
BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research
libraries, and research funders in the common goal of maximizing access to critical research.

Uninformative Parameters and Model Selection Using Akaike's Information
Criterion
Author(s): Todd W. Arnold
Source: Journal of Wildlife Management, 74(6):1175-1178. 2010.
Published By: The Wildlife Society
DOI: 10.2193/2009-367
URL: http://www.bioone.org/doi/full/10.2193/2009-367

BioOne (www.bioone.org) is an electronic aggregator of bioscience research content, and the online home to over
160 journals and books published by not-for-profit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of
BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use.

Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries
or rights and permissions requests should be directed to the individual publisher as copyright holder.

http://www.bioone.org/doi/full/10.2193/2009-367
http://www.bioone.org
http://www.bioone.org/page/terms_of_use


Commentary

Uninformative Parameters and Model
Selection Using Akaike’s
Information Criterion

TODD W. ARNOLD,1 Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN 55108, USA

ABSTRACT As use of Akaike’s Information Criterion (AIC) for model selection has become increasingly common, so has a mistake

involving interpretation of models that are within 2 AIC units (DAIC

M

2) of the top-supported model. Such models are ,2 DAIC units

because the penalty for one additional parameter is +2 AIC units, but model deviance is not reduced by an amount sufficient to overcome the 2-

unit penalty and, hence, the additional parameter provides no net reduction in AIC. Simply put, the uninformative parameter does not explain

enough variation to justify its inclusion in the model and it should not be interpreted as having any ecological effect. Models with uninformative

parameters are frequently presented as being competitive in the Journal of Wildlife Management, including 72% of all AIC-based papers in 2008,

and authors and readers need to be more aware of this problem and take appropriate steps to eliminate misinterpretation. I reviewed 5 potential

solutions to this problem: 1) report all models but ignore or dismiss those with uninformative parameters, 2) use model averaging to ameliorate

the effect of uninformative parameters, 3) use 95% confidence intervals to identify uninformative parameters, 4) perform all-possible subsets

regression and use weight-of-evidence approaches to discriminate useful from uninformative parameters, or 5) adopt a methodological approach

that allows models containing uninformative parameters to be culled from reported model sets. The first approach is preferable for small sets of

a priori models, whereas the last 2 approaches should be used for large model sets or exploratory modeling.

KEY WORDS Akaike’s Information Criterion (AIC), Akaike-best model, model averaging, model selection, parameter
selection, uninformative parameters.

In the last decade, information-theoretic approaches have
largely supplanted null hypothesis testing in the wildlife
literature (Anderson and Burnham 2002, Burnham and
Anderson 2002). Although this is a largely constructive
paradigm shift, I nevertheless share concerns that one
statistical ritual has replaced another and that comparative
ranking of models now overshadows ecological interpreta-
tion of those models (Guthery et al. 2005, Chamberlain
2008, Guthery 2008). One small but incessantly common
problem that contributes to this is the reporting and
interpretation of models that are not truly competitive with
top-ranking models, but appear competitive by virtue of low
Akaike’s Information Criterion (AIC) scores. This occurs
whenever a variable with poor explanatory power is added to
an otherwise good model and the result is a model with
DAIC , 2, a distance widely interpreted as indicating a
‘‘substantial level of empirical support’’ (Burnham and
Anderson 2002:170). However, this is an erroneous
interpretation, and Burnham and Anderson (2002:131)
found this issue important enough to put inside a text box
(something they did only 29 times in 454 text pages):

Models having Di [DAIC] within about 0–2 units of the best
model should be examined to see whether they differ from the
best model by 1 parameter and have essentially the same values
of the maximized log-likelihood as the best model. In this case,
the larger model is not really supported or competitive, but
rather is ‘close’ only because it adds 1 parameter and therefore
will be within 2Di units, even though the fit, as measured by the
log-likelihood value, is not improved.

Obviously, a similar caveat would apply to models with 2
extra parameters that fall within approximately 4 DAIC

units of the best model, or 3 extra parameters that fall within
approximately 6 DAIC units of the best model, distances
that are often interpreted as meaningful.

A WORKED EXAMPLE

I illustrate the problem of uninformative parameters using a
recently published data set on detection probabilities of
breeding waterfowl pairs in North Dakota, USA (Pagano
and Arnold 2009). Model selection in that study was based
on AIC, which is defined as 22logL(hIy) + 2K, where
logL(hIy) is the maximized log-likelihood of the model
parameters given the data and K is the number of estimable
parameters (Burnham and Anderson 2002:61). For any
well-supported approximating model, it is possible to add
any single parameter and achieve a new model that is

M

2
AIC units from the well-supported model, because even if
the additional parameter has no explanatory ability what-
soever (i.e., log-likelihood is unchanged), AIC will only
increase by 2 due to the 1-unit increase in K. For example,
Pagano and Arnold (2009, table 2) reported a 16-parameter
model where detection probabilities (p) of breeding duck
pairs were described by a factorial combination of 2
observers (obs) and 8 species (spp). Pagano and Arnold
(2009) considered additional covariates that might affect
detection probabilities and modeled these covariates to have
an additive effect over both observers and all species (i.e.,
DK 5 1). Effective sample size (n) for this data set was
6,162, so the small sample adjustment to AICc of 17 versus
16 parameters is a nearly negligible 0.01. Hereafter I will use
AIC and assume n/K large and overdispersion (c) negligible,
but these criticisms also apply to model selection based on
AICc and QAICc, although the boundaries are no longer
precisely restricted to ,2 DAIC units, but may be somewhat
larger depending on values of n/K. Based on their review of1 E-mail: arnol065@umn.edu
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the literature, Pagano and Arnold (2009) considered 12
additional covariates that they believed might affect
detection probabilities and found that 7 of them were
supported by net reductions in AICc, whereas all 12 variables
produced models that were

M

1.92 DAICc units from model
p[obs 3 spp]. Indeed, so were 4 nonsensical variables that I
considered specifically for this commentary, such as whether
the last duck seen was a mallard (Anas platyrhynchos),
whether the next duck seen was a northern pintail (A. acuta),
whether the survey was conducted on a day that included the
letter n (i.e., Sunday, Monday, or Wednesday), and
log[(standardized temp/standardized wind speed)2], plus 8
completely random variables generated using Z-distribu-
tions (Table 1; DAIC

M
2.00 for all 12 variables, with 4 of

them leading to net reductions in AIC).
The ultimate objective of Pagano and Arnold (2009) was

to assess whether double-observer methodologies provided
enhanced prediction of breeding duck pairs. Selection of
top-ranked models is only the first step in this process;
biological interpretation of parameter effects is an essential
second step. Total ducks had the largest influence on
detection probabilities (DAIC 5 16.62); model-based
detection probabilities for mallards were 0.87 if there were
no other ducks on the wetland, versus 0.75 if there were 60
other ducks on the wetland, which represents a substantial
reduction in sightability, and this effect was even larger for
cryptic species like ruddy ducks (Oxyura jamaicensis). Extent
of vegetative cover on surveyed wetlands led to a much lower
0.68-unit reduction in AIC; mallards on wetlands com-
pletely ringed by tall emergent vegetation had 0.84 detection
probabilities, whereas mallards on wetlands with no tall
emergent vegetation had 0.86 detection probabilities, but
wetlands with less than half of their perimeters surrounded
by tall emergent comprised ,20% of sampled wetlands.
Clearly, vegetative cover could be ignored without intro-
ducing important bias, even though its effect was supported
by lower AIC. But if we do include covariates such as
vegetative cover, we would by the same DAIC criterion also
include the clearly spurious random variable numbers 1, 8, 4,
and 5 (Table 1). An underappreciated facet of AIC-based
model selection is that it has about a 1 in 6 chance of
admitting a spurious variable based on lower AIC, as

opposed to a 1 in 20 chance based on traditional hypothesis
testing at a 5 0.05. When sample sizes are large as in
Pagano and Arnold (2009), even AIC-supported variables
can have minimal biological effect (Guthery 2008).
Interpreting variables that are not supported by lower AIC
would further exacerbate this problem.

EXTENT OF THE PROBLEM

I reviewed all papers published in Volume 72 (2008) of the
Journal of Wildlife Management (JWM) looking for evidence
that authors were interpreting models that were ,2 DAIC
units from the best-approximating model and differed only
in having one additional parameter. Of 60 papers that
provided tables of AIC-ranked models, 43 (72%) reported
hierarchically more complex models (i.e., models containing

L1 additional parameters not found in the best model) that
were ,2 DAIC units from the top-ranking model and 35 of
these 43 papers (81%) contained interpretation errors
involving these additional parameters. These errors ranged
from egregious (e.g., 15 papers that drew biological
inference from the additional parameters), to disconcerting
(e.g., 30 papers that considered these models to be
competitive with the top-ranked model), to benign (e.g.,
18 papers that model-averaged these models with better
supported models). If using valuable journal space to
summarize noncompetitive models qualifies as an error
(Guthery 2008), many additional papers could have been
labeled erroneous. Only 4 papers explicitly identified the
additional variables as uninformative (Bentzen et al. 2008,
Devries et al. 2008, Koneff et al. 2008, Odell et al. 2008)
without also resorting to a criterion such as 95% confidence
intervals that could have also rejected legitimate parameters.

POTENTIAL SOLUTIONS

There are

L

5 potential solutions to the 2 DAIC problem,
and authors of 2008 JWM articles employed all of them,
oftentimes in combination.

Full reporting.—If a truly limited set of a priori models
are considered from the outset, then it probably makes sense
to report and discuss all models, including those with one
additional but uninformative parameter. However, the
reporting should not be that these models are competitive

Table 1. Models examining effects of various covariates on detection probabilities of indicated breeding pairs of waterfowl in North Dakota, USA (from
Pagano and Arnold 2009). I added single parameters assuming an additive effect to the base model, which included K 5 16 parameters (8 species 3 2
observers). Three of these covariates were considered biologically feasible (total ducks, vegetative cover, and cover type), 6 were not (random 5, 4, 8, and 1; not
Sunday, Monday, or Wednesday; and last duck seen a mallard), and I excluded 6 additional nonsense or random variables (DAIC 5 0.64–2.00) from
presentation. I evaluated all models compared to the base model using Akaike’s Information Criterion (AIC), DAIC, and changes in model deviance (Dev).

Model AIC DAIC K Dev

Total ducks 4,426.71 216.62 17 4,392.71
Random 5 4,439.95 23.38 17 4,405.95
Random 4 4,442.20 21.13 17 4,408.19
Vegetative cover 4,442.65 20.68 17 4,408.65
Random 8 4,442.81 20.52 17 4,408.80
Random 1 4,442.90 20.43 17 4,408.90
Base model 4,443.34 0 16 4,411.33
Not Sunday, Monday, or Wednesday 4,445.09 1.75 17 4,411.08
Cover type 4,445.25 1.92 17 4,411.25
Last duck seen a mallard 4,445.33 1.99 17 4,411.32
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with the higher ranked models, but rather that the additional
variable(s) received little to no support, depending on the
level of reduction in deviance versus the top-supported model
(see also Anderson and Burnham 2002:916). For example,
Odell et al. (2008) considered just 7 models to discriminate
active versus inactive black-tailed prairie dog (Cynomys
ludovicianus) colonies and although those authors included
all 7 models in their table of results, they correctly ignored
their second- and third-ranked models as being unsupported
embellishments of their top-ranked model. Koneff et al.
(2008) went one step further and devoted additional text to
explain that an uninformative parameter in their analysis
(group size of indicated waterfowl pairs) had no discernable
effect on detection probabilities. If the a priori model set is
small enough that information from all a priori models can be
readily presented and authors also describe the lack of effect
for uninformative parameters, then this seems like an ideal
solution to the problem. Full reporting is also warranted for
studies testing specific hypotheses about impacts of certain
predictor variables, at least with respect to the variables of
interest (e.g., Vercauteren et al. [2008] on testing efficacy of
dogs at deterring deer from interacting with cattle). However,
this approach becomes unworkable for model sets that are too
large to justify full reporting, which includes most of the
papers I reviewed.

Model averaging.—An especially common practice in
JWM articles was to model average over all models, over all
models within some cumulative weight (typically 90% or
95%), or over all models within some range of DAIC
(typically 2, 4, or 7). One of the apparent benefits of model
averaging was that it minimized the effect of uninformative
parameters, particularly if coefficients for these variables
were assumed to be zero in models where those variables
were absent (Burnham and Anderson 2002:151–153). And
if uninformative parameters are truly independent (i.e.,
uncorrelated with other, more useful variables), model
averaging will typically have little impact on the bias and
precision of the more useful parameter estimates (T. L.
Shaffer, United States Geological Survey, personal commu-
nication). However, in many cases where investigators used
model averaging, if models that included uninformative
parameters had been ignored, the top model would have
received 80–90% of model weight and there would have
been little or no model-selection uncertainty. Model
averaging is probably best employed as a tool to deal with
legitimate model-selection uncertainty (e.g.,

L

2 unnested
models, all with substantial support) and when the primary
goal is prediction rather than variable selection. Although
several authors used model averaging to deal with model-
selection uncertainty, I could only identify one instance
where it seemed particularly useful (Saracco et al. 2008).

Confidence intervals.—Several authors discounted the
importance of uninformative parameters, but only after
determining that 95% confidence intervals included zero.
The main problem with this solution is that it can also
discard variables in best-approximating models that are
supported by lower AIC values. For n/K . 40, AIC-based
model selection will support additional variables whose

approximately 85% confidence intervals exclude zero (i.e., if
likelihood-ratio x2 . 2 on 1 degree of freedom, then P ,

0.157). It makes little sense to select variables at P , 0.157
using AIC and then turn around and dismiss them at P .

0.05 using 95% confidence intervals. A couple of authors
made an important step in the right direction by using 90%
confidence intervals for their parameter estimates (Hein et
al. 2008, Long et al. 2008); those authors just needed to take
it 5% further and use 85% confidence intervals and they
would have been fully AIC compatible. If an ability to
generate 85% confidence intervals were widely available in
computer programs like MARK (White and Burnham
1999), then this might be a more highly favored solution.
But using 95% confidence intervals with information-
theoretic approaches leads to variable-selection ambivalence
when b/standard error (SE)(b) 5 1.4–2.0, and ambivalence
is not a hallmark of good scientific writing.

Relative variable importance.—If the primary objective
of modeling is to evaluate the relative importance of many
potential predictor variables, such as in many habitat-
selection studies, then summing Akaike model weights across
all models that include that variable can be a useful approach
(Burnham and Anderson 2002:167–169). When comparing
summed model weights it is important that each of j variables
be included in an equal number of models and the easiest way
to achieve this is by considering all possible combinations of 2j

models (even more combinations are possible with interac-
tions and quadratic terms). But unless all variables lead to
lower AIC, this approach of considering all possible
combinations will produce many models that are within 2–
4 AIC units of the model with minimal AIC (i.e., ranges of
DAIC that are frequently used as cut-offs for interpretation).
But there is simply no compelling reason to put all of these
models and their AIC scores into a table for publication,
because finding an AIC-best model was not the objective. A
table that includes a list of individual variables, their
cumulative model weights, and model-averaged parameter
estimates (or some other indication of biological effect size) is
all that is really required (e.g., Tipton et al. 2008, table 1).
However, if j is large, this approach misses much of the
elegance of the modeling philosophy originally advocated by
Burnham and Anderson (2002:147): ‘‘just because AIC was
used as a selection criterion does not mean that valid inference
can be expected. The primary mistake here is a common one:
the failure to posit a small set of a priori models, each
representing a plausible research hypothesis.’’

Discarding models with uninformative parameters.—When
a sequential modeling approach is used to evaluate a large suite
of potential models, as is often done in an exploratory context
after first considering a more limited set of a priori models,
some authors have adopted an a priori modeling approach that
allows models with uninformative parameters to be discarded
without further consideration. Fondell et al. (2008) adopted a
hierarchical modeling approach wherein they retained only the
AIC–best-ranked model from the previous step when they
moved on to consider a new suite of covariates. Although
models with uninformative parameters were reported at each
stage (Fondell et al. 2008, table 1), they were not allowed to

Arnold N Uninformative Parameters and AIC 1177



propagate in subsequent steps. Devries et al. (2008:1793)
included an even more eloquent recognition of the problem:
‘‘Among ranked models, we considered a model to be a
competitor for drawing inference if parameters in the top
model were not simply a subset of those in the competing
model (Burnham and Anderson 2002).’’ Models that failed this
test were excluded from tables of competitive models, but a
careful reading of the methods of Devries et al. (2008)
nevertheless allows identification of all models they considered.
Pagano and Arnold (2009:394) conducted an exploratory
analysis of covariates affecting detection probabilities by fitting
a full model that included all covariates, from which those
authors ‘‘sequentially eliminated the least important covariate
(as identified by minimal absolute value of b/SE)… If
eliminating a covariate led to a reduction in AICc we discarded
the higher order model from our model set. We continued this
approach, sequentially deleting the least important covariate,
until no additional covariate could be eliminated without
leading to an increase in AICc.’’ Models that were hierarchi-
cally more complex versions of the top model were not
reported, and valuable journal space was not wasted on models
that were not actually competitive, nor were these models
allowed to cannibalize model weight that legitimately belonged
to the hierarchically simpler model. However, critiques of
sequential model fitting include its ad hoc approach and the
potential for model selection bias (Burnham and Anderson
2002:43–45).

RECOMMENDATIONS

Recognition of the 2 DAIC problem as it applies to
uninformative parameters is an important first step, but
published errors still abound even though Burnham and
Anderson (2002) called explicit attention to this problem
(see also Anderson and Burnham 2002, Guthery et al.
2005). I reviewed 5 potential solutions to this problem, but
each solution had weaknesses, and none provided a universal
solution to the problem. This is actually a beneficial
outcome because it requires researchers to carefully consider
which approach to use and does not allow statistical ritual to
replace the practice of careful thinking (Guthery 2008).

For studies employing truly limited sets of a priori models
(e.g., n

M

10), I recommend reporting all models and taking
care to explain to readers that models with AIC scores near
the top-ranked model might not be competitive as based on
consideration of model deviance (Burnham and Anderson
2002:131). I also recommend full reporting of any models
that represent experimental manipulations of key variables or
tests of clearly articulated a priori objectives. In both cases,
further discussion of parameter estimates, their uncertainty,
and their biological interpretation is warranted and investi-
gators might consider using 85% confidence intervals so that
model-selection and parameter-evaluation criteria are more
congruent. For exploratory approaches that involve many
variables, I recommend using balanced variable sets and
summed Akaike model weights if the primary goal is variable
ranking and identification (Burnham and Anderson
2002:167–169) or a sequential modeling approach that allows
unsupported variables to be eliminated without further

reporting if the primary objective is to identify a most
parsimonious model (Devries et al. 2008, Pagano and Arnold
2009). In either case, there is no need to include models with
uninformative parameters in tables of model rankings.
Whatever method is ultimately adopted, the primary
objective should be to move beyond model ranking to model
interpretation (Guthery et al. 2005), and having a smaller
subset of models that are deemed to be competitive would
represent a small but important step in the right direction.
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