
PCB 6466 - Methods in Experimental Ecology Fall 2013 Semester 
Dr. Pedro F. Quintana-Ascencio, James Angelo, and Matt Tye 10/29/2013 

 1 

 
R Demonstration – One-Way ANOVA 

 
Objective: The purpose of this week’s session is to demonstrate how to perform a one-
way analysis of variance (ANOVA) in R. In the first part, we will use the built-in R 
functions to do this. In the second part, we will use the technique of partitioning the sum 
of squares to perform the ANOVA. In the third and final part, we will create a set of 
“dummy variables” and use them in a multiple regression to demonstrate the link 
between regression and ANOVA linear models. 
 
Part I. Performing a one-way ANOVA using built-in R functions 
 
NOTE: This part of the exercise assumes that you have downloaded the hypothetical 
dataset that records the flowering period of larkspur plants from 12 alpine meadow plots 
(see pages 292-293 of the Gotelli & Ellison text) and saved it in your PCB6466 folder as 
a tab-delimited text file named ANOVA_data.txt. You also need to download the 
ANOVA.R script and save it in your PCB6466 folder. 
 
After starting R, change the directory to your PCB6466 folder and open the ANOVA.R 
script. The first two lines of the script read and attach the larkspur dataset: 
 
 
 
 
 
Next, we use the factor function to indicate that the variable named GROUP is a 
categorical variable: 
 
 
 
 
It is necessary for us to use the factor function in order to perform any ANOVA when 
the levels of the factor are originally coded as numbers. It defines the groups in our 
categorical variable properly. Generally, it is a good habit to use the factor function on 
all of your categorical variables in R. 
 
Now we are ready to perform the one-way ANOVA using R’s built-in functions. Since 
ANOVA is just another form of linear model, we will use the familiar lm function to 
create a linear model relating the response variable (FLOWERING_PERIOD) to the 
predictor variable (GROUP). Then we will use the anova function to produce summary 
statistics, including an ANOVA table, for our model. Here is the R code: 
 
 
 
 
 

## read and attach the data 
anova_data <- read.table("ANOVA_data.txt", header=T, row.names="ID") 
attach(anova_data) 

## use the factor() function to tag GROUP as a categorical variable 
factor(GROUP) 

## use the lm() and anova() functions to execute the ANOVA 
anova_model <- lm(FLOWERING_PERIOD ~ GROUP) 
anova(anova_model) 
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The call to the anova function produces the following output: 
 
Analysis of Variance Table 
 
Response: FLOWERING_PERIOD 
          Df  Sum Sq Mean Sq F value  Pr(>F)   
GROUP      2 22.1667 11.0833  5.1154 0.03282 * 
Residuals  9 19.5000  2.1667                   
--- 
 
This is a standard ANOVA table, and it is an almost identical match to the one presented 
in the Gotelli & Ellison text for this dataset (Table 10.3 on page 299). 
 
Part II. Performing ANOVA by partitioning the sum of squares 
 
Now that we have seen how easy it is to perform a one-way ANOVA using R’s built-in 
functionality, we will use the technique of “partitioning the sum of squares” to dig a little 
more deeply into how the ANOVA process works. As discussed in the Gotelli & Ellison 
text, partitioning the sum of squares for a one-way ANOVA involves dividing the total 
variation into 2 components: the variation among groups and the variation within groups. 
 
The variation within groups represents how much, on average, the observations within 
each group differ from their group mean. The sum of squares within groups (SSwithin) is 
thus calculated by the following formula: 
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To use this formula to calculate SSwithin in R, we first assign the observations to their 
appropriate group using the familiar brackets notation to filter FLOWERING_PERIOD by 
group (“Unmanipulated”, “Control”, or “Treatment”): 
 
 
 
 
 
 
 
Next, we use the levels function (together with the length function) to determine the 
number of groups in our model, which we represent with the variable a. And because, for 
our simple one-way ANOVA, we assume that all the groups contain the same number of 
replicate observations, we can use the length function on any one of these groups to 
calculate the number of replicates, n: 
 

## get the subset of the data for each group 
Y_group1 <- FLOWERING_PERIOD[GROUP=="Unmanipulated"] 
Y_group2 <- FLOWERING_PERIOD[GROUP=="Control"] 
Y_group3 <- FLOWERING_PERIOD[GROUP=="Treatment"] 
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Now we need to calculate the means for each of the groups ( iY ), as well as the “grand 
mean” for all of the observations (Y ): 
 
 
 
 
 
 
Finally, we can calculate the sum of squares within all of the groups and then sum these 
together to get the overall SSwithin: 
 
 
 
 
 
 
 
The variation among groups represents how much each of the group means differs from 
the grand mean. When all of the groups contain the same number of replicate 
observations (n), as in the larkspur example, the sum of squares among groups (SSamong) 
can be calculated with the following formula: 
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In R, we use the following code to calculate the sum of squares among all of the groups 
and then sum these together to get the overall SSamong: 
 
 
 
 
 
 
 
To convert the SSwithin and SSamong values calculated above to variance estimates (i.e. 
mean squares), we need to divide each sum of squares by its appropriate number of 
degrees of freedom (df). Since the degrees of freedom among groups equals (a-1) and 
the degrees of freedom within groups equals a(n-1), we can use the following R code 
to calculate the mean square (MS) within and among groups: 
 

## get the number of groups (a) and the number of replicates per group (n) 
a <- length(levels(GROUP)) 
n <- length(Y_group1) 

## calculate the grand mean and the group means 
grand_mean <- mean(FLOWERING_PERIOD) 
group1_mean <- mean(Y_group1) 
group2_mean <- mean(Y_group2) 
group3 mean <- mean(Y group3) 

## calculate the sum of squares (SS) WITHIN the groups 
SS_within1 = sum((Y_group1 - group1_mean)^2) 
SS_within2 = sum((Y_group2 - group2_mean)^2) 
SS_within3 = sum((Y_group3 - group3_mean)^2) 
SS_within = SS_within1 + SS_within2 + SS_within3 

## calculate the sum of squares (SS) AMONG the groups 
SS_among1 = n * sum((group1_mean - grand_mean)^2) 
SS_among2 = n * sum((group2_mean - grand_mean)^2) 
SS_among3 = n * sum((group3_mean - grand_mean)^2) 
SS_among = SS_among1 + SS_among2 + SS_among3 
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Finally, we can use the values calculated for MS_among and MS_within to compute an F-
ratio for our one-way ANOVA. Then we use the pf function to calculate a P-value for 
the F-ratio with df_among degrees of freedom in the numerator and df_within degrees 
of freedom in the denominator: 
 
 
 
 
 
The computed F-ratio of 5.115385 and the P-value of 0.03281756 are, again, nearly 
identical to those reported in Table 10.3 of the Gotelli & Ellison text. 
 
Part III. Linking ANOVA to the regression model 
 
As discussed in the lecture, it is possible to perform a one-way ANOVA using a multiple 
regression model containing “dummy variables”. A dummy variable is a variable that 
can take on only one of two possible values: 0 or 1. To use this technique, we need to 
create a multiple regression model that contains (a-1) dummy variables (i.e. one less 
than the number of groups). Thus, for our larkspur dataset in which there are three 
groups, we would use the following multiple regression model: 
 

iii XXY 22110 βββ ++=  
 
To create this multiple regression model in R, we first need to add 2 dummy variables 
(X1 and X2) to our data frame: 
 
 
 
 
 
As used above, the numeric function will initialize all of the values of both dummy 
variables to zero. This is fine for our “Unmanipulated” group, since we want both X1 and 
X2 to be zero for observations in this group. On the other hand, we want to indicate that 
an observation belongs to the “Control” group by setting X1 equal to one and that an 
observation belongs to the “Treatment” group by setting X2 equal to one. We thus use the 
following code to accomplish this: 
 
 
 

## calculate the mean square (MS) values 
df_among = (a-1) 
df_within = a*(n-1) 
MS_among = SS_among/df_among 
MS_within = SS_within/df_within 

## calculate the F-ratio and corresponding P-value 
F_ratio = MS_among/MS_within 
P_value = pf(F_ratio, df_among, df_within, lower.tail=F) 

## add "dummy variables" X1 and X2 to the data frame and initialize them to 0 
anova_data$X1 <- numeric(length(GROUP)) 
anova_data$X2 <- numeric(length(GROUP)) 
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After executing these lines of code, we can see that our dummy variables are set up 
properly by displaying the contents of the anova_data data frame: 
 
> anova_data 
           GROUP FLOWERING_PERIOD X1 X2 
1  Unmanipulated               10  0  0 
2  Unmanipulated               12  0  0 
3  Unmanipulated               12  0  0 
4  Unmanipulated               13  0  0 
5        Control                9  1  0 
6        Control               11  1  0 
7        Control               11  1  0 
8        Control               12  1  0 
9      Treatment               12  0  1 
10     Treatment               13  0  1 
11     Treatment               15  0  1 
12     Treatment               16  0  1 
 
Now it is a simple matter to use the lm function to define a multiple regression model 
linking FLOWERING_PERIOD to these dummy variables, and then the summary function to 
summarize the results of the regression: 
 
 
 
 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)     11.750      0.736  15.965 6.56e-08 *** 
anova_data$X1   -1.000      1.041  -0.961   0.3618     
anova_data$X2    2.250      1.041   2.162   0.0589 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 1.472 on 9 degrees of freedom 
Multiple R-squared: 0.532,      Adjusted R-squared: 0.428  
F-statistic: 5.115 on 2 and 9 DF,  p-value: 0.03282 
 
Notice that, once again, the reported F-ratio and P-value for the multiple regression are 
identical to those listed in Table 10.3 of the Gotelli & Ellison text. To see how these 
values were calculated, recall that for a regression we can partition the total sum of 
squares into the SS from the regression and the SS from the residual errors. But to 
calculate these sums of squares, we first need to obtain the coefficients from our 
regression model and then use these to calculate the fitted values (i.e., the “Y_hats”): 
 

## for the Unmanipulated group, X1=0 and X2=0; for the Control group, X1=1 
anova_data$X1[GROUP=="Control"] <- 1 
 
## for the Treatment group, X2=1 
anova_data$X2[GROUP=="Treatment"] <- 1 

## now perform multiple regression with the dummy variables 
regression_model <- lm(FLOWERING_PERIOD ~ anova_data$X1 + anova_data$X2) 
summary(regression_model) 

## to perform an ANOVA for the regression, we first need the fitted values 
coeffs <- regression_model$coefficients 
Y_hats <- coeffs[1] + coeffs[2]*anova_data$X1 + coeffs[3]*anova_data$X2 
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Now we can calculate the sum of squares of the regression by squaring and summing the 
differences between the fitted values and the grand mean, and we can calculate the 
residual sum of squares by squaring and summing the differences between the observed 
values and the fitted values: 
 
 
 
 
 
Finally, we again calculate our F-ratio as the ratio between our variances, only this time 
we use the mean square of the regression divided by the mean square residual: 
 
 
 
 
 
As in the previous section of this exercise, the computed F-ratio of 5.115385 and the P-
value of 0.03281756 are nearly identical to those reported in Table 10.3 of the Gotelli & 
Ellison text. Thus, it is clear that any one-way ANOVA analysis can be represented as a 
multiple regression model. 
 
Part IV: Analysis using OpenBUGS (means format) 
This portion of the code creates a Bayesian ANOVA similar in format to the approaches 
discussed in parts I and II.  
 
x <- c(1,1,1,1,2,2,2,2,3,3,3,3) 
n_obs <- length(x) 
z <- FLOWERING_PERIOD 
## Call package   
library(R2OpenBUGS) 
### Fitting the model 
# Write model 
Anovam<-function() 
## Priors 
{ 
 for (i in 1:3) 
   { 
     a[i] ~ dnorm(0.0,1.0E-6) 
   } 
 tau ~ dgamma(0.001,0.001) 
## Likelihood 
 for (i in 1:n) 
   { 
   mean[i] <- a[x[i]] 
   Y[i]  ~ dnorm(mean[i],tau) 
   } 
  d21 <- a[2]-a[1] 
  d31 <- a[3]-a[1] 
  d32 <- a[3]-a[2] 
  } 
write.model(Anovam, "Anovam.txt") 
 
# Bundle data 
win.data <- list(Y=z,x=x, n=n_obs) 
# Inits function 

## calculate the SS for the regression (SSreg) and the residuals (SSresid) 
SSreg <- sum((Y_hats - grand_mean)^2) 
SSresid <- sum((FLOWERING_PERIOD - Y_hats)^2) 

## finally, calculate the F-ratio and P-value for the regression 
F_ratio <- (SSreg/df_among)/(SSresid/df_within) 
P_value <- pf(F_ratio, df_among, df_within, lower.tail=F) 
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inits <- function()  
   list(a=runif(3,1,10),tau=runif(1)) 
# Parameters to estimate 
params <- c("a","d21","d31","d32") 
# MCMC settings 
nc = 3  
ni=10000 
nb=1000 
nt=10 
# Start Gibbs sampler 
out <- bugs(data = win.data, inits = inits, parameters = params, model = 
"Anovam.txt", 
n.thin = nt, n.chains = nc, n.burnin = nb, n.iter = ni, digits=5, codaPkg=T) 
library(coda) 
reg.coda<-read.bugs(out) 
results<-summary(reg.coda) 
results 
 
As usual we expect the results of a Bayesian analysis with uninformed priors to give 
numerical estimates that are commensurate with the frequentist’s, but also information to 
quantify the exact probability of numerical hypothesis associated with our data. 
 
Part V: Analysis using OpenBUGS (regression format) 
This section uses OpenBUGS to calculate the ANOVA using a Bayesian regression 
format and a reference class. 
 
### Fitting the model 
# Write model 
Anovar<-function() 
## Priors 
{ 
 reference ~ dnorm(0,1.0E-6)  
 for (i in 2:3) 
   { 
     d[i] ~ dnorm(0.0,1.0E-6) 
   } 
 d[1] <- 0 
 tau ~ dgamma(0.001,0.001) 
## Likelihood 
 for (i in 1:n) 
   { 
   mean[i] <- reference + d[x[i]] 
   Y[i]  ~ dnorm(mean[i],tau) 
   } 
  } 
write.model(Anovar, "Anovar.txt") 
# Bundle data 
win.data <- list(Y=z,x=x, n=n_obs) 
# Inits function 
inits <- function()  
   list(reference= runif(1,0,30), d= c(NA,0,0), tau=runif(1)) 
# Parameters to estimate 
params <- c("reference","d") 
# MCMC settings 
nc = 3  
ni=10000 
nb=1000 
nt=10 
 
# Start Gibbs sampler 
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out <- bugs(data = win.data, inits = inits, parameters = params, model = 
"Anovar.txt", 
n.thin = nt, n.chains = nc, n.burnin = nb, n.iter = ni,  digits=5, codaPkg=T) 
reg.coda<-read.bugs(out) 
results<-summary(reg.coda) 
results 
 
To interpret the results, remember that you are using one of the treatments as a reference 
to compare the others too it. As usual we end by detaching the data.  
 
## detach the data 
detach(anova_data) 
 


