry above-ground biomass for 3450 modeled forest 
stands (dots). Triangles represent measured SAR baekscatter and above-ground dry woody biomass for 46 measured stands. 

strate the feasibility of using forest growth models with 
radar baekscatter model that can be satisfied with the use 
of copolarized backscatter. Figure 5 shows the simulated 
PHH and CHH backscattering versus total dry above- 
ground biomass. When the total biomass is low, the radar 
beam impinges the forest floor so that the return is more 
dependent on soil moisture. This effect can be seen as 
separate curves at low biomass especially at C-band (Fig. 
5b). According to the model results, drier soils will have 
lower backscatter. After total biomass exceeds about 10 
kg/m% C-band backscattering is dominated by tree 
crowns so the influence of soil moisture is reduced. At 
P-band, however, the effect of soil moisture remains visi- 
ble until total biomass reaches about 15 kg /m  2 because 
of the trunk-ground double-bounce backscattering. AIR- 
SAR signatures of 46 field-sampled stands extracted from 
an image of 9 June 1991 were also plotted with triangles 
in Figure 5. From Figure 5a it is seen the PHH SAR 
observations are 3-5 dB higher than the model results at 
lower biomass levels. It also appears tile modeled back- 
scatter is more sensitive to biomass over a greater range 
than the SAR data. Since the measured stands represent 
a wide range of ground conditions (roughness and mois- 
ture), species composition, and forest spatial structures 
the differences between simulated and SAR backscatter- 
ing show that the modeling process was not able to simu- 
late all of these conditions. However, the forest model 
runs produced stands with a greater variety of forest com- 
position and biomass than were measured. In addition, tile 
model output reduces the backseatter modeling effort to 
consider those forest attributes of species, tree size and 
combinations of biomass, leaf area, height, and density 
that are realistic for typical forests of central Maine, USA. 

A L G O R I T H M  D E V E L O P M E N T  

A l g o r i t h m  f r o m  S i m u l a t i o n s  

The first step in the algorithm development process was 
to examine the relationships of modeled backseatter to 
the modeled biomass. A stepwise analysis using the 
STEP function in the S-Plus I (MathSoft, 1993) 1 software 
package was used to provide an automated procedure for 
selecting the best linear regression model by adding and 
dropping independent variables. Six backscattering coef- 
ficients (i.e., HH and VV at P, L- and C-bands) were 
used as independent variables. Both the cube root of to- 
tal biomass and the logarithm of total biomass were ex- 
alnined as dependent variable. Tile logarithm form was 
tested since it has been found to provide good biomass 
relationships with radar data (e.g., Le Toan et al., 1992). 
The cube root of biomass was also tested since the cube 
root transformation equalized the variance and produced 
a normal distribution of the biomass data. From a physi- 
cal standpoint, woody biomass is related to woody vol- 
ume, the cube root of which represents a characteristic 
linear dimension for that volume. 

The model selected as the best of all single multi- 
channel combination was the cube root of total biomass 
with backscatter (dB) from four radar channels: 

B1/3=1.9085+0.1909 PHH-0 .6815  CHH 

+0.4516 CVV-0.0116 PVV, R2=0.95. (1) 

The reason for the form of the above model is not very 
intuitive, but Eq. (1) can be simplified by dropping the 
PVV term since the coefficient is very close to zero. 

1 Use of trade names are for information only and do not imply en- 
dorsement by the U.S. Federal Government. 
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Figure 6. a) Relationship between cube root of biomass esti- 
mated with forest model and PHIt-CHH from the backscat- 
ter model for 3450 simulated stands, b) Comparison of bio- 
mass determined from linear model shown in a) and forest 
model biomass. 

Since CHH and CVV backseatter are nearly equal lbr 
forested areas, the CVV coefficient can be subtracted 
from the CHH coefficient leaving 

B t/3 = 1.909 + 0.1909 P H H -  0.2299 CHH. 

This leaves an equation with similar eoel~cient for the 
two variables so a new regression was conducted using 
only PHH and CHH data. The resulting regression 
equation was 

B~/3=2.2296+0.1894 PHH-0 .1810  CHH, re=0.94. 

A final regression analysis was performed with a simple 
linear form of the relationship with the independent vari- 
able expressed as ( P H H - C H H ) ,  which is the logarith- 
mic form of the ratio of PHH to CHH. A new biomass 
regression equation was developed using P H H - C H H ,  
calculated from the modeled backscatter, as the indepen- 
dent variable: 

BJ/a=2.1566+0.1905 ( P H H - C H H ) ,  r2=0.93. (2) 

This simple relationship appears to be equivalent to Eq. 
(1) with only a small decrease in r 2. Figure 6a shows the 
regression relationship (solid line) between B ~/:~ and 
P H H - C H H  for the 3450 simulated stands plotted with 

the backscatter model results (dots). Note the effects of 
soil moisture observed in Figures 5a and 5h have been 
reduced by the use of the band combination. Comparing 
predictions of estimated biomass using Eq. (2) with tbr- 
est model predicted biomass produced an r 2 of 0.85 and 
residual standard error of 2.60 kg/m 2. 

Algorithm from SAIl Data And Field 
Biomass Measurements 
A stepwise analysis was also pertbrmed with the mea- 
sured biolnass and AIlqSAlq backscatter data from 46 
stands anti again the P H H / C H H  combination was found 
to be the best, keeping in mind that only copolarization 
data was considered. The resulting equation was 

B ~/:3='2.581+0.315oPHH-0.249 CHH, Re=0.71. (3) 

Analyzing the measured biomass and colnbined backseat- 
ter data (P t tH-CHH)  ~elded a relationship similar to 
Eq. (2): 

B~"3=2.] 17+0.324o(PHH-CHH),  re=0.74. (4) 

Figure 7a is a plot of the field measured biomass and 
PHH-CHH baekscatter obtained from AIRSAR. Figure 
7b is the biomass estimated from the AIRSAR data and 
Eq. (4) and indicates that biomass is being overestimated 
for low levels, but underestimated for higher levels using 
Eq. (4). Comparing Figures 6a and 7a, it can be seen 
that the intercept terms are similar, but the slope of the 
equation derived from modeling results [Eq. (2)] is 
lower. Modeled backscatter values also have a greater 
range than AIRSAR baekseatter. For both cases there is 
much variation from the best-fit line, which is a product 
of the wide variety" of measured and modeled forest con- 
ditions. 

It is apparent from Figures 5 and 6 that the back- 
scatter model does not adequately simulate the backseat- 
ter in all cases. For example, the AIRSAR data were up 
to 5 dB higher for biomass less than 10 kg /m 2, but actu- 
ally fell below the simulated values at higher biomass lev- 
els. CHH simulations, on the other hand, fit the mea- 
sured AIRSAlq data much better. Examining Figures 6 
and 7, it appears that the baekscatter model produces 
PHH baekscatter with a greater range than that observed 
in the AIRSAR data for forest stands. The result will be 
a greater range in PHH-CHH and the smaller slope ob- 
served in Eq. (2). We believe this is the result of the 
ground surt:aee characteristics used fi)r the modeling not 
adequately characterizing the wide variety of surface 
roughness conditions found in the study area. Additional 
variation may be due to radar parameters not accounted 
tbr in the model. Thus, it was decided to attempt a cali- 
bration of the modeled baekseatter to produce a better 
fit with the AIRSAR measurements. 

Algorithm from Calibrated Model Results 
We assumed that the systematic errors due to effects of 
radar parameters or scene conditions not accounted for 
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in the modeling could be corrected by using AIRSAR 
backscatter from measured stands with similar attributes 
to modeled stands. The modeling data set was examined, 
and 19 stands were identifed that were similar to field- 
sampled stands in terms of stem density, total biomass, 
and conifer/deciduous composition (Table 4). The back- 
scattering coefficients from the AIRSAR image were ex- 
tracted and compared with the modeled backscatter. The 
simulated PHH and CHH backscattering coefficients 
were calibrated with tile regression equations for PHH 
and CHH data, and a new algorithm was developed: 

B m = 2 . 0 5 0 5  + 0 . 2 6 2 7 ° ( P H H - C H H ) ,  r 2 = 0 . 8 3 .  (5)  

The intercept of Eq. (5) is very close to the that derived 
from the field data [see Eq. (4)]. There was also some 
improvement in the slope from that observed in Eq. (2), 
which brings the range of the modeled backscatter into 
closer agreement with the measurements. 

A L G O R I T H M  V A L I D A T I O N  A N D  
B I O M A S S  M A P P I N G  

One objective of this research was to determine if radar 
backscatter and forest ecosystem modeling could be used 
to provide insight into what relationship to use for esti- 

Table 4. S u m m a r y  o f  M e a s u r e d  a n d  M o d e l e d  S tand  P a r a m e t e r s  for  S tands  
U s e d  T o  Cal ibra te  M o d e l e d  Backsca t t e r  D a t a  

Density 
(trees / ha) Biomass (kg / m 2) % Needle Leaf 

Site Field Model Field Model Field Model 

2 663 2244 0.23 0,26 93.4 49.5 
8 7148 5678 4.63 4,68 71.3 84.8 

11 1916 4344 0.88 0.88 89.7 77.9 
12 884 4589 0.77 0,77 100.0 70.4 
13 1989 4300 1.08 1,07 96.9 77.9 
15 2506 4500 5.89 5.84 85.8 94.0 
21 2210 4144 7.42 7.45 97.0 93.1 
24 2727 2411 20.79 20.57 37.9 35.6 
25 3831 3322 15.25 14.22 91.2 85.2 
28 3684 3344 12.95 12.91 60.5 54.3 
31 3021 7622 8.63 8.63 17.3 25.3 
32 2431 2333 18.84 18.89 83.1 80.0 
33 4127 35 l l  18.63 18.43 58.6 58.3 
36 2431 2100 16.99 17.0 47.3 44.6 
40 1548 1433 28.77 27.51 53.2 50.6 
43 2358 5322 10.80 10.83 47.7 35.6 
44 5231 4556 14.21 14.23 86.3 56.0 
55 3389 3333 8.25 8.23 79.1 97.1 
58 2800 2500 12.82 12.94 79.6 80.3 
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Fiy, ure 9. Biomass predicted using calibrated model baekseat- 
ter [Eq. (5)] plotted with biomass ot)served from field mea- 
surelnents ,  

mating forest biomass from radar backscatter. This was 
accomplished above by demonstrating similar results in 
model selection using both modeling and measurements. 
The calibration of the model backscatter using a few 
stands provides the opportunity to go a step farther and 
investigate if the model generated relationship can be 
successfully applied to actual radar imagery. To do this 
an image of the Howland study area was produced from 
the PHH and CHH AIRSAR data. This image data was 
analyzed in an earlier article by Ranson and Sun (1994), 
which determined that the best band combination for es- 
timating biomass in the study area was the combination 
of PHV and CVH [i.e., PHV-CHV (dB)]. Therefore, we 
use the results of this earlier work as the basis fbr evalu- 
ating the algorithms described above. 

The equation reported by Ranson and Sun (1994) 
was used to estimate biomass from the PHV-CHV AIB- 
SAIl image. Briefly, average biomass was determined 
from a 5×5  array of mapped biomass pixels /br each of 
the 49 measurement locations. The averaged values were 
compared with the measured biolnass by determin- 

ing the best-fit line through the paired observations. Fig- 
ure 8 compares the biomass fi'om the AIRSAR image 
and field measured biomass data. The resulting equation 
was  

Biomass{~,,~,~,.~ = 3.633 + 0.630 Biomassiti,.id,, r2=0.76. 
(6) 

The nse of PHV-CHV was reported by Ranson and Sun 
to have better sensitivity than an), other single band or 
combination of bands used in their study. Examination 
of the predicted vs. observed data using AIRSAR PHH- 
CHH data and Eq. (4) reveals an apparent lack of sensi- 
tMty to biomass greater than about 15 kg/m ~ (Fig. 7b) 
and an overall uuderestimation of the biomass in the 
study area. 

Figure 9 illustrates the relationship between the bio- 
mass predicted using the calibrated model backscatter 
[Eq. (5)J and measured biomass (dashed line). The ap- 
parent saturation for biomass above about 15 kg/m 2 is 
present in this figure as well. Froill Table 5 it can he 
seen that the results for all the model and data analyses 

Table 5, Comparison of  Model  Peribrmanee with Observed Biomass f rom 
Field Measurements and Predicted Biomass Extracted from Biomass Image" 

Biomass Range: 0~37 kg / m 2 

R M S E  
Model Source bo bl r ~ (kg / m  e) 

Modeled biomass 
modeled PHH-CHtt  
(unealibrated) Eq. (2) 6.603 0.374 0.526 6.523 

Modeled biomass 
modeled PHH-CHH 
(calibrated) Eq. (5) 5.052 0.447 0.5'26 6.567 

Field biomass 
AIRSAR PHH-CHH Eq. (4) 5.543 0.447 0.517 6.233 

Field biomass Ranson and Sun 
AIRSAB Pt IV-CttV (1994) 2.098 0.738 0.741 5.077 

"Y predicted=b0+b~oX observed. 
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Table 6. Same as Table 5 Except Limited Range of Biomass Was Used 

Biomass Bange: 0-15 kg / m 2 

RMSE 
Model Source bo bl r ~ (kg / m 2) 

Modeled biomass 
modeled PHH-CHH 
(uncalibrated) Eq. (2) 3.734 0 .944 0.725 4.236 

Modeled biomass 
modeled PHH-CHH 
(calibrated) Eq. (5) 1.733 1.107 0.736 3.681 

Field biomass 
AIRSAR PHH-CHH Eq. (4) 1.999 1.180 0.735 4.313 

Field biomass Ranson and Sun 
AIRSAR PHV-CHV (1994) 1.394 0 .757 0.650 3.055 

are similar with the uncalibrated model results being the 
worst and the measurement-based PHV-CHV being the 
best (i.e., slope and intercept terms are closer to 0.0 and 
1.0, respectively and the root mean square error is min- 
imized). 

The insensitivity to biomass above a certain value 
has been reported by several researchers. Depending on 
the type of SAR data used and the type forest studied, 
the upper value of biomass sensitivity reported has 
ranged from 10 kg /m  2 to 25 k g / m  e (e.g., LeToan et al., 
1992; Dobson et al., 1995). Based on the results pre- 
sented in Figures 8 and 9 and Table 5, we limited the 
data to less than 15 k g / m  e and reanalyzed the data. This 
improved the results as shown in Table 6. The slopes of 
the predicted versus measured regression lines are closer 
to 1,0, indicating a removal of the bias towards underes- 
timating biomass seen in Table 5. Intercepts are still 
high, indicating the lower limit of biomass detection may 
be around 2-3 k g / m  2 for this analysis. RMSE also were 
reduced to less than 4.3 k g / m  2. Note that the results of 
applying the algorithm developed from the models and 
using calibrated data [Eq. (5)] is slightly better than us- 
ing the AIRSAR P H H - C H H  and field measurements 
derived algorithm [Eq. (4)]. 

Given the improved results in Table 6 a biomass im- 
age was prepared by classifying the AIRSAR image into 
four biomass levels: 0-5 k g / m  e, 5-10 kg /m  2, 0-15 kg/  
m ~-, and greater than 15 k g / m  e. Figure 10a presents the 
total power composite image produced from the AIR- 
SAR data. Roads, water, and clearing are obvious in the 
image as dark areas. Forest areas appear orange and yel- 
low as a result of more scattering in P- and L-bands. 
There is an obvious incidence angle effect from top 
(larger incidence angle) to bottom (small incidence 
angle). Figure 10b is the biomas image produced from 
the AIRSAR data using Eq. (5) for the same area. The 
dark brown areas in the biomass image (Fig. 10b) corre- 
spond to areas devoid of vegetation such as roads and 
rivers and recently cleared forest. These latter areas are 
found mostly in the center and on the right side of the 

image. Low (green) levels of biomass can be found in 
clear cuts with substantial regrowth such as the large 
area in the upper left of the image. Moderate (yellow) 
and high (red) biomass densities are found in areas of 
heavier forest cover. The areas in Figure 10b with esti- 
mated biomass in the four categories were found to be: 
0-5 kg/m2=9.7%, 5-10 kg/m2=25.2%, 10-15 kg/  
m2=40.8%, and 15 >kg/m2=24.3%.  Of the 102,459 
pixels coded as the highest biomass category, 89,658 pix- 
els or nearly 88% were mapped between 15 k g / m  2 and 
20 k g / m  2 biomass. This suggests that the biomass map 
may be a reasonable result for the biomass distribution 
in the study area with 95% of the area mapped to 20 
kg / m 2 or less. 

The combined modeling approach can be used to in- 
fer average rates of change as well as inventory biomass. 
The forest succession model shows different rates of bio- 
mass accumulation at different stages of stand develop- 
ment (viz., the slopes of the biomass trajectories in Fig. 
4). Pooling simulations for the different soil types and 
stratifying by biomass, we estimated average annual rates 
of biomass accumulation for categories of biomass (see 
Table 7). Biomass accumulation rates for the lowest bio- 
mass category were determined for two levels: 0-1 kg/  
m 2 to represent recently disturbed stands and 1-5 kg/  
m 2 to represent established young stands. The highest 
rates of biomass increase (0.37 kg/m2/yr)  were seen in 
these younger stands. Well-established stands of moder- 
ate (5-10 k g /m  2) biomass accumulated biomass at a 
slower rate (0.17 kg/m2/yr) .  The highest biomass stands 
(> 10 k g /m  2) were predicted to have very slow growth 
at only 0.02 k g /m  2 /yr. The results summarized in Table 
7 indicate that the majority (65%) of the imaged study 
area is in relatively slowly growing, high biomass forest 
stands. This type of information is useful for understand- 
ing both current productivity levels and future trends of 
the forest's development. Note, however, that the lowest 
biomass categories could not be resolved separately and 
combine to form 9.7% of the forest area. Of this 9.7%, 
a small fraction is in nonforest such as roads, water, and 
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Figure 10. (a) Total power composite AIRSAR image for the NEF study site (P-band=red, L-band=green, C- 
band=blue). (b) Biomass image generated from model derived algorithm (Eq. 5). (0-5 kg/m2=dark brown, 5-10 
kg/me=green, i~1,5 kg/me=yellow and > 15 kg/me=red). Images represent an area on the ground of about 11 
kin by 6 kin. North is at top. 

bare soil. While not a major source of error in our study 
site, an additional step of classifying the area into fbrest 
and nonforest categories would improve the results. The 
results will also be improved by the addition of species 

specific (i.e., broadleaf~ needle leaf) growth rates and in- 
clusion of other stand attributes such as leaf area index 
(e.g., l'lanson et al., 1995b). These ideas x~dll be ad- 
dressed in future articles. 
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Table 7. Simulated Biomass Increment (kg m --~ y i) for 
Conifer Stands at the Northern Experimental Forest 
Classified into Biomass Categories 

Biomass Low Medium High 
(kg / m 2) (0-1, 1-5) (5-10) (> 10) 

Biomass increment 
(kg m -~ y ~) 0.17, 0.37 0.17 0.02 

Percent of study area 9.7 25.2 65.1 

SUMMARY A N D  CO NCLUSIO NS 

This article has described a procedure to use a forest 
growth model, simulations of a northern forest in Maine, 
USA, to provide input parameters for a radar backscatter 
model. The results of the two models were used to de- 
velop a relationship between above ground biomass and 
radar baekseatter. The model-derived relationship was 
found to underestimate biomass in an AIRSAR image 
and required calibration based on limited ground mea- 
surements. The combined modeling approach produced 
results consistent with those obtained from AIRSAR data 
and ground measurements when applied to image data 
and limited to biomass levels of 15 k g / m  2 or less. 

The RMS errors of  around 3.7 k g / m  -~ are relatively 
high for biomass assessment purposes, but may be im- 
proved as the forest and backseatter models are im- 
proved. For example, the forest model uses the same 
functions for growth-dependent tree mortality aeross 'all 
species, which may not be appropriate for New England 
forests (Pacala et al., 1996). It also uses a single function 
to relate foliage density and bole diameter for ,all species. 
More realistie dynamics might be provided by a model 
that explicitly follows carbon budgets of individual trees 
(Friend et al., 1996), and a model that represents speeies 
differences in leaf area per  sapwood area (Knox and 
Friend, 1996). 

Other errors may have resulted from the use of a 
single incidence angle for the baekscatter simulations. 
However, for dense canopies, P H H  and C H H  do not 
vary appreciably over the range of angles in the portion 
of the AIRSAR image used. There would be more varia- 
tion for low bioomass stands where there is greater sur- 
t~ace scattering. This effect is more important for aircraft 
SARs with a range of incidence angles across the image. 
The current radar model also does not simulate cross- 
polarized baekscatter very well because of the lack of 
treatment of multiple scattering. This is an important 
limitation and will be addressed in future work. 
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