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Multimodel Inference

Understanding AIC and BIC in Model Selection

KENNETH P. BURNHAM
DAVID R. ANDERSON
Colorado Cooperative Fish

and Wildlife Research Unit (USGS-BRD)

The model selection literature has been generally poor at reflecting the deep foundations
of the Akaike information criterion (AIC) and at making appropriate comparisons to
the Bayesian information criterion (BIC). There is a clear philosophy, a sound criterion
based in information theory, and a rigorous statistical foundation for AIC. AIC can
be justified as Bayesian using a “savvy” prior on models that is a function of sample
size and the number of model parameters. Furthermore, BIC can be derived as a non-
Bayesian result. Therefore, arguments about using AIC versus BIC for model selection
cannot be from a Bayes versus frequentist perspective. The philosophical context of what
is assumed about reality, approximating models, and the intent of model-based infer-
ence should determine whether AIC or BIC is used. Various facets of such multimodel
inference are presented here, particularly methods of model averaging.

Keywords: AIC; BIC; model averaging; model selection; multimodel inference

1. INTRODUCTION

For a model selection context, we assume that there are data and a
set of models and that statistical inference is to be model based. Clas-
sically, it is assumed that there is a single correct (or even true) or,
at least, best model, and that model suffices as the sole model for
making inferences from the data. Although the identity (and para-
meter values) of that model is unknown, it seems to be assumed that it
can be estimated—in fact, well estimated. Therefore, classical infer-
ence often involves a data-based search, over the model set, for (i.e.,
selection of ) that single correct model (but with estimated para-
meters). Then inference is based on the fitted selected model as if it
were the only model considered. Model selection uncertainty is
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262 SOCIOLOGICAL METHODS & RESEARCH

ignored. This is considered justified because, after all, the single best
model has been found. However, many selection methods used (e.g.,
classical stepwise selection) are not even based on an explicit criterion
of what is a best model.

One might think the first step to improved inference under model
selection would be to establish a selection criterion, such as the
Akaike information criterion (AIC) or the Bayesian information cri-
terion (BIC). However, we claim that the first step is to establish a
philosophy about models and data analysis and then find a suitable
model selection criterion. The key issue of such a philosophy seems
to center on one issue: Are models ever true, in the sense that full real-
ity is represented exactly by a model we can conceive and fit to the
data, or are models merely approximations? Even minimally experi-
enced practitioners of data analysis would surely say models are only
approximations to full reality. Given this latter viewpoint, the issue
is then really about whether the information (“truth”) in the data, as
extractable by the models in the set, is simple (a few big effects only)
or complex (many tapering effects). Moreover, there is a fundamen-
tal issue of seeking parsimony in model fitting: What “size” of fitted
model can be justified given the size of the sample, especially in the
case of complex data (we believe most real data are complex)?

Model selection should be based on a well-justified criterion of
what is the “best” model, and that criterion should be based on a phi-
losophy about models and model-based statistical inference, includ-
ing the fact that the data are finite and “noisy.” The criterion must be
estimable from the data for each fitted model, and the criterion must
fit into a general statistical inference framework. Basically, this means
that model selection is justified and operates within either a likeli-
hood or Bayesian framework or within both frameworks. Moreover,
this criterion must reduce to a number for each fitted model, given
the data, and it must allow computation of model weights to quan-
tify the uncertainty that each model is the target best model. Such a
framework and methodology allows us to go beyond inference based
on only the selected best model. Rather, we do inference based on the
full set of models: multimodel inference. Very little of the extensive
model selection literature goes beyond the concept of a single best
model, often because it is assumed that the model set contains the
true model. This is true even for major or recent publications (e.g.,
Linhart and Zucchini 1986; McQuarrie and Tsai 1998; Lahiri 2001).
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Burnham, Anderson / MULTIMODEL INFERENCE 263

Two well-known approaches meet these conditions operationally:
information-theoretic selection based on Kullback-Leibler (K-L)
information loss and Bayesian model selection based on Bayes fac-
tors. AIC represents the first approach. We will let the BIC approxima-
tion to the Bayes factor represent the second approach; exact Bayesian
model selection (see, e.g., Gelfand and Dey 1994) can be much more
complex than BIC—too complex for our purposes here. The focus
and message of our study is on the depth of the foundation underlying
K-L information and AIC. Many people using, abusing, or refusing
AIC do not know its foundations or its current depth of development
for coping with model selection uncertainty (multimodel inference).
Moreover, understanding either AIC or BIC is enhanced by contrast-
ing them; therefore, we will provide contrasts. Another reason to
include BIC here, despite AIC being our focus, is because by using
the BIC approximation to the Bayes factor, we can show that AIC has
a Bayesian derivation.

We will not give the mathematical derivations of AIC or BIC.
Neither will we say much about the philosophy on deriving a prior
set of models. Mathematical and philosophical background for our
purposes is given in Burnham and Anderson (2002). There is much
other relevant literature that we could direct the reader to about AIC
(e.g., Akaike 1973, 1981; deLeeuw 1992) and Bayesian model selec-
tion (e.g., Gelfand and Dey 1994; Gelman et al. 1995; Raftery 1995;
Kass and Raftery 1995; Key, Pericchi, and Smith 1999; Hoeting
et al. 1999). For an extensive set of references, we direct the reader to
Burnham and Anderson (2002) and Lahiri (2001). We do not assume
the reader has read all, or much, of this literature. However, we do
assume that the reader has a general familiarity with model selection,
including having encountered AIC and BIC, as well as arguments pro
and con about which one to use (e.g., Weakliem 1999).

Our article is organized around the following sections. Section 2
is a careful review of K-L information; parsimony; AIC as an
asymptotically unbiased estimator of relative, expected K-L informa-
tion; AICc and Takeuchi’s information criterion (TIC); scaling crite-
rion values (�i); the discrete likelihood of model i, given the data;
Akaike weights; the concept of evidence; and measures of precision
that incorporate model selection uncertainty. Section 3 is a review of
the basis and application of BIC. Issues surrounding the assumption
of a true model, the role of sample size in model selection when a
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264 SOCIOLOGICAL METHODS & RESEARCH

true model is assumed, and real-world issues such as the existence of
tapering effect sizes are reviewed. Section 4 is a derivation of AIC
as a Bayesian result; this derivation hinges on the use of a “savvy”
prior on models. Often, model priors attempt to be noninformative;
however, this practice has hidden and important implications (it is not
innocent). Section 5 introduces several philosophical issues and com-
parisons between AIC versus BIC. This section focuses additional
attention on truth, approximating models of truth, and the careless
notion of true models (mathematical models that exactly express full
reality). Model selection philosophy should not be based on simple
Bayesian versus non-Bayesian arguments. Section 6 compares the
performance of AIC versus BIC and notes that many Monte Carlo sim-
ulations are aimed only at assessing the probability of finding the true
model. This practice misses the point of statistical inference and has
led to widespread misunderstandings. Section 6 also makes the case
for multimodel inference procedures, rather than making inference
from only the model estimated to be best. Multimodel inference often
lessens the performance differences between AIC and BIC selection.
Finally, Section 7 presents a discussion of the more important issues
and concludes that model selection should be viewed as a way to com-
pute model weights (posterior model probabilities), often as a step
toward model averaging and other forms of multimodel inference.

2. AIC: AN ASYMPTOTICALLY UNBIASED ESTIMATOR OF
EXPECTED K-L INFORMATION

SCIENCE PHILOSOPHY AND THE
INFORMATION-THEORETIC APPROACH

Information theorists do not believe in the notion of true models.
Models, by definition, are only approximations to unknown reality
or truth; there are no true models that perfectly reflect full reality.
George Box made the famous statement, “All models are wrong but
some are useful.” Furthermore, a “best model,” for analysis of data,
depends on sample size; smaller effects can often only be revealed as
sample size increases. The amount of information in large data sets
(e.g., n = 3,500) greatly exceeds the information in small data sets
(e.g., n = 22). Data sets in some fields are very large (terabytes), and
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good approximating models for such applications are often highly
structured and parameterized compared to more typical applications
in which sample size is modest. The information-theoretic paradigm
rests on the assumption that good data, relevant to the issue, are
available, and these have been collected in an appropriate manner
(Bayesians would want this also). Three general principles guide
model-based inference in the sciences.

Simplicity and parsimony. Occam’s razor suggests, “Shave away
all but what is necessary.” Parsimony enjoys a featured place in
scientific thinking in general and in modeling specifically (see Forster
and Sober 1994; Forster 2000, 2001 for a strictly science philo-
sophy perspective). Model selection (variable selection in regression
is a special case) is a bias versus variance trade-off, and this is the
statistical principle of parsimony. Inference under models with too
few parameters (variables) can be biased, while with models having
too many parameters (variables), there may be poor precision or iden-
tification of effects that are, in fact, spurious. These considerations call
for a balance between under- and overfitted models—the so-called
model selection problem (see Forster 2000, 2001).

Multiple working hypotheses. Chamberlin ([1890] 1965) advo-
cated the concept of “multiple working hypotheses.” Here, there is
no null hypothesis; instead, there are several well-supported hypothe-
ses (equivalently, “models”) that are being entertained. The a priori
“science” of the issue enters at this important stage. Relevant empiri-
cal data are then gathered and analyzed, and it is expected that the
results tend to support one or more hypotheses while providing less
support for other hypotheses. Repetition of this general approach
leads to advances in the sciences. New or more elaborate hypothe-
ses are added, while hypotheses with little empirical support are
gradually dropped from consideration. At any one point in time,
there are multiple hypotheses (models) still under consideration—the
model set evolves. An important feature of this multiplicity is that the
number of alternative models should be kept small; the analysis
of, say, hundreds or thousands of models is not justified, except
when prediction is the only objective or in the most exploratory
phases of an investigation. We have seen applications in which more
than a million models were fitted, even though the sample size was
modest (60-200); we do not view such activities as reasonable.
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266 SOCIOLOGICAL METHODS & RESEARCH

Similarly, a proper analysis must consider the science context and
cannot successfully be based on “just the numbers.”

Strength of evidence. Providing quantitative information to judge
the “strength of evidence” is central to science. Null hypothesis testing
only provides arbitrary dichotomies (e.g., significant vs. nonsignifi-
cant), and in the all-too-often-seen case in which the null hypothesis
is false on a priori grounds, the test result is superfluous. Hypothesis
testing is particularly limited in model selection, and this is well docu-
mented in the statistical literature. Royall (1997) provides an interest-
ing discussion of the likelihood-based strength-of-evidence approach
in simple statistical situations.

KULLBACK-LEIBLER INFORMATION

In 1951, S. Kullback and R. A. Leibler published a now-famous
paper (Kullback and Leibler 1951) that quantified the meaning
of “information” as related to R. A. Fisher’s concept of sufficient
statistics. Their celebrated result, called Kullback-Leibler infor-
mation, is a fundamental quantity in the sciences and has earlier
roots back to Boltzmann’s concept of entropy (Boltzmann 1877).
Boltzmann’s entropy and the associated second law of thermody-
namics represents one of the most outstanding achievements of
nineteenth-century science.

We begin with the concept that f denotes full reality or truth; f has
no parameters (parameters are a human concept). We use g to denote
an approximating model, a probability distribution. K-L information
I (f, g) is the information lost when model g is used to approximate
f ; this is defined for continuous functions as the integral

I (f, g) = ∫
f (x) log

(
f (x)

g(x|θ)

)
dx.

Clearly, the best model loses the least information relative to other
models in the set; this is equivalent to minimizing I (f, g) over g.
Alternatively, K-L information can be conceptualized as a “distance”
between full reality and a model.

Full reality f is considered to be fixed, and only g varies over a
space of models indexed by θ . Of course, full reality is not a function
of sample size n; truth does not change as n changes. No concept
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Burnham, Anderson / MULTIMODEL INFERENCE 267

of a true model is implied here, and no assumption is made that the
models must be nested.

The criterion I (f, g) cannot be used directly in model selection
because it requires knowledge of full truth, or reality, and the para-
meters θ in the approximating models,gi (or, more explicitly,gi(x|θ)).
In data analysis, the model parameters must be estimated, and there
is often substantial uncertainty in this estimation. Models based on
estimated parameters represent a major distinction from the case in
which model parameters are known. This distinction affects how K-L
information must be used as a basis for model selection and ranking
and requires a change in the model selection criterion to that of min-
imizing expected estimated K-L information rather than minimizing
known K-L information (over the set of R models considered).

K-L information can be expressed as

I (f, g) = ∫
f (x) log(f (x))dx − ∫

f (x) log(g(x|θ))dx,

or

I (f, g) = Ef [log(f (x))] − Ef [log(g(x|θ))],

where the expectations are taken with respect to truth. The quantity
Ef [log(f (x))] is a constant (say, C) across models. Hence,

I (f, g) = C − Ef [log(g(x|θ))],

where

C = ∫
f (x) log(f (x))dx

does not depend on the data or the model. Thus, only relative expected
K-L information, Ef [log(g(x|θ))], needs to be estimated for each
model in the set.

AKAIKE’S INFORMATION CRITERION (AIC)

Akaike (1973, 1974, 1985, 1994) showed that the critical issue for
getting a rigorous model selection criterion based on K-L information
was to estimate

EyEx[log(g(x|θ̂ (y)))],
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268 SOCIOLOGICAL METHODS & RESEARCH

where the inner part is just Ef [log(g(x|θ))], with θ replaced by the
maximum likelihood estimator (MLE) of θ based on the assumed
model g and data y. Although only y denotes data, it is convenient to
conceptualize both x and y as independent random samples from the
same distribution. Both statistical expectations are taken with respect
to truth (f ). This double expectation is the target of all model selection
approaches based on K-L information (e.g., AIC, AICc, and TIC).

Akaike (1973, 1974) found a formal relationship between K-L
information (a dominant paradigm in information and coding
theory) and likelihood theory (the dominant paradigm in statistics)
(see deLeeuw 1992). He found that the maximized log-likelihood
value was a biased estimate of EyEx[log(g(x|θ̂ (y)))], but this
bias was approximately equal to K , the number of estimable para-
meters in the approximating model, g (for details, see Burnham
and Anderson 2002, chap. 7). This is an asymptotic result of fun-
damental importance. Thus, an approximately unbiased estimator
of EyEx[log(g(x|θ̂ (y)))] for large samples and “good” models is
log(L(θ̂ |data)) – K . This result is equivalent to

log(L(θ̂ |data)) − K = C − Êθ̂ [I (f, ĝ)],

where ĝ = g(·|θ̂ ).
This finding makes it possible to combine estimation (i.e., maxi-

mum likelihood or least squares) and model selection under a uni-
fied optimization framework. Akaike found an estimator of expected,
relative K-L information based on the maximized log-likelihood func-
tion, corrected for asymptotic bias:

relative Ê(K-L) = log(L(θ̂ |data)) − K.

K is the asymptotic bias correction term and is in no way arbitrary
(as is sometimes erroneously stated in the literature). Akaike (1973,
1974) multiplied this simple but profound result by –2 (for “historical
reasons”), and this became Akaike’s information criterion:

AIC = −2 log(L(θ̂ |data)) + 2K.

In the special case of least squares (LS) estimation with normally
distributed errors, AIC can be expressed as

AIC = n log(σ̂ 2) + 2K,
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where

σ̂ 2 =
∑

(ε̂i)
2

n
,

and the ε̂i are the estimated residuals from the fitted model. In this
case,K must be the total number of parameters in the model, including
the intercept and σ 2. Thus, AIC is easy to compute from the results
of LS estimation in the case of linear models or from the results of a
likelihood-based analysis in general (Edwards 1992; Azzalini 1996).

Akaike’s procedures are now called information theoretic because
they are based on K-L information (see Akaike 1983, 1992, 1994;
Parzen, Tanabe, and Kitagawa 1998). It is common to find literature
that seems to deal only with AIC as one of many types of criteria,
without any apparent understanding that AIC is an estimate of some-
thing much more fundamental: K-L information.

Assuming a set of a priori candidate models has been defined and is
well supported by the underlying science, then AIC is computed for
each of the approximating models in the set (i.e., gi , i = 1, 2, . . . , R).
Using AIC, the models are then easily ranked from best to worst based
on the empirical data at hand. This is a simple, compelling concept,
based on deep theoretical foundations (i.e., entropy, K-L informa-
tion, and likelihood theory). Assuming independence of the sample
variates, AIC model selection has certain cross-validation properties
(Stone 1974, 1977).

It seems worth noting here that the large sample approximates the
expected value of AIC (for a “good” model), inasmuch as this result
is not given in Burnham and Anderson (2002). The MLE θ̂ (y) con-
verges, as n gets large, to the θo that minimizes K-L information loss
for model g. Large-sample expected AIC converges to

E(AIC) = −2C + 2I (f, g(·|θo)) + K.

IMPORTANT REFINEMENTS: EXTENDED CRITERIA

Akaike’s approach allowed model selection to be firmly based on
a fundamental theory and allowed further theoretical work. When K

is large relative to sample size n (which includes when n is small,
for any K), there is a small-sample (second-order bias correction)
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270 SOCIOLOGICAL METHODS & RESEARCH

version called AICc,

AICc = −2 log(L(θ̂)) + 2K + 2K(K + 1)

n − K − 1

(see Sugiura 1978; Hurvich and Tsai 1989, 1995), and this should
be used unless n/K > about 40 for the model with the largest value
of K . A pervasive mistake in the model selection literature is the use
of AIC when AICc really should be used. Because AICc converges to
AIC, as n gets large, in practice, AICc should be used. People often
conclude that AIC overfits because they failed to use the second-order
criterion, AICc.

Takeuchi (1976) derived an asymptotically unbiased estimator of
relative, expected K-L information that applies in general without
assuming that model g is true (i.e., without the special conditions
underlying Akaike’s derivation of AIC). His method (TIC) requires
quite large sample sizes to reliably estimate the bias adjustment
term, which is the trace of the product of two K-by-K matrices
(i.e., tr[J (θo)I (θo)

−1]; details in Burnham and Anderson 2002:65-66,
362-74). TIC represents an important conceptual advance and further
justifies AIC. In many cases, the complicated bias adjustment term
is approximately equal to K , and this result gives further credence
to using AIC and AICc in practice. In a sense, AIC is a parsimo-
nious approach to TIC. The large-sample expected value of TIC is
E(TIC) = −2C + 2I (f, g(·|θo)) + tr[J (θo)I (θo)

−1].
Investigators working in applied data analysis have several power-

ful methods for ranking models and making inferences from empiri-
cal data to the population or process of interest. In practice, one
need not assume that the “true model” is in the set of candidates
(although this is sometimes mistakenly stated in the technical liter-
ature on AIC). These information criteria are estimates of relative,
expected K-L information and are an extension of Fisher’s likelihood
theory (Akaike 1992). AIC and AICc are easy to compute and quite
effective in a very wide variety of applications.

�i VALUES

The individual AIC values are not interpretable as they contain
arbitrary constants and are much affected by sample size (we have
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seen AIC values ranging from –600 to 340,000). Here it is imperative
to rescale AIC or AICc to

�i = AICi − AICmin,

where AICmin is the minimum of the R different AICi values (i.e., the
minimum is at i = min). This transformation forces the best model
to have � = 0, while the rest of the models have positive values.
The constant representing Ef [log(f (x))] is eliminated from these
�i values. Hence, �i is the information loss experienced if we are
using fitted model gi rather than the best model, gmin, for infer-
ence. These �i allow meaningful interpretation without the unknown
scaling constants and sample size issues that enter into AIC values.

The �i are easy to interpret and allow a quick strength-of-evidence
comparison and ranking of candidate hypotheses or models. The
larger the �i , the less plausible is fitted model i as being the best
approximating model in the candidate set. It is generally important to
know which model (hypothesis) is second best (the ranking), as well
as some measure of its standing with respect to the best model. Some
simple rules of thumb are often useful in assessing the relative merits
of models in the set: Models having �i ≤ 2 have substantial support
(evidence), those in which 4 ≤ �i ≤ 7 have considerably less sup-
port, and models having �i > 10 have essentially no support. These
rough guidelines have similar counterparts in the Bayesian literature
(Raftery 1996).

Naive users often question the importance of a �i = 10 when the
two AIC values might be, for example, 280,000 and 280,010. The
difference of 10 here might seem trivial. In fact, large AIC values
contain large scaling constants, while the�i are free of such constants.
Only these differences in AIC are interpretable as to the strength of
evidence.

LIKELIHOOD OF A MODEL GIVEN THE DATA

The simple transformation exp(−�i/2), for i = 1, 2, . . . , R,
provides the likelihood of the model (Akaike 1981) given the data:
L(gi|data). (Recall that Akaike defined his AIC after multiplying
through by –2; otherwise, L(gi|data) = exp(�i) would have been
the case, with � redefined in the obvious way). This is a likelihood
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272 SOCIOLOGICAL METHODS & RESEARCH

function over the model set in the sense that L(θ |data, gi) is the like-
lihood over the parameter space (for model gi) of the parameter θ ,
given the data (x) and the model (gi).

The relative likelihood of model i versus model j is L(gi|data)/
L(gj |data); this is termed the evidence ratio, and it does not depend
on any of the other models under consideration. Without loss of gen-
erality, we may assume that model gi is more likely than gj . Then, if
this evidence ratio is large (e.g., > 150 is quite large), model gj is a
poor model relative to model gi , based on the data.

AKAIKE WEIGHTS, wi

It is convenient to normalize the model likelihoods such that they
sum to 1 and treat them as probabilities; hence, we use

wi = exp(−�i/2)∑R

r=1 exp(−�r/2)
.

The wi , called Akaike weights, are useful as the “weight of evi-
dence” in favor of model gi(·|θ) as being the actual K-L best model
in the set (in this context, a model, g, is considered a “parameter”).
The ratios wi/wj are identical to the original likelihood ratios,
L(gi|data)/L(gj |data), and so they are invariant to the model set, but
the wi values depend on the full model set because they sum to 1.
However, wi, i = 1, . . . , R are useful in additional ways. For exam-
ple, the wi are interpreted as the probability that model i is, in fact,
the K-L best model for the data (strictly under K-L information the-
ory, this is a heuristic interpretation, but it is justified by a Bayesian
interpretation of AIC; see below). This latter inference about model
selection uncertainty is conditional on both the data and the full set
of a priori models considered.

UNCONDITIONAL ESTIMATES OF PRECISION,
A TYPE OF MULTIMODEL INFERENCE

Typically, estimates of sampling variance are conditional on a given
model as if there were no uncertainty about which model to use
(Breiman called this a “quiet scandal”; Breiman 1992). When model
selection has been done, there is a variance component due to model
selection uncertainty that should be incorporated into estimates of
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precision. That is, one needs estimates that are “unconditional” on the
selected model. A simple estimator of the unconditional variance for
the maximum likelihood estimator θ̂ from the selected (best) model is

v̂ar( ˆ̄θ) =
[

R∑
i=1

wi[v̂ar(θ̂i|gi) + (θ̂i − ˆ̄θ)2]1/2

]2

, (1)

where

ˆ̄θ =
R∑

i=1

wiθ̂i,

and ˆ̄θ represents a form of “model averaging.” The notation θ̂i here
means that the parameter θ is estimated based on model gi , but θ

is a parameter in common to all R models (even if its value is 0 in
model k, so then we use θ̂k = 0). This estimator, from Buckland,
Burnham, and Augustin (1997), includes a term for the conditional
sampling variance, given model gi (denoted as v̂ar(θ̂i|gi) here), and a

variance component for model selection uncertainty, (θ̂i − ˆ̄θ)2. These
variance components are multiplied by the Akaike weights, which
reflect the relative support, or evidence, for model i. Burnham and
Anderson (2002:206-43) provide a number of Monte Carlo results
on achieved confidence interval coverage when information-theoretic
approaches are used in some moderately challenging data sets. For
the most part, achieved confidence interval coverage is near the
nominal level. Model averaging arises naturally when the uncondi-
tional variance is derived.

OTHER FORMS OF MULTIMODEL INFERENCE

Rather than base inferences on a single, selected best model from
an a priori set of models, inference can be based on the entire set
of models. Such inferences can be made if a parameter, say θ , is in
common over all models (as θi in model gi) or if the goal is prediction.
Then, by using the weighted average for that parameter across models

(i.e., ˆ̄θ = ∑
wiθ̂i), we are basing point inference on the entire set of

models. This approach has both practical and philosophical advan-
tages. When a model-averaged estimator can be used, it often has a
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more honest measure of precision and reduced bias compared to the
estimator from just the selected best model (Burnham and Anderson
2002, chaps. 4–6). In all-subsets regression, we can consider that the
regression coefficient (parameter) βp for predictor xp is in all the
models, but for some models, βp = 0 (xp is not in those models).
In this situation, if model averaging is done over all the models, the
resultant estimator β̃p has less model selection bias than β̂p taken
from the selected best model (Burnham and Anderson 2002:151-3,
248-55).

Assessment of the relative importance of variables has often been
based only on the best model (e.g., often selected using a stepwise test-
ing procedure). Variables in that best model are considered “impor-
tant,” while excluded variables are considered not important. This
is too simplistic. Importance of a variable can be refined by mak-
ing inference from all the models in the candidate set (see Burnham
and Anderson 2002, chaps. 4–6). Akaike weights are summed for all
models containing predictor variable xj , j = 1, . . . , R; denote these
sums as w+(j). The predictor variable with the largest predictor
weight, w+(j), is estimated to be the most important; the variable
with the smallest sum is estimated to be the least important predictor.
This procedure is superior to making inferences concerning the rel-
ative importance of variables based only on the best model. This is
particularly important when the second or third best model is nearly
as well supported as the best model or when all models have nearly
equal support. (There are “design” considerations about the set of
models to consider when a goal is assessing variable importance.
We do not discuss these considerations here—the key issue is one of
balance of models with and without each variable.)

SUMMARY

At a conceptual level, reasonable data and a good model allow a
separation of “information” and “noise.” Here, information relates
to the structure of relationships, estimates of model parameters, and
components of variance. Noise, then, refers to the residuals: variation
left unexplained. We want an approximating model that minimizes
information loss, I (f, g), and properly separates noise (noninforma-
tion or entropy) from structural information. In a very important sense,
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we are not trying to model the data; instead, we are trying to model
the information in the data.

Information-theoretic methods are relatively simple to understand
and practical to employ across a very large class of empirical situa-
tions and scientific disciplines. The methods are easy to compute by
hand if necessary, assuming one has the parameter estimates, the con-
ditional variances v̂ar(θ̂i|gi), and the maximized log-likelihood values
for each of the R candidate models from standard statistical software.
Researchers can easily understand the heuristics and application of
the information-theoretic methods; we believe it is very important that
people understand the methods they employ. Information-theoretic
approaches should not be used unthinkingly; a good set of a priori
models is essential, and this involves professional judgment and inte-
gration of the science of the issue into the model set.

3. UNDERSTANDING BIC

Schwarz (1978) derived the Bayesian information criterion as

BIC = −2 ln(L) + K log(n).

As usually used, one computes the BIC for each model and selects
the model with the smallest criterion value. BIC is a misnomer as it is
not related to information theory. As with �AICi , we define �BICi as
the difference of BIC for model gi and the minimum BIC value. More
complete usage entails computing posterior model probabilities,
pi , as

pi = Pr{gi|data} = exp(− 1
2�BICi)∑R

r=1 exp(− 1
2�BICr )

(Raftery 1995). The above posterior model probabilities are based on
assuming that prior model probabilities are all 1/R. Most applications
of BIC use it in a frequentist spirit and hence ignore issues of prior
and posterior model probabilities.

The model selection literature, as a whole, is confusing as regards
the following issues about BIC (and about Bayesian model selection
in general):
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1. Does the derivation of BIC assume the existence of a true model, or,
more narrowly, is the true model assumed to be in the model set when
using BIC? (Schwarz’s derivation specified these conditions.)

2. What do the “model probabilities” mean? That is, how should we
interpret them vis-à-vis a “true” model?

Mathematically (we emphasize mathematical here), for an iid sam-
ple and a fixed set of models, there is a model—say, model gt—with
posterior probability pt such that as n → ∞, then pt → 1 and all
other pr → 0. In this sense, there is a clear target model that BIC
“seeks” to select.

3. Does the above result mean model gt must be the true model?

The answers to questions 1 and 3 are simple: no. That is, BIC (as
the basis for an approximation to a certain Bayesian integral) can
be derived without assuming that the model underlying the deriva-
tion is true (see, e.g., Cavanaugh and Neath 1999; Burnham and
Anderson 2002:293-5). Certainly, in applying BIC, the model set
need not contain the (nonexistent) true model representing full reality.
Moreover, the convergence in probability of the BIC-selected model
to a target model (under the idealization of an iid sample) does not
logically mean that that target model must be the true data-generating
distribution.

The answer to question 2 involves characterizing the target model
to which the BIC-selected model converges. That model can be char-
acterized in terms of the values of the K-L discrepancy and K for the
set of models. For model gr , the K-L “distance” of the model from the
truth is denoted I (f, gr). Often, gr ≡ gr(x|θ) would denote a para-
metric family of models for θ ∈ �, with � being a Kr-dimensional
space. However, we take gr generally to denote the specific family
member for the unique θo ∈ �, which makes gr , in the family of
models, closest to the truth in K-L distance. For the family of models
gr(x|θ), θ ∈ �, as n → ∞ (with iid data), the MLE, and the Bayesian
point estimator of θ converge to θo. Thus, asymptotically, we can
characterize the particular model that gr represents: gr ≡ gr(x|θo)

(for details, see Burnham and Anderson 2002 and references cited
therein). Also, we have the set of corresponding minimized K-L dis-
tances: {I (f, gr), r = 1, . . . , R}. For an iid sample, we can represent
these distances as I (f, gr) = nI1(f, gr), where the I1(f, gr) do not
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depend on sample size (they are for n = 1). The point of this repre-
sentation is to emphasize that the effect of increasing sample size is
to scale up these distances.

We may assume, without loss of generality, that these models
are indexed worst (g1) to best (gR) in terms of their K-L distance
and dimension Kr ; hence, I (f, g1) ≥ I (f, g2) ≥ · · · ≥ I (f, gR).
Figures 1 through 3 show three hypothetical scenarios of how these
ordered distances might appear for R = 12 models, for unspecified
n (since n serves merely to scale the y-axis). Let Q be the tail-end
subset of the so-ordered models, defined by {gr, r ≥ t, 1 ≤ t ≤
R|I (f, gt−1) > I (f, gt) = · · · = I (f, gR)}. Set Q exists because
t = R (and t = 1) is allowed, in which case the K-L best model (of
the R models) is unique. For the case when subset Q contains more
than one model (i.e., 1 ≤ t < R), then all of the models in this sub-
set have the same K-L distance. Therefore, we further assume that
models gt to gR are ordered such that Kt < Kt+1 ≤ · · · ≤ KR (in
principle, Kt = Kt+1 could occur).

Thus, model gt is the most parsimonious model of the subset of
models that are tied for the K-L best model. In this scenario (iid
sample, fixed model set, n → ∞), the BIC-selected model converges
with probability 1 to model gt , and pt converges to 1. However, unless
I (f, gt) = 0, model gt is not identical to f (nominally considered as
truth), so we call it a quasi-true model. The only truth here is that in
this model set, models gt+1 to gR provide no improvement over model
gt—they are unnecessarily general (independent of sample size). The
quasi-true model in the set of R models is the most parsimonious
model that is closest to the truth in K-L information loss (model 12
in Figures 1 and 3, model 4 in Figure 2).

Thus, the Bayesian posterior model probability pr is the inferred
probability that model gr is the quasi-true model in the model set.
For a “very large” sample size, model gt is the best model to use for
inference. However, for small or moderate sample sizes obtained in
practice, the model selected by BIC may be much more parsimonious
than model gt , especially if the quasi-true model is the most general
model, gR, as in Figure 1. The concern for realistic sample sizes, then,
is that the BIC-selected model may be underfit at the given n. The
model selected by BIC approaches the BIC target model from below,
as n increases, in terms of the ordering we imposed on the model
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Figure 1: Values of Kullback-Leibler (K-L) Information Loss, I( f, gr (·|θo)) ≡ nI1
( f, gr (·|θo)), Illustrated Under Tapering Effects for 12 Models Ordered by
Decreasing K-L Information

NOTE: Sample size n, and hence the y-axis is left unspecified; this scenario favors Akaike
information criterion (AIC)–based model selection.

set. This selected model can be quite far from the BIC theoretical
target model at sample sizes seen in practice when tapering effects
are present (Figure 1). The situation in which BIC performs well is
that shown in Figure 2, with suitably large n.

Moreover, the BIC target model does not depend on sample size n.
However, we know that the number of parameters we can expect to
reliably estimate from finite data does depend on n. In particular, if the
set of ordered (large to small) K-L distances shows tapering effects
(Figure 1), then a best model for making inference from the data may
well be a more parsimonious model than the BIC target model (g12

in Figure 1), such as the best expected estimated K-L model, which
is the AIC target model. As noted above, the target model for AIC
is the model that minimizes Ef [I (f, gr(·|θ̂ ))], r = 1, . . . , R. This
target model is specific for the sample size at hand; hence, AIC seeks
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Figure 2: Values of Kullback-Leibler (K-L) Information Loss, I( f, gr (·|θo)) ≡ nI1
( f, gr (·|θo)), Illustrated When Models 1 (Simplest) to 12 (Most General) Are
Nested With Only a Few Big Effects

NOTE: Model 4 is a quasi-true model, and Models 5 to 12 are too general. Sample size n, and
hence the y-axis is left unspecified; this scenario favors Bayesian information criterion (BIC)–
based model selection.

a best model as its target, where best is heuristically a bias-variance
trade-off (not a quasi-true model).

In reality, one can only assert that BIC model selection is asymp-
totically consistent for the (generally) unique quasi-true model in the
set of models. But that BIC-selected model can be quite biased at
not-large n as an estimator of its target model. Also, from an infer-
ence point of view, observing that pt is nearly 1 does not justify an
inference that model gt is truth (such a statistical inference requires
an a priori certainty that the true model is in the model set). This
issue is intimately related to the fact that only differences such as
I (f, gr) − I (f, gt) are estimable from data (these K-L differences
are closely related to AICr – AICt differences, hence to the �).
Hence, with model selection, the effect is that sometimes people are
erroneously lulled into thinking (assuming) that I (f, gt) is 0 and
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hence thinking that they have found (the model for) full reality. These
fitted models sometimes have seven or fewer parameters; surely, full
reality cannot be so simple in the life sciences, economics, medicine,
and the social sciences.

4. AIC AS A BAYESIAN RESULT

BIC model selection arises in the context of a large-sample approxi-
mation to the Bayes factor, conjoined with assuming equal priors on
models. The BIC statistic can be used more generally with any set of
model priors. Let qi be the prior probability placed on model gi . Then
the Bayesian posterior model probability is approximated as

Pr{gi|data} = exp(− 1
2�BICi)qi∑R

r=1 exp(− 1
2�BICr )qr

(this posterior actually depends on not just the data but also on the
model set and the prior distribution on those models). Akaike weights
can be easily obtained by using the model prior qi as proportional to

exp

(
1

2
�BICi

)
. exp

(
−1

2
�AICi

)
.

Clearly,

exp

(
−1

2
�BICi

)
. exp

(
1

2
�BICi

)
. exp

(
−1

2
�AICi

)
= exp

(
−1

2
�AICi

)
.

Hence, with the implied prior probability distribution on models,
we get

pi = Pr{gi|data} = exp(− 1
2�BICi)qi∑R

r=1 exp(− 1
2�BICr )qr

= exp(− 1
2�AICi)∑R

r=1 exp(− 1
2�AICr )

= wi,

which is the Akaike weight for model gi .
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This prior probability on models can be expressed in a simple
form as

qi = C . exp

(
1

2
Ki log(n) − Ki

)
, (2)

where

C = 1∑R

r=1 exp( 1
2Kr log(n) − Kr)

. (3)

Thus, formally, the Akaike weights from AIC are (for large samples)
Bayesian posterior model probabilities for this model prior (more
details are in Burnham and Anderson 2002:302-5).

Given a model g(x|θ), the prior distribution on θ will not and
should not depend on sample size. This is very reasonable. Probably
following from this line of reasoning, traditional Bayesian thinking
about the prior distribution on models has been that qr, r = 1, . . . , R

would also not depend on n or Kr . This approach is neither necessary
nor reasonable. There is limited information in a sample, so the more
parameters one estimates, the poorer the average precision becomes
for these estimates. Hence, in considering the prior distribution q

on models, we must consider the context of what we are assuming
about the information in the data, as regards parameter estimation, and
the models as approximations to some conceptual underlying “full-
truth” generating distribution. While qr = 1/R seems reasonable and
innocent, it is not always reasonable and is never innocent; that is, it
implies that the target model is truth rather than a best approximating
model, given that parameters are to be estimated. This is an important
and unexpected result.

It is useful to think in terms of effects, for individual parameters,
as |θ |/se(θ̂). The standard error depends on sample size; hence, effect
size depends on sample size. We would assume for such effects that
few or none are truly zero in the context of analysis of real data from
complex observational, quasi-experimental, or experimental studies
(i.e., Figure 1 applies). In the information-theoretic spirit, we assume
meaningful, informative data and thoughtfully selected predictors and
models (not all studies meet these ideals). We assume tapering effects:
Some may be big (values such as 10 or 5), but some are only 2, 1, 0.5,
or less. We assume we can only estimate n/m parameters reliably;
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m might be 20 or as small as 10 (but surely, m � 1 and m � 100).
(In contrast, in the scenario in which BIC performs better than AIC,
it is assumed that there are a few big effects defining the quasi-true
model, which is itself nested in several or many overly general models;
i.e., Figure 2 applies).

These concepts imply that the size (i.e., K) of the appropriate model
to fit the data should logically depend on n. This idea is not foreign to
the statistical literature. For example, Lehman (1990:160) attributes
to R. A. Fisher the quote, “More or less elaborate forms will be suit-
able according to the volume of the data.” Using the notation k0 for the
optimal K , Lehman (1990) goes on to say, “The value of k0 will tend
to increase as the number of observations increases and its determina-
tion thus constitutes implementation of Fisher’s suggestion” (p. 162).
Williams (2001) states, “We CANNOT ignore the degree of resolu-
tion of the experiment when choosing our prior” (p. 235).

These ideas have led to a model prior wherein conceptually,
qr should depend on n and Kr . Such a prior (class of priors, actually)
is called a savvy prior. A savvy (definition: shrewdly informed) prior
is logical under the information-theoretic model selection paradigm.
We will call the savvy prior on models given by

qi = C . exp

(
1

2
Ki log(n) − Ki

)
(formula 3b gives C) the K-L model prior. It is unique in terms of pro-
ducing the AIC as approximately a Bayesian procedure (approximate
only because BIC is an approximation).

Alternative savvy priors might be based on distributions such as
a modified Poisson (i.e., applied to only Kr, r = 1, . . . , R), with
expected K set to be n/10. We looked at this idea in an all-subsets
selection context and found that the K-L model prior produces a more
spread-out (higher entropy) prior as compared to such a Poisson-based
savvy prior when both produced the same E(K). We are not wanting
to start a cottage industry of seeking a best savvy prior because model-
averaged inference seems very robust to model weights when those
weights are well founded (as is the case for Akaike weights).

The full implications of being able to interpret AIC as a Bayesian
result have not been determined and are an issue outside the scope of
this study. It is, however, worth mentioning that the model-averaged
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Bayesian posterior is a mixture distribution of each model-specific
posterior distribution, with weights being the posterior model prob-
abilities. Therefore, for any model-averaged parameter estimator,
particularly for model-averaged prediction, alternative variance and
covariance formulas are

v̂ar( ˆ̄θ) =
R∑

i=1

wi[v̂ar(θ̂i|gi) + (θ̂i − ˆ̄θ)2], (4)

ĉov( ˆ̄θ, ˆ̄τ) =
R∑

i=1

wi[ĉov(θ̂i, τ̂i|gi) + (θ̂i − ˆ̄θ)(τ̂i − ˆ̄τ)]. (5)

The formula given in Burnham and Anderson (2002:163-4) for
such an unconditional covariance is ad hoc; hence, we now recom-
mend the above covariance formula. We have rerun many simulations
and examples from Burnham and Anderson (1998) using variance
formula (4) and found that its performance is almost identical to that
of the original unconditional variance formula (1) (see also Burnham
and Anderson 2002:344-5). Our pragmatic thought is that it may well
be desirable to use formula (4) rather than (1), but it is not necessary,
except when covariances (formula 5) are also computed.

5. RATIONAL CHOICE OF AIC OR BIC

FREQUENTIST VERSUS BAYESIAN IS NOT THE ISSUE

The model selection literature contains, de facto, a long-running
debate about using AIC or BIC. Much of the purely mathematical
or Bayesian literature recommends BIC. We maintain that almost all
the arguments for the use of BIC rather than AIC, with real data, are
flawed and hence contribute more to confusion than to understand-
ing. This assertion by itself is not an argument for AIC or against
BIC because there are clearly defined contexts in which each method
outperforms the other (Figure 1 or 2 for AIC or BIC, respectively).

For some people, BIC is strongly preferred because it is a Bayesian
procedure, and they think AIC is non-Bayesian. However, AIC model
selection is just as much a Bayesian procedure as is BIC selection.
The difference is in the prior distribution placed on the model set.
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Hence, for a Bayesian procedure, the argument about BIC versus AIC
must reduce to one about priors on the models.

Alternatively, both AIC and BIC can be argued for or derived under
a non-Bayesian approach. We have given above the arguments for
AIC. When BIC is so derived, it is usually motivated by the mathe-
matical context of nested models, including a true model simpler than
the most general model in the set. This corresponds to the context
of Figure 2, except with the added (but not needed) assumption that
I (f, gt) = 0. Moreover, the goal is taken to be the selection of this
true model, with probability 1 as n → ∞ (asymptotic consistency or
sometimes dimension consistency).

Given that AIC and BIC model selection can both be derived as
either frequentist or Bayesian procedures, one cannot argue for or
against either of them on the basis that it is or is not Bayesian or non-
Bayesian. What fundamentally distinguishes AIC versus BIC model
selection is their different philosophies, including the exact nature of
their target models and the conditions under which one outperforms
the other for performance measures such as predictive mean square
error. Thus, we maintain that comparison, hence selection for use, of
AIC versus BIC must be based on comparing measures of their perfor-
mance under conditions realistic of applications. (A now-rare version
of Bayesian philosophy would deny the validity of such hypothetical
frequentist comparisons as a basis for justifying inference methodo-
logy. We regard such nihilism as being outside of the evidential spirit
of science; we demand evidence.)

DIFFERENT PHILOSOPHIES AND TARGET MODELS

We have given the different philosophies and contexts in which
the AIC or BIC model selection criteria arise and can be expected
to perform well. Here we explicitly contrast these underpinnings in
terms of K-L distances for the model set {gr(x|θo), r = 1, . . . , R},
with reference to Figures 1, 2, and 3, which represent I (f, gr) =
nI1(f, gr). Sample size n is left unspecified, except that it is large
relative to KR, the largest value of Kr , yet of a practical size (e.g.,
KR = 15 and n = 200).

Given that the model parameters must be estimated so that parsi-
mony is an important consideration, then just by looking at Figure 1,
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we cannot say what is the best model to use for inference as a model
fitted to the data. Model 12, as g12(x|θo) (i.e., at θ being the K-L
distance-minimizing parameter value in � for this class of models),
is the best theoretical model, but g12(x|θ̂ ) may not be the best model
for inference. Model 12 is the target model for BIC but not for AIC.
The target model for AIC will depend on n and could be, for example,
Model 7 (there would be an n for which this would be true).

Despite that the target of BIC is a more general model than the target
model for AIC, the model most often selected here by BIC will be less
general than Model 7 unless n is very large. It might be Model 5 or 6.
It is known (from numerous papers and simulations in the literature)
that in the tapering-effects context (Figure 1), AIC performs better
than BIC. If this is the context of one’s real data analysis, then AIC
should be used.

A very different scenario is given by Figure 2, wherein there are a
few big effects, all captured by Model 4 (i.e., g4(x|θo)), and Models
5 to 12 do not improve at all on Model 4. This scenario generally
corresponds with Model 4 being nested in Models 5 to 12, often as
part of a full sequence of nested models, gi ⊂ gi+1. The obvious target
model for selection is Model 4; Models 1 to 3 are too restrictive, and
models in the class of Models 5 to 12 contain unneeded parameters
(such parameters are actually zero). Scenarios such as that in Figure 2
are often used in simulation evaluations of model selection, despite
that they seem unrealistic for most real data, so conclusions do not
logically extend to the Figure 1 (or Figure 3) scenario.

Under the Figure 2 scenario and for sufficiently large n, BIC often
selects Model 4 and does not select more general models (but may
select less general models). AIC will select Model 4 much of the time,
will tend not to select less general models, but will sometimes select
more general models and do so even if n is large. It is this scenario
that motivates the model selection literature to conclude that BIC is
consistent and AIC is not consistent. We maintain that this conclu-
sion is for an unrealistic scenario with respect to a lot of real data as
regards the pattern of the K-L distances. Also ignored in this
conclusion is the issue that for real data, the model set itself should
change as sample size increases by orders of magnitude. Also, infer-
entially, such “consistency” can only imply a quasi-true model, not
truth as such.
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Figure 3: Values of Kullback-Leibler (K-L) Information Loss, I( f, gr (·|θo)) ≡ nI1
( f, gr (·|θo)), Illustrated When Models 1 (Simplest) to 12 (Most General) Are
Nested With a Few Big Effects (Model 4), Then Much Smaller Tapering
Effects (Models 5-12)

NOTE: Whether the Bayesian information criterion (BIC) or the Akaike information criterion
(AIC) is favored depends on sample size.

That reality could be as depicted in Figure 2 seems strained, but
it could be as depicted in Figure 3 (as well as Figure 1). The latter
scenario might occur and presents a problematic case for theoretical
analysis. Simulation seems needed there and, in general, to evaluate
model selection performance under realistic scenarios. For Figure 3,
the target model for BIC is also Model 12, but Model 4 would likely
be a better choice at moderate to even large sample sizes.

FULL REALITY AND TAPERING EFFECTS

Often, the context of data analysis with a focus on model selection
is one of many covariates and predictive factors (x). The conceptual
truth underlying the data is about what is the marginal truth just for
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this context and these measured factors. If this truth, conceptually
as f (y|x), implies that E(y|x) has tapering effects, then any fitted
good model will need tapering effects. In the context of a linear
model, and for an unknown (to us) ordering of the predictors,
then for E(y|x) = β0 + β1x1 + · · · βpxp, our models will have
|β1/se(β̂1)| > |β2/se(β̂2)| > · · · > |βp/se(β̂p)| > 0(β here is the
K-L best parameter value, given truth f and model g). It is pos-
sible that |βp/se(β̂p)| would be very small (almost zero) relative
to |β1/se(β̂1)|. For nested models, appropriately ordered, such taper-
ing effects would lead to graphs such as Figure 1 or 3 for either the
K-L values or the actual |βr/se(β̂r)|.

Whereas tapering effects for full reality are expected to require
tapering effects in models and hence a context in which AIC selec-
tion is called for, in principle, full reality could be simple, in some
sense, and yet our model set might require tapering effects. The
effects (tapering or not) that matter as regards whether AIC (Figure 1)
or BIC (Figure 2) model selection is the method of choice are the
K-L values I (f, gr(·|βo)), r = 1, . . . , R, not what is implicit in
truth itself. Thus, if the type of models g in our model set are a
poor approximation to truth f , we can expect tapering effects for the
corresponding K-L values. For example, consider the target model
E(y|x) = 17 + (0.3(x1x2)

0.5) + exp(−0.5(x3(x4)
2)). However, if

our candidate models are all linear in the predictors (with main effects,
interactions, quadratic effects, etc.), we will have tapering effects in
the model set, and AIC is the method of choice. Our conclusion is that
we nearly always face some tapering effect sizes; these are revealed
as sample size increases.

6. ON PERFORMANCE COMPARISONS OF AIC AND BIC

There are now ample and diverse theories for AIC- and BIC-based
model selection and multimodel inference, such as model averaging
(as opposed to the traditional “use only the selected best model for
inference”). Also, it is clear that there are different conditions under
which AIC or BIC should outperform the other one in measures such
as estimated mean square error. Moreover, performance evaluations
and comparisons should be for actual sample sizes seen in practice,

 © 2004 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF FLORIDA Smathers Libraries on February 27, 2007 http://smr.sagepub.comDownloaded from 

http://smr.sagepub.com


288 SOCIOLOGICAL METHODS & RESEARCH

not just asymptotically; partly, this is because if sample size increased
substantially, we should then consider revising the model set.

There are many simulation studies in the statistical literature on
either AIC or BIC alone or often comparing them and making
recommendations on which one to use. Overall, these studies have led
to confusion because they often have failed to be clear on the condi-
tions and objectives of the simulations or generalized (extrapolated,
actually) their conclusions beyond the specific conditions of the study.
For example, were the study conditions only the Figure 2 scenarios
(all too often, yes), and so BIC was favored? Were the Figure 1, 2,
and 3 scenarios all used but the author’s objective was to select the
true model, which was placed in the model set (and usually was a
simple model), and hence results were confusing and often disap-
pointing? We submit that many reported studies are not appropriate as
a basis for inference about which criterion should be used for model
selection with real data.

Also, many studies, even now, only examine operating properties
(e.g., confidence interval coverage and mean square error) of infer-
ence based on the use of just the selected best model (e.g., Meyer and
Laud 2002). There is a strong need to evaluate operating properties
of multimodel inference in scenarios realistic of real data analysis.
Authors need to be very clear about the simulation scenarios used
vis-à-vis the generating model: Is it simple or complex, is it in the
model set, and are there tapering effects? One must also be careful
to note if the objective of the study was to select the true model or
if it was to select a best model, as for prediction. These factors and
considerations affect the conclusions from simulation evaluations of
model selection. Authors should avoid sweeping conclusions based on
limited, perhaps unrealistic, simulation scenarios; this error is com-
mon in the literature. Finally, to have realistic objectives, the infer-
ence goal ought to be that of obtaining best predictive inference or
best inference about a parameter in common to all models, rather than
“select the true model.”

MODEL-AVERAGED VERSUS BEST-MODEL INFERENCE

When prediction is the goal, one can use model-averaged inference
rather than prediction based on a single selected best model (hereafter
referred to as “best”).

 © 2004 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF FLORIDA Smathers Libraries on February 27, 2007 http://smr.sagepub.comDownloaded from 

http://smr.sagepub.com


Burnham, Anderson / MULTIMODEL INFERENCE 289

It is clear from the literature that has evaluated or even considered
model-averaged inferences compared to the best-model strategy
that model averaging is superior (e.g., Buckland et al. 1997;
Hoeting et al. 1999; Wasserman 2000; Breiman 2001; Burnham and
Anderson 2002; Hansen and Kooperberg 2002). The method known
as boosting is a type of model averaging (Hand and Vinciotti
2003:130; this article is also useful reading for its comments on truth
and models). However, model-averaged inference is not common,
nor has there been much effort to evaluate it even in major publica-
tions on model selection or in simulation studies on model selection;
such studies all too often look only at the best-model strategy. Model
averaging and multimodel inference in general are deserving of more
research.

As an example of predictive performance, we report here some
results of simulation based on the real data used in Johnson (1996).
These data were originally taken to explore multiple regression to
predict the percentage of body fat based on 13 predictors (body mea-
surements) that are easily measured. We chose these data as a focus
because they were used by Hoeting et al. (1999) in illustrating BIC
and Bayesian model averaging (see also Burnham and Anderson
2002:268-84). The data are from a sample of 252 males, ages 21
to 81, and are available on the Web in conjunction with Johnson
(1996). The Web site states, “The data were generously supplied by
Dr. A. Garth Fisher, Human Performance Research Center, Brigham
Young University, Provo, Utah 84602, who gave permission to freely
distribute the data and use them for non-commercial purposes.”

We take the response variable as y = 1/D; D is measured body
density (observed minimum and maximum are 0.9950 and 1.1089,
respectively). The correlations among the 13 predictors are strong
but not extreme, are almost entirely positive, and range from −0.245
(age and height) to 0.941 (weight and hip circumference). The design
matrix is full rank. The literature (e.g., Hoeting et al. 1999) supports
that the measurements y and x = (x1, . . . , x13)

′ on a subject can
be suitably modeled as multivariate normal. Hence, we base simula-
tion on a joint multivariate model mimicking these 14 variables by
using the observed variance-covariance matrix as truth. From that
full 14 × 14 observed variance-covariance matrix for y and x, as
well as the theory of multivariate normal distributions, we computed
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TABLE 1: Effects, as β/se(β̂), in the Models Used for Monte Carlo Simulation Based on
the Body Fat Data to Get Predictive Mean Square Error Results by Model
Selection Method (AICc or BIC) and Prediction Strategy (Best Model or
Model Averaged)

i β/se(β̂) Variable j

1 11.245 6
2 −3.408 13
3 2.307 12
4 −2.052 4
5 1.787 8
6 −1.731 2
7 1.691 1
8 −1.487 7
9 1.422 11

10 1.277 10
11 −0.510 5
12 −0.454 3
13 0.048 9

NOTE: Model i has the effects listed on lines 1 to i, and its remaining β are 0. AIC = Akaike
information criterion; BIC = Bayesian information criterion.

for the full linear model of y, regressed on x, the theoretical regres-
sion coefficients and their standard errors. The resultant theoretical
effect sizes, βi /se(β̂i), taken as underlying the simulation, are given
in Table 1, ordered from largest to smallest by their absolute values.
Also shown is the index (j ) of the actual predictor variable as ordered
in Johnson (1996).

We generated data from 13 models that range from having only
one huge effect size (generating Model 1) to the full tapering-effects
model (Model 13). This was done by first generating a value of
x from its assumed 13-dimensional “marginal” multivariate distri-
bution. Then we generated y = E(y|x) + ε (ε was independent
of x) for 13 specific models of Ei(y|x) with ε ∼normal (0, σ 2

i ),
i = 1, . . . , 13. Given the generating structural model on expected y,
σi was specified so that the total expected variation (structural plus
residual) in y was always the same and was equal to the total vari-
ation of y in the original data. Thus, σ1, . . . , σ13 are monotonically
decreasing.

For the structural data-generating models, we used E1(y|x) =
β0 + β6x6 (generating Model 1), E2(y|x) = β0 + β6x6 + β13x13

(generating Model 2), and so forth. Without loss of generality, we
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usedβ0 = 0. Thus, from Table 1, one can perceive the structure of each
generating model reported on in Table 2. Theory asserts that under
generating Model 1, BIC is relatively more preferred (leads to bet-
ter predictions), but as the sequence of generating models progresses,
K-L-based model selection becomes increasingly more preferred.

Independently from each generating model, we generated 10,000
samples of x and y, each of size n = 252. For each such sample,
all possible 8,192 models were fit; that is, all-subsets model selec-
tion was used based on all 13 predictor variables (regardless of the
data-generating model). Model selection was then applied to this set
of models using both AICc and BIC to find the corresponding sets
of model weights (posterior model probabilities) and hence also the
best model (with n = 252, and maximum K being 15 AICc rather
than AIC should be used). The full set of simulations took about two
months of CPU time on a 1.9-GHz Pentium 4 computer.

The inference goal in this simulation was prediction. Therefore,
after model fitting for each sample, we generated, from the same gen-
erating model i, one additional statistically independent value of x

and then of E(y) ≡ Ei(y|x). Based on the fitted models from the
generated sample data and this new x, E(y|x) was predicted (hence,
Ê(y)), either from the selected best model or as the model-averaged
prediction. The measure of prediction performance used was pre-
dictive mean square error (PMSE), as given by the estimated (from
10,000 trials) expected value of (Ê(y) − Ei(y|x))2.

Thus, we obtained four PMSE values from each set of 10,000 trials:
PMSE for both the “best” and “model-averaged” strategies for both
AICc and BIC. Denote these as PMSE(AICc, best), PMSE(AICc, ma),
PMSE(BIC, best), and PMSE(BIC, ma), respectively. Absolute values
of these PMSEs are not of interest here because our goal is comparison
of methods; hence, in Table 2, we report only ratios of these PMSEs.
The first two columns of Table 2 compare results for AICc to those
for BIC based on the ratios

PMSE(AICc, best)

PMSE(BIC, best)
, column 1, Table 2

PMSE(AICc, ma)

PMSE(BIC, ma)
, column 2, Table 2.
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TABLE 2: Ratios of Predictive Mean Square Error (PMSE) Based on Monte Carlo
Simulation Patterned After the Body Fat Data, With 10,000 Independent
Trials for Each Generating Model

PMSE Ratios of PMSE Ratios for
AICc÷ BIC Model Averaged ÷ Best

Generating Best Model
Model i Model Averaged AICc BIC

1 2.53 1.97 0.73 0.94
2 1.83 1.51 0.80 0.97
3 1.18 1.15 0.83 0.85
4 1.01 1.05 0.84 0.81
5 0.87 0.95 0.84 0.77
6 0.78 0.88 0.87 0.77
7 0.77 0.86 0.86 0.77
8 0.80 0.87 0.85 0.78
9 0.80 0.87 0.85 0.78

10 0.72 0.81 0.85 0.75
11 0.74 0.82 0.84 0.76
12 0.74 0.81 0.84 0.76
13 0.74 0.82 0.83 0.75

NOTE: Margin of error for each ratio is 3 percent; generating model i has exactly i effects,
ordered largest to smallest for Models 1 to 13 (see Table 1 and text for details). AIC = Akaike
information criterion; BIC = Bayesian information criterion.

Thus, if AICc produces better prediction results for generating
model i, the value in that row for columns 1 or 2 is < 1; otherwise,
BIC is better.

The results are as qualitatively expected: Under a Figure 2 scenario
with only a few big effects (or no effects), such as for generating
Models 1 or 2, BIC outperforms AICc. But as we move more into
a tapering-effects scenario (Figure 1), AICc is better. We also see
from Table 2 that, by comparing columns 1 and 2, the performance
difference of AICc versus BIC is reduced under model averaging:
Column 2 values are generally closer to 1 than are column 1 values,
under the same generating model.

Columns 3 and 4 of Table 2 compare the model-averaged to best-
model strategy within AICc or BIC methods:

PMSE(AICc, ma)

PMSE(AICc, best)
, column 3, Table 2
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PMSE(BIC, ma)

PMSE(BIC, best)
, column 4, Table 2.

Thus, if model-averaged prediction is more accurate than best-
model prediction, the value in column 3 or 4 is < 1, which it always
is. It is clear that here, for prediction, model averaging is always better
than the best-model strategy. The literature and our own other research
on this issue suggest that such a conclusion will hold generally.
A final comment about information in Table 2, columns 3 and 4: The
smaller the ratio, the more beneficial the model-averaging strategy
compared to the best-model strategy.

In summary, we maintain that the proper way to compare AIC- and
BIC-based model selection is in terms of achieved performance, espe-
cially prediction but also confidence interval coverage. In so doing, it
must be realized that these two criteria for computing model weights
have their optimal performance under different conditions: AIC for
tapering effects and BIC for when there are no effects at all or a few
big effects and all others are zero effects (no intermediate effects, no
tapering effects). Moreover, the extant evidence strongly supports that
model averaging (where applicable) produces better performance for
either AIC or BIC under all circumstances.

GOODNESS OF FIT AFTER MODEL SELECTION

Goodness-of-fit theory about the selected best model is a subject
that has been almost totally ignored in the model selection litera-
ture. In particular, if the global model fits the data, does the selected
model also fit? This appears to be a virtually unexplored question;
we have not seen it rigorously addressed in the statistical literature.
Post–model selection fit is an issue deserving of attention; we present
here some ideas and results on the issue. Full-blown simulation eval-
uation would require a specific context of a data type and a class of
models, data generation, model fitting, selection, and then application
of an appropriate goodness-of-fit test (either absolute or at least rel-
ative to the global model). This would be time-consuming, and one
might wonder if the inferences would generalize to other contexts.

A simple, informative shortcut can be employed to gain insights
into the relative fit of the selected best model compared to a global
model assumed to fit the data. The key to this shortcut is to deal
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with a single sequence of nested models, g1 ⊂ · · · ⊂ gi ⊂ gi+1

⊂ · · · ⊂ gR. It suffices that each model increments by one parameter
(i.e., Ki+1 = Ki + 1), and K1 is arbitrary; K1 = 1 is convenient as
then Ki = i. In this context,

AICi = AICi+1 + χ 2
1 (λi) − 2

and

BICi = BICi+1 + χ 2
1 (λi) − log(n),

where χ 2
1 (λi) is a noncentral chi-square random variable on 1 degree

of freedom with noncentrality parameter λi . In fact, χ 2
1 (λi) is the

likelihood ratio test statistic between models gi and gi+1 (a type of
relative, not absolute, goodness-of-fit test). Moreover, we can use
λi = nλ1i , where nominally, λ1i is for sample size 1. These λ are
the parameter effect sizes, and there is an analogy between them
and the K-L distances here: The differences I (f, gi) − I (f, gi+1) are
analogous to and behave like these λi .

Building on these ideas (cf. Burnham and Anderson 2002:412-14),
we get

AICi = AICR +
R−1∑
j=i

(χ 2
1 (nλ1j ) − 2)

or, for AICc,

AICci = AICcR

+
R−1∑
j=i

[
χ 2

1 (nλ1j ) − 2 + 2Ki(Ki + 1)

n − Ki − 1
− 2Ki + 1)(Ki + 2)

n − Ki − 2

]
,

and

BICi = BICR +
R−1∑
j=i

(χ 2
1 (nλ1j ) − log(n)).

To generate these sequences of model selection criteria in a coher-
ent manner from the underlying “data,” it suffices to, for example,
generate the AICi based on the above and then use

AICci = AICi + 2Ki(Ki + 1)

n − Ki − 1
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and

BICi = AICi − 2Ki + Ki log(n)

to get the AICci and BICi . Because only differences in AICc or BIC
values matter, it suffices to set AICR to a constant. Thus, for specified
R, K1, n, and λ1i , we generate the needed R − 1 independent non-
central chi-square random variables. Then we compute a realization
of the sequences of AIC and BIC values for the underlying nested
model sequence. We can then determine the best model under each
model selection criterion.

If model gh is selected as best under a criterion, for h < R, then
the usual goodness-of-fit test statistic (for fit relative to the global
model gR) is

χ 2
v =

R−1∑
j=h

χ 2
1 (nλ1j ),

with degrees of freedom v = KR − Kh(= R − h when Ki = i).
Hence, we can simulate having one set of data, doing both AIC (or
AICc) and BIC model selection for that data, and then check the good-
ness of fit of each selected best model, relative to the baseline global
model gR. The results apply to discrete or continuous data but do
assume “large” n.

These simulations generate a lot of tabular information, so we
present below only a typical example. In general, we recommend that
interested readers run their own simulations (they are easy to do and
run quickly; SAS code for doing this is available from KPB). We have
done a lot of such simulation to explore primarily one question: After
model selection with AIC or BIC, does the selected model always
fit, as judged by the usual likelihood ratio statistic p value that tests
gR versus the selected model (this test ignores that a selection pro-
cess was done)? Also, do the results differ for AIC versus BIC? We
found that for large enough n, so that AICc and AIC are nearly the
same, then for a Figure 1 scenario (i.e., realistic data), (1) the AIC-
selected model always fits relative to the global model, and (2) the
BIC-selected model too often (relative to the α-level of the test) fails
to fit the data. Under a scenario such as in Figure 2, the BIC-selected
model generally fits the data; goodness-of-fit (GOF) results for AIC
model selection are about the same for all three scenarios.
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TABLE 3: Simulation of Goodness-of-Fit (GOF) Results After Model Selection for
R = 10 Nested Models, Ki = i, Effects λ1(1) to λ1(10) as 0.3, 0.2, 0.15, 0.1,
0.05, 0.025, 0.01, 0.005, 0.001, and 0.0003, Respectively

Percentiles
Relative of p Value

Sample Selection Frequency Frequency Mean of

Size n Method Not Fitting of h < 10 GOF p 1 5 10 25

50 AICc 0.026 9,961 0.470 0.030 0.073 0.118 0.246
BIC 0.115 9,995 0.352 0.006 0.022 0.044 0.117

100 AICc 0.004 9,809 0.511 0.063 0.120 0.171 0.296
BIC 0.159 9,995 0.470 0.003 0.014 0.030 0.087

200 AICc 0.004 9,569 0.531 0.096 0.155 0.202 0.328
BIC 0.217 9,997 0.273 0.002 0.009 0.019 0.062

500 AICc 0.000 9,178 0.546 0.127 0.178 0.224 0.345
BIC 0.281 9,992 0.236 0.001 0.005 0.011 0.041

1,000 AICc 0.000 8,662 0.537 0.136 0.176 0.218 0.339
BIC 0.320 9,978 0.227 0.001 0.004 0.009 0.035

10,000 AICc 0.000 3,761 0.448 0.159 0.171 0.187 0.244
BIC 0.509 9,295 0.135 0.000 0.001 0.002 0.009

NOTE: There were 10,000 trials at each n, α = 0.05; model g10 was considered to always
fit, so results on GOF relate only to models gi , i < 10. AIC = Akaike information criterion;
BIC = Bayesian information criterion.

To be more precise, let α = 0.05, so we say the selected model
fits if the (relative) goodness-of-fit test p value > .05. Then, for the
AIC-selected model, we almost always find p > .05. However, for
the BIC-selected model, under tapering effects, the probability that
p < .05 occurs can be much higher than the nominal α = 0.05. For
example, let R = 10, Ki = i, and λ1(1) to λ1(10) be 0.3, 0.2, 0.15,
0.1, 0.05, 0.025, 0.01, 0.005, 0.001, and 0.0003, respectively (mim-
ics Figure 1). Table 3 gives some of these goodness-of-fit results for
AICc and BIC under this scenario for a few values of n. In Table 3,
the key column is column 3. It is the relative frequency at which the
selected best-model gh did not fit relative to Model 10 (the global
model here), in the sense that its GOF p value was ≤ .05. In calcu-
lating this statistic, if the selected model was Model 10, we assumed
the model fit. Hence, the lack-of-fit statistic in Table 3 (column 3)
would be larger if it were only for when the selected best model was
Models 1 through 9. Column 4 of Table 3 gives the frequency, out of
10,000 trials, wherein the best model was one of Models 1 to 9. These
GOF results are striking. The model selected as best by AICc (which
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is not really different here from AIC at n ≥ 200) rarely leads to a
GOF p value < α = 0.05 for n ≥ 100. The best BIC model
often fails to fit, relative to Model 10, in terms of its GOF p value
being ≤ .05 (e.g, GOF failure rate of 0.217 at n = 200 here).
Columns 5 to 9 of Table 3 provide further summaries of these
GOF p values when the selected best model was Models 1 through 9.

These results are not atypical under tapering effects. For the Figure
2 scenario that favors BIC, the GOF for the BIC-selected model comes
much closer to nominal levels. Thus again, operating characteristics
of AIC and BIC depend on the underlying scenario about reality
versus the model set. What should we make of such results for the
tapering-effects case? Is it bad that the AIC-best model always fits: Is
it overfitting? Is it bad that the BIC-best model fails to fit at a much
higher rate than the α-level: Is it underfitting? We do not know because
to have evidence about the matter, we need to have a context and actual
parameters estimated and look at mean square errors and confidence
interval coverage (see Burnham and Anderson 2002:207-23).

We make four comments on the issues. First, as regards a percep-
tion of “overfit” by AIC, surely when one deliberately seeks a good
model for analysis of data, one is seeking a good fit. Thus, if the global
model fits, we think one would expect the best model, under a selec-
tion criterion, to also fit. Heuristically, it is a strange model selection
criterion that often selects a best model that fits poorly; AIC does
not do this. However, we also claim that the best model often allows
some bias in estimates, which could be analogous to some lack of fit.
Therefore, second, with regard to BIC, the degree of lack of fit may
not matter—we do not know, so we do not claim it matters. Third,
model-averaged inference further renders the GOF issue somewhat
moot because all the models are being considered, not just the best
model. Fourth, these observations and issues about fit reinforce to us
that model selection procedures should be judged on their inferential
operating characteristics, such as predictive mean square error and
interval coverage under realistic scenarios for the generation of data.

7. DISCUSSION AND CONCLUSIONS

The context of classical model selection proceeds in four steps:

1. the goal is model-based inference from data, and
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2. there is a set of R relevant models but no certainty about which model
should be used; hence,

3. a data-based choice is made among these (perceived as) competing
models, and

4. then inference is made from this one selected model as if it were a
priori the only model fit to the data.

Steps 1 and 2 are almost universal in model-based inference. Step 3
begins a flawed inference scenario; in particular, the implicit assump-
tion that inference must be based on a single model is not justified by
any philosophy or mathematics.

To avoid the pitfalls inherent in Step 4, we must conceptualize
model selection to mean and be multimodel inference. The new Step 3
should be as follows:

• There is a data-based assignment of model weights that sum to 1.0;
the weight for model gi reflects the evidence or information concerning
model gi (uncertainty of model gi in the set of R models).

The old Step 3 is subsumed in this new Step 3 because the model
with the highest weight is the model that would be selected as the
single best model. But now we avoid many of the problems that stem
from old Step 4 by using a new Step 4:

• Based on the model weights, as well as the results and information from
the R fitted models, we use multimodel inference in some or all of its
myriad forms and methods.

Model selection should be viewed as the way to obtain model
weights, not just a way to select only one model (and then ignore that
selection occurred).

Among the other benefits of this approach, it effectively rules out
null hypothesis testing as a basis for model selection because mul-
timodel inference forces a deeper approach to model selection. It
means we must have an optimality criterion and selection (weight
assignment) theory underlying the approach. Potential users should
not reject or ignore multimodel inference just because it is relatively
new, especially when based on AIC. There is a sound philosophical
basis and likelihood framework for AIC, based on the K-L informa-
tion theory, which itself has a deep foundation.

An important issue about model selection based on K-L infor-
mation is that AIC as such is a large-sample approximation
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(relative to the maximum K for the model set) to the needed criterion.
A second-order bias adjustment is needed when n/K is too small—
say, ≤ 40. While AICc is not unique as providing the needed small-
sample version of AIC, we recommend it for general use; indeed, the
evidence is that it performs well. Much confusion and misinforma-
tion have resulted in the model selection literature when investigators
have done simulation evaluations using AIC when they should have
used AICc (Anderson and Burnham 2002).

A compatible, alternative view of AIC is that it arises from a
Bayesian derivation based on the BIC statistic and a savvy prior prob-
ability distribution on the R models. That prior depends on both n

and Ki (i = 1, . . . , R) in a manner consistent with the information-
theoretic viewpoint that the data at hand surely reflect a range of
tapering effects based on a complex reality—rather than arising
from a simple true model, with no tapering effects—that is in the
model set.

The model selection literature often errs by considering that
AIC and BIC selection are directly comparable, as if they had the
same objective target model. Their target models are different
(Reschenhofer 1996). The target model of AIC is one that is specific
for the sample size at hand: It is the fitted model that minimizes
expected estimated K-L information loss when fitted model gr is used
to approximate full reality, f . This target model changes with sample
size. Moreover, in this overall philosophy, even the set of models is
expected to be changed if there are large changes in n.

The classical derivation of BIC assumed that there was a true model,
independent of n, that generated the data; it was a model in the model
set, and this true model was the target model for selection by BIC.
However, selection of this true model with probability 1 only occurs
in the limit as n gets very large, and in taking that limit, the model
set is kept fixed. The original derivation of BIC has been relaxed,
wherein we realize that such convergence only justifies an inference
of a quasi-true model (the most parsimonious model closest in K-L
information to truth, f ). Even within the Bayesian framework, not all
practitioners subscribe to BIC for model selection (some Bayesians
do not believe in model selection at all). In particular, we note the
recent development of the deviance information criterion (DIC) by
Spiegelhalter et al. (2002). As these authors note, DIC behaves like
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AIC, not like BIC, which is one reason they prefer DIC (it avoids the
defects of BIC model selection).

Given that AIC can be derived from the BIC approximation to the
Bayes factor, the distinction between AIC versus BIC model selection
becomes one about the prior on models: qi = 1/R for BIC or the K-L
prior of Section 4 (formulas 2, 3) for AIC. This latter prior is a savvy
prior, by which we mean that the expected number of parameters that
can be estimated with useful precision depends on n and K (which
are known a priori). Thus, for a savvy prior, in general, qi becomes
a function of n and Ki—say, qi(Ki, n)—and we think in terms of
prior E(K) = n/m, for some m, perhaps in the 10 or 15 range.
Fitting a model with too few parameters wastes information. With
too many parameters in a model, some or all (with typical correlated
observational data) of the estimated parameters are too imprecise to
be inferentially useful.

Objective Bayesian analysis with a single model uses an uninfor-
mative (vague) prior such as U(0, 1) on a parameter θ if 0 < θ < 1.
This turns out to be quite safe, sort of “innocent,” one might say (no
lurking unexpected consequences). So presumably, it seemed natural,
objective, and innocent when extending Bayesian methods to model
selection to assume a uniform prior on models. However, we now
know that this assumption has unexpected consequences (it is not
innocent), as regards the properties of the resultant model selection
procedure. Conversely, there is a rationale for considering that the
prior on models ought to depend on n and K , and so doing produces
some quite different properties of the selection method as compared
to the use of 1/R. The choice of the prior on models can be impor-
tant in model selection, and we maintain that qi should usually be a
function of n and K .

Whereas the best model selected by either BIC or AIC can be
distinctly different and hence suggest partially conflicting inferences,
model-averaged inference diminishes the perceived conflicts between
AIC and BIC. In general, we have seen robustness of inference to
variations in the model weights for rational choices of these weights.
For this reason, we think that there is little need to seek alternative
savvy priors to the K-L prior.

Several lines of thinking motivate us to say that the compari-
son of AIC and BIC model selection ought to be based on their
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performance properties, such as the mean square error for parameter
estimation (includes prediction) and confidence interval coverage.
When any such comparisons are done, the context must be spelled
out explicitly because results (i.e., which method “wins”) depend on
context (e.g., Figures 1-3). Simulation evaluations should generate
realistically complex data, use AICc, and use multimodel inference,
hence going well beyond the traditional single best-model approach.

We believe that data analysis should routinely be considered in the
context of multimodel inference. Formal inference from more than
one (estimated best) model arises naturally from both a science con-
text (multiple working hypotheses) and a statistical context (robust
inference while making minimal assumptions). The information-
theoretic procedures allowing multimodel inference are simple, both
in terms of understanding and computation, and, when used properly,
provide inferences with good properties (e.g., as regards predictive
mean squared error and achieved confidence interval coverage). Mul-
timodel inference goes beyond the concepts and methods noted here;
we give a richer account in Burnham and Anderson (2002). Model
selection bias and model selection uncertainty are important issues
that deserve further understanding. Multimodel inference is an new
field in which additional, innovative research and understanding are
needed, and we expect a variety of important advances to appear in
the years ahead.
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