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For this demo you will need the following files: mantis.R, mantis_negbinom.R, mantis_Poisson.R, and 
mantis.txt as well as the JAGS software and the MASS and rjags packages. 
 

 

How to deal with count data? 
Pollinator deception 

       
Figure 1. Orchid Mantis and the orchid it mimics 

 
Many models for biological data do not have constant variance or normally distributed errors, 
and generalized linear models (GLMs) can help us evaluate hypothesis for some of these data, so 
we strongly encourage you to learn more about them. A GLM is defined by three properties: the 
linear predictor, the link function and the error structure. The estimated values are obtained with 
a transformation of the values calculated with the linear predictor. The link function relates the 
values of the response variable to the linear predictor. These models allow you to specify 
different error distributions. Counts are a good example of data that should not be analyzed with 
simple linear regressions. They are recorded as integers and are bounded in their inferior limit by 
zero; they also often have many zeroes so their variance frequently increases with the mean 
(Crawley 2007). The Poisson probability distribution is very useful to describe count data as it 
estimates the probability of obtaining a count x when the mean count per unit is λ (Crawley 
2007), and it works fine when the mean is fairly equal to the variance. When the variance in 
counts is much greater than the mean (i.e. the data is over-dispersed), the data are better 
described by a negative binomial distribution (Crawley 2007). The link for both of these models 
is the logarithmic link.  
 
Orchid mantises are hypothesized to mimic orchids in order to attract pollinators to consume as 
prey. O’Hanlon et al. (2014) designed and implemented an experiment to establish whether, as 
predicted, the Malaysian orchid mantis Hymenopus coronatus were undistinguishable from the 
sympatric flowers visited by their hymenopteran prey (Figure 1). In each trial, a live mantis was 
placed on top of one stick, a live Asystasia intrusa flower was tethered to another, and a third 
stick was left bare as a control stimulus. The sticks were observed simultaneously for an hour in 
different sites and visiting insects were tallied for a total of 30 observations. Using the data 
kindly provided by the authors, we start off by calculating the average number of counts per type 
of stimulus (treatment), and plotting the corresponding histograms (Figure 2).  
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cd <- read.table("mantis.txt", header=T) 
mean(cd$total[type=="Total_Mantid"]) 
mean(cd$total[type=="Total_Flower"]) 
mean(cd$total[type=="zTotal_Control"]) 
b = seq(0,35,1) 
par( mfrow=c(1,3)) 
hist(cd$total[cd$type=="Total_Mantid"],breaks =b,xlab="visits", main="Mantis") 
abline(v=8.121212, col="red") 
hist(cd$total[cd$type=="Total_Flower"],breaks =b,xlab="visits", main="Flower") 
abline(v=6.060606, col="red") 
hist(cd$total[cd$type=="zTotal_Control"],breaks =b,xlab="visits", main="Control") 
abline(v=0.4545455, col="red") 
 

 
Figure 2. Histograms of the count data per treatment (mean number of visits in red)  

 

Notice that the data are not normally distributed around the mean, and that their spread increases 
as the mean increases. Consequently, we will evaluate three GLMs for this data. First we use 
Poisson errors, then we compensate for over-dispersion with quasi-Poisson errors, and finally we 
evaluate a GLM with negative binomial errors (Table 1; Zuur et al. 2015). 
 

(1.1) The Poisson error distribution is given by: 
 

 

 

(1.2) The link function is the log of μ:  

 

 
(1.3) The predictor function η is a function of the covariates: 
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(2.1) The Negative binomial error distribution is given by: 
 

 

 

 

 
(2.2) The link function is the log of μ:  

 

 
(2.3) The predictor function η is a function of the covariates: 

 

 
library(MASS) 
model1 <- glm(total ~ type, family = poisson, data=cd) 
summary(model1) 
model2 <- glm(total ~ type, family = quasipoisson, data=cd) 
summary(model2) 
model3 <- glm.nb(formula = total ~ type, init.theta = 0.1, link = log, data=cd) 
summary(model3) 
AIC(model1,model3) 
 
Table 1. Parameters and their standard errors for the three GLM models 
 Poisson Quasi-Poisson Negative binomial 
Coefficient Estimate Std. Error Estimate Std. Error Estimate Std. Error 
Intercept (Flower) 1.802 0.071 1.802 0.135 1.802 0.133 
Mantid (difference) 0.293 0.093 0.293 0.179 0.293 0.184 
Control (difference) -2.590 0.268 -2.590 0.512 -2.590 0.311 
Residual variance   296.44  296.44  103.44 
Residual degrees of freedom   96  96  96 
Dispersion parameter   1  3.664  2.397 
Dispersion statistic  3.664    1.292 
 
Based on the model with Poisson errors, we could conclude that visitation of mantis 
(mean=8.12) was significantly higher than that for flowers (mean=6.06). However, the fact that 
the residual variance was much larger than the residual degrees of freedom indicates over-
dispersion (a lot of unexplained variation in the response; Crawley 2007). A more precise way to 
evaluate for over-dispersion is to calculate the dispersion statistic. Do not confound the 
dispersion statistic (see below) with the dispersion parameter α (see definition of variance of 
negative binomial above; Zuur et al. 2015).  
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We found that the dispersal statistic for the Poisson model was 3.66 and the one for the negative 
binomial was 1.29. Simulations indicate that a well fitted Poisson model should have a dispersal 
statistic of 1.0. We can conclude that in this case the negative binomial model has a better fit. We 
also tried to compensate for the over-dispersion by refitting the model using quasi-Poisson rather 
than Poisson errors. This compensation increased the p-value of the differences between Flowers 
and Mantids from 0.0017 to 0.105, meaning model 2 no longer provides evidence to support a 
difference. Zuur et al. (2015; page 21) caution that the quasi-Poisson distribution only modifies 
the standard deviation of the parameters in the Poisson GLM and not the parameter estimates 
themselves, and therefore argue that quasi-Poisson is a less useful solution for over dispersion. 
Based on AIC scores (451.7 vs 554.1) the negative binomial model is more informative than the 
one with Poisson errors, and provides better evidence to support the hypothesis that insects 
cannot differentiate between flowers and mantises. Additionally, all models consistently provide 
evidence that visitation rates for the procedure control were significantly lower than the other 
two stimulus (mean=0.454). The residuals of the model with negative binomial errors had a 
tighter distribution around the mean (Figure 3). 

 
Figure 3. Histograms of the residuals for the three models  

 
The code for a Bayesian model with uninformative priors, and both Poisson and negative 
binomial error distributions, is included in the R script for your information. Results are 
commensurate, as shown by the posterior distributions of the parameters in Table 2 (next page).  
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Table 2. Parameters and their standard errors for the two GLM models under the 
uninformed Bayesian and frequentist approaches. 
 
 Poisson Negative binomial 
Coefficient  Estimate Std. Error Estimate Std. Error 
Bayesian     
Intercept (Flower) 1.80 0.071 1.81 0.133 
Mantis (difference) 0.293 0.093 0.293 0.184 
Control (difference) -2.59 0.267 -2.62 0.317 
Size - - 2.507 - 
Bayesian P 1 - 0.8348 - 
Frequentist     
Intercept (Flower) 1.80 0.071 1.80 0.133 
Mantis (difference) 0.293 0.093 0.293 0.184 
Control (difference) -2.59 0.268 -2.59 0.311 
Size - - 2.397 - 
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