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What about non-independent data? 
Reproductive output of a rare plant with random 

effects of populations (mixed models) 
 
In demography it is habitual to estimate reproductive output of individuals together with other 
vital rates for population models (Quintana-Ascencio et al. 2003). We could use Hypericum 
cumulicola data to evaluate a generalized linear model to predict the number of reproductive 
structures of individuals with different heights, assuming that individuals from the same 
population were independent from each other. However, we can also recognize that plants in the 
same population are likely to be more similar to each other (and consequently less independent) 
than those in other populations. These random effects should be considered to avoid pseudo-
replication and provide generality to our results. Here, we introduce a method to incorporate 
hierarchical random effects in our models. 
      

 
Figure 1. Studying Hypericum cumulicola in the FL scrub 

 
For this demo you will need to download and install: 
The scripts LMM.R, LMM_rand_intercept.R and LMM_rand_intercept&slope.R 
The data file Hypericum_data_94_07.txt 
The following R packages: bbmle, ggplot2, jagsUI, lattice, lme4, MuMIn, nlme and rjags 
A JAGS version that is compatible with your R (or RStudio) and jagsUI and rjags packages. 
 
As in previous occasions we start by preparing the data (excluding non-reproductive individuals 
and log transforming both variables)… 

orig_data <- read.table("hypericum_data_94_07.txt", header=T) 
dt <- subset(orig_data, !is.na(ht_init) & rp_init > 0 & year<1997)  
yr <- unique(dt$year) 
dt$lgh <- log(dt$ht_init) 
dt$lfr <- log(dt$rp_init) 
site <- unique(dt$bald) 
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We create a table to deposit the coefficients of the effects of the three models that we will 
evaluate with a frequentist approach. 

table_coef <- array(0,c(3,2)) 
colnames(table_coef) <- c("intercept","slope") 
rownames(table_coef) <- c("no mixed","random intercept","random intercept & slope") 
 

First we estimate the coefficients of the model assuming complete independence of the data 
(this appears as a blue line in Figure 2). The following equation represents the model, where k is 
each individual. 
 

𝒍𝒍𝒍(𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔)𝒌 =  𝜷𝟏 +  𝜷𝟐 ∗ 𝒍𝒍𝒍(𝒉𝒉𝒉𝒉𝒉𝒉)𝒌                𝝐~𝑵(𝟎,𝝈) 

 
m1 <- lm(lfr~lgh,data=dt) 
summary(m1) 
table_coef[1,] <- m1$coefficients 
 

The output of the general model under the assumption of complete independence should be 
familiar. This model explains approximately 66 % of the variance and shows a positive and 
statistically significant effect of log(height) on log(number of fruits). 
 
Call: 
lm(formula = lfr ~ lgh, data = dt) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-4.2555 -0.4869  0.0289  0.5258  4.8065  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -7.35037    0.17916  -41.03   <2e-16 *** 
lgh          3.23867    0.05043   64.22   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 0.8164 on 2099 degrees of freedom 
Multiple R-squared: 0.6627,     Adjusted R-squared: 0.6625  
F-statistic:  4124 on 1 and 2099 DF,  p-value: < 2.2e-16 
 

But remember that the data comes from 14 distinct populations of the plant, so next we estimate 
the population specific coefficients of the model (these appear as red lines in Figure 2). There 
are some variations for the model in each population. We could predict the log (number of fruits) 
as a linear function of the log (height) using the specific intercepts (Beta 1) and slopes (Beta 2) 
for each population, but this would significantly reduce the degrees of freedom of our analysis, 
and limit the generality of our interpretation. The following equation represents the model, where 
k is each individual and i is each population. 
 

𝒍𝒍𝒍(𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔)𝒊𝒊 =  𝜷𝟏𝒊 +  𝜷𝟐𝒊 ∗ 𝒍𝒍𝒍(𝒉𝒉𝒉𝒉𝒉𝒉) 𝒊𝒊               𝝐𝒊~𝑵(𝟎,𝝈) 

 
Beta_1 <-Beta_2 <- array(0,c(1,length(site))) 
colnames(Beta_1)=site 
colnames(Beta_2)=site 
 
plot(dt$lgh,dt$lfr,pch=16,ylab="log(fruits)", 
     xlab="log(height)",col="grey",cex=0.5,ylim=c(0,8),main="Individual populations") 
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for (j in 1:length(site)){ 

MU <- lm(lfr~lgh,subset=(bald==site[j]),data=dt) 
Mi <- summary(MU) 
x1 <- dt$lgh[dt$bald==site[j]] 
K <-  order(x1) 
lines(sort(x1),predict(MU)[K],col="red",lwd=1.1) 
Beta_1[j] <- Mi$coefficients[1,1] 
Beta_2[j] <- Mi$coefficients[2,1]} 

I <- order(dt$lgh) 
lines(sort(dt$lgh),predict(m1)[I],col="blue",lwd=3) 

 

 
Figure 2. Plot of log(height) vs log(fruits), data as points in grey, model assuming 

complete independence in blue and population specific models in red. 
 
Histograms of the deviations between the coefficients of the population specific models and the 
model with complete independence are shown in Figure 3. The coefficients are listed in Table 1, 
first the “intercept” (Beta_1) and then the “slope” (Beta_2). 
 
mB1 <- mean(rowSums(Beta_1)/14) 
mB2 <- mean(rowSums(Beta_2)/14) 
hist(mB1-Beta_1,5,main="Intercept") 
hist(mB2-Beta_2,5,main="Slope") 
 

  
Figure 3. Histograms of deviations of coefficients of models by population from those 

of the model with complete independence 
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Table 1. Coefficients per population.  
 
Pop 1 29 32 42 50 57 59 62 67 87 88 91 93 103 
Beta1 -9.84 -6.53 -11.3 -7.02 -10.8 -14.2 -7.0 -6.9 -6.7 -7.8 -9.8 -5.5 -6.7 -6.0 
Beta2 3.83 3.02 4.26 3.16 4.23 5.05 3.19 3.15 2.97 3.33 4.18 2.72 3.01 2.80 
 
 

However, if we are interested in more general inference (and better use of the data), we could 
instead estimate the variation around the intercept (or both the intercept and slope) and assume 
that they are a normally distributed random variable. For more details on these assumptions see 
Zuur et al. 2009. We use the function lme to obtain this model after converting the population 
variable (bald) into a factor. Our second model for the whole dataset assumes random intercepts 
for each population, but a common slope. We specify the random component as 
random=~1|fbald. This specification represents that our individual data was nested within 
populations but that we expect the variation among populations to be random.   

 
𝒍𝒍𝒍(𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔)𝒌 =  𝜷𝟏 +  𝜶𝟏𝒊   +  𝜷𝟐 ∗ 𝒍𝒍𝒍(𝒉𝒉𝒉𝒉𝒉𝒉)𝒌     

 
𝜶𝟏~𝑵(𝟎,𝝈𝒊) 

 
𝝐~𝑵(𝟎,𝝈) 

 
 
 
dt$fbald <- factor(dt$bald) 
M1 <- lme(lfr~lgh,random=~1|fbald,data=dt) 
summary(M1) 
table_coef[2,] <- M1$coefficients$fixed 
 

The output is presented below. It includes the model AIC and BIC. The residual variance is σ2 = 
0.782 = 0.61. The fixed effect intercept was -7.80 (SE = 0.19) and the fixed slope 3.36 (SE = 
0.05). 
 
Linear mixed-effects model fit by maximum likelihood 
 Data: dt  
       AIC      BIC    logLik 
  4976.699 4999.299 -2484.349 
 
Random effects: 
 Formula: ~1 | fbald 
        (Intercept)  Residual 
StdDev:   0.2478152 0.7821963 
 
Fixed effects: lfr ~ lgh  
                Value  Std.Error   DF   t-value p-value 
(Intercept) -7.796553 0.19250598 2086 -40.50032       0 
lgh          3.362330 0.05086058 2086  66.10875       0 
 Correlation:  
    (Intr) 
lgh -0.934 
 
Standardized Within-Group Residuals: 
        Min          Q1         Med          Q3         Max  
-5.43943318 -0.56617883  0.04190261  0.61074623  6.42325663  
 
Number of Observations: 2101 
Number of Groups: 14 
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We plot this model in Figure 4. The blue line is the model obtained with the fixed components. 
The lines in red represent the variation estimated by population as their displacement from the 
population curve. The random intercept models are curves that shift by a factor that is normally 
distributed with a given variance. If the variance is large the shift is greater. The fitted 
command takes an argument from the function lme. The level = 0 takes the fitted values for fixed 
effects, the level =1 takes those the random one (population). 
 
F0 <- fitted(M1,level=0) 
F1 <- fitted(M1,level=1) 
lgh <- sort(dt$lgh) 
plot(lgh,predict(m1)[I],lwd=1,type="l",ylab="log(fruits)",xlab="log(height)",ylim=c(0,
8),main="Random Intercept", col="black") 
points(dt$lgh,dt$lfr,pch=16,ylab="log(fruits)",xlab="log(height)",col="grey",cex=0.5,y
lim=c(0,8)) 
for (j in 1:length(site)){ 

x1 <- dt$lgh[ dt$bald==site[j]] 
y1 <- F1[dt$bald==site[j]] 
K <-  order(x1) 
lines(sort(x1),y1[K],col="red")} 

lines(lgh,F0[I],lwd=3,type="l",col="blue")

 
Figure 4. Plot of log (height) vs log (fruits), data as points in grey, predicted 

fixed effects in blue and random intercepts by population in red. 
 

We can now try a model that estimates random intercepts and slopes. This is specified in the 
model as random=~1 + lgh|fbald.  
 

𝒍𝒍𝒍(𝒓𝒓𝒓 𝒔𝒔𝒔𝒔𝒔𝒔)𝒌 =  𝜷𝟏 +  𝜶𝟏𝒊   + [𝜷𝟐 + 𝝏𝟏𝒊 ] ∗ 𝒍𝒍𝒍(𝒉𝒉𝒉𝒉𝒉𝒉) 𝒌   
 

𝜶𝟏~𝑵(𝟎,𝝈𝒂𝒂) 
 

𝝏𝟏~𝑵(𝟎,𝝈𝝏𝝏) 
 

𝝐~𝑵(𝟎,𝝈) 
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M11 <- lme(lfr~lgh,random=~1 + lgh|fbald,data=dt,method ="ML") 
summary(M11) 
table_coef[3,] <- M11$coefficients$fixed 
 

In the output presented below, the estimated value of 2.22
 = 4.86 indicates the random variance 

in the intercepts and 0.612 = 0.37 the one in the slopes. The negative correlation (-0.99) between 
random intercepts and random slopes indicates that populations with high intercepts tend to have 
lower slopes.  
 
Linear mixed-effects model fit by maximum likelihood 
 Data: dt  
     AIC      BIC  logLik 
  4891.4 4925.301 -2439.7 
 
Random effects: 
 Formula: ~1 + lgh | fbald 
 Structure: General positive-definite, Log-Cholesky parametrization 
            StdDev    Corr   
(Intercept) 2.2037935 (Intr) 
lgh         0.6108079 -0.99  
Residual    0.7584316        
 
Fixed effects: lfr ~ lgh  
                Value Std.Error   DF   t-value p-value 
(Intercept) -8.200610 0.6175165 2086 -13.27999       0 
lgh          3.469046 0.1712917 2086  20.25228       0 
 Correlation:  
    (Intr) 
lgh -0.991 
 
Standardized Within-Group Residuals: 
        Min          Q1         Med          Q3         Max  
-5.67788940 -0.56574901  0.03189972  0.62002756  5.75040517  
 
Number of Observations: 2101 
Number of Groups: 14  
 

We plot the fixed effects model (in blue), and those for the estimated shifts by population (in 
red), plus the model under the assumption of complete independence (in green) in Figure 5. 
 
F0 <-fitted(M11,level=0) 
F1 <-fitted(M11,level=1) 
lfrs <- sort(dt$lgh) 
plot(lfrs,predict(m1)[I],lwd=2,type="l",ylab="log(fruits)",xlab="log(height)",ylim=c(0
,8),main="Random Intercept & Slope",col="green") 
points(dt$lgh,dt$lfr,pch=16,ylab="log(fruits)",xlab="log(height)",col="grey",cex=0.5,y
lim=c(0,8)) 
for (j in 1:length(site)){ 

x1 <- dt$lgh[dt$bald==site[j]] 
y1 <- F1[dt$bald==site[j]] 
K <-  order(x1) 
lines(sort(x1),y1[K],col="red")} 
lines(lgh,F0[I],lwd=3,type="l",col="blue") 
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Figure 5. Plot of log (height) vs log (fruits), data as points in grey, predicted 
fixed effects in blue and random effects on intercepts and slopes by population in 

red. The model assuming complete independence is in green. 
 

 

 
Figure 6. Plot of log (height) vs log (fruits), data as points in grey, predicted fix 
effects of a model with random intercepts and slopes in blue (continuous line) and its 

confidence intervals (discontinuous line). 
 
Table 2. Comparison of the coefficients of the population level for the three 
approaches (only fixed effects for mixed models), and their AICs. The model with 
random intercept and random slope was the most informative.  
 
Model Intercept SE slope SE AIC 
no mixed                  -7.35 0.18 3.24 0.05 5113.8 
random intercept              -7.80 0.19 3.36 0.05 4984.3 
random intercept & slope -8.20 0.62 3.47 0.17 4891.4 
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The last model is the most plausible and to validate this model we plot its residuals in relation to 
the observed and fitted values (Figure 7). See R script for all the last part of the code.  

 

 
Figure 7. Residual plots for the mixed effects model with random intercept and slope 

(fitted and observed values). 

 

 
Figure 8. Spread of the deviations of the coefficients under complete independence and 

after the mixed model with random slope and intercept by population. 
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Note: The restricted maximum likelihood estimation method (REML) is the default method in 
the function lme. This procedure “corrects the degrees of freedom” because the parameters in the 
model are not independently estimated under maximum likelihood (ML) (Zurr et al. 2009). If the 
number of fixed covariates is small compared to the number of observations their differences are 
minor. Table 3 presents their differences for the models that we evaluated above. AIC and BIC 
based on REML are not comparable with AIC and BIC obtained by ML because for REML n* = 
n-p (Zuur et al. 2009).  
 

Table 3. Comparison of REML and ML methods for M1 and M11 models. 
M1 - Component REML ML 
Random effects   
StdDev Intercept  0.258 0.247 
StdDev Residual 0.782 0.782 
Fixed effects   
Intercept -7.80 (0.193) -7.80 (0.190) 
Slope 3.36 (0.051) 3.36 (0.051) 
Correlation  -0.93 -0.93 
AIC 4984.3 4976.7 
BIC 5006.9 4999.3 
M11 - Component REML ML 
Random effects   
StdDev Intercept   2.30 2.20 
StdDev Slope  0.638 0.610 
StdDev Residual  0.758 0.758 
Fixed effects   
Intercept -8.21 (0.64) -8.20 (0.62) 
Slope 3.47 (0.18) 3.47(0.18) 
Correlation  -0.99 -0.99 
AIC 4896.1 4891.4 
BIC 4930.0 4925.3 

 
Next we do the analysis of the mixed models from a Bayesian approach; using uninformative 
priors (see code in the R script). As we can see from Table 4 and Figure 9, the estimates and 
standard error of the coefficients (β1 – intercept and β 2 – slope) from the two models are almost 
identical with the two statistical approaches.    

  
Table 3. Summary of results with frequentist and Bayesian approaches 

 Frequentist Bayesian Frequentist Bayesian 
Model β1 SE β1 SE β2 SE β2 SE 
Random intercept              -7.80 0.19 -7.80 0.20 3.36 0.05 3.36 0.05 
Random intercept & slope -8.20 0.62 -8.18 0.66 3.47 0.17 346 0.18 

  
 

Figure 9. Plots of random effects per population (x = frequentist, y = Bayesian). 
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