
Generalized Linear Mixed Models (GLMMs)

With GLMs, you can handle data distributions that are not Gaussian (normal). With GLMMs you
can also include random effects – factors you should account for, but that are not the planned-a-
priori, designed, and controlled players in your hypotheses. Last class we played with mixed-
effect ANOVAs, with categorical treatments (the fixed effects of interest). Here we continue to 
mess about with GLMMs, but we stop worrying about distinctions of quantitative and categorical
predictors because this is a subtle distinction when all output is regression-style. And we address 
distributions.

We work here with the professor rating data set again – you already did multiple regressions with
these data. Today we add in the focus on random effects and distributions.

1. Load and attach the professor grading data set. The data set is at:
http://www.openintro.org/stat/data/evals.RData

2. We pick up about where we left off last time. The hypothesis was that gender, age, 
ethnicity, seniority, and "beauty" affect student evaluations of teachers. Thus a simple 
model would be:

lin.model <- lm(score ~ age + bty_avg + rank + gender + language)
summary(best.std.model)

Notice that quantitative covariates (age, bty_avg) were listed before categorical factors, as we 
should list them in lm. 

All these variables represent the teachers and are the planned, hypothesis-related factors of 
interest. These are the fixed effects - controlled by teacher inclusion and the main intent. How 
well does this model represent the variation among teachers for score?

3. Now use the same (contents) of this model, but use glm, where you can also work with 
different underlying distribution families: gaussian, poisson, gamma. Run an AICctab to 
see which distribution is most plausible, but where that model remains the same.

4. Is the lm model the same as the glm gaussian model? Should it be?

5. Do we need to sweat other distributions, or is gaussian OK?

6. Repeat the glm gaussian model but use glmmadmb – do we get the same answer?
If for some reason you get an error like this: "invalid type (closure) for variable 'rank'", it 
is because R thinks rank is numeric. Just make a new factor like this: frank <- 
factor(rank) and use frank as a variable instead.

7. And what if you scramble the order of quantitative and categorical predictors in glm or 
glmmadmb? Does it matter anymore?

1

http://www.openintro.org/stat/data/evals.RData


Now turn your attention to other, unplanned, uncontrolled effects. For example, the study could 
not control the percent of the class that completed an evaluation (cls_perc_eval). 
[Because students show up. Sometimes. Or not. Ahem. Back to analyses...]

8. Let's add cls_perc_eval as a random factor:

glmm.gau2 <- glmmadmb(score ~ age + bty_avg + gender + frank + language, 
random = ~1|cls_perc_eval, family="gaussian")

9. What happened? A quantitative variable that may also explain patterns is a covariate. We 
list covariates in the main equation, like you did earlier. BUT! If that covariate depends 
on a category, then it also gets listed as depending on a categorical factor. Like this:

glmm.gau2 <- glmmadmb(score ~ age + bty_avg + gender + frank + language + 
cls_perc_eval, random = ~ cls_perc_eval | cls_level, family="gaussian")

Where this says we expect the percent of a class to complete the survey to depend on the level of 
the class (upper division [yr 1, 2] or lower division [yr 3, 4]). 

10. How much more plausibly does this model work? Use AICctab to find out.

Keep building a better model: For example bty-avg might also depend on whether a photo was 
color or not (pic_color; because "beauty" was judged later by others, using teacher photos). So:

glmm.gau2 <- glmmadmb(score ~ age + bty_avg + gender + frank + language + 
cls_perc_eval, random = ~ (cls_perc_eval | cls_level) + (bty_avg | pic_color),
family="gaussian")

Notice that >1 random factor must be in ( ). 

Also, you should know this: 

• A random slope like (cls_perc_eval | cls_level) says that the slope of the effect of 
cls_perc_eval on score also depends on cls_level. 

• That differs from a random intercept effect of cls_level, which would be written as (1 
| cls_level), and says only the intercept of a regression depends on cls_level.

• You might even question if a fixed effect must remain thus. For example, if the intent of 
rank and age was really to get information on seniority, would the term be (age | rank) ? 
Or maybe rank alone could be an random intercept term: (1 | rank)?

Time for you to explore: As incentive, the person who obtains the model to predict teachers' 
scores with the lowest AICc wins 2% extra credit on the final!
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