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For the better part of a century, ecology has used statis-
tical methods developed mainly for agricultural field

trials by such statistics luminaries as Gossett, Fisher,
Neyman, Cochran, and Cox (Gotelli and Ellison 2004).
Calculation of sums of squares was just within the reach
of mechanical (or human) calculators (Figure 1), and
generations of ecologists have spent many hours perform-
ing a labor of love: caring and curating the results of
analysis of variance (ANOVA) models. Basic linear mod-
els (ANOVA and regression) continue to be the domi-
nant mode of ecological data analysis; they were used in
75% of all papers published in Ecology in 2008 (n = 344;
24 papers were excluded from the analysis because they
were conceptual overviews, notes, or commentaries that

reported no statistics at all). These methods are used most
appropriately to analyze relatively straightforward experi-
ments aimed at estimating the magnitudes of a small
number of additive fixed effects or testing simple statisti-
cal hypotheses. Although most papers published in
Ecology test statistical hypotheses (75% reported at least
one P value) and estimate effect sizes (69%), only 32%
provided assessments of uncertainty (eg standard errors,
confidence intervals, probability distributions) on the
estimates of the effect sizes themselves (as distinguished
from the common practice of reporting standard errors of
observed means).

However, these methods do not reflect ecologists’ collec-
tive statistical needs for the 21st century. How can we use
ANOVA and simple linear regression to forecast ecological
processes in a rapidly changing world (Clark et al. 2001)?
Familiar examples of ecological problems that would bene-
fit from sophisticated modeling approaches include fore-
casts of crop production, population viability analyses, pre-
diction of the spread of epidemics or invasive species, and
estimation of fractionation of isotopes through food webs
and ecosystems. Such forecasts, and many others like
them, are integral to policy instruments, such as the
Millennium Ecosystem Assessment (MA 2005) or the
Intergovernmental Panel on Climate Change reports
(IPCC 2007). Yet these forecasts and similar types of stud-
ies are uncommon in top-tier ecological journals. Why? Do
ecologists limit their study designs so as to produce data
that will fit into classical methods of analysis? Are non-
standard ecological data sometimes wrongly analyzed,
through off-the-shelf statistical techniques (Bolker et al.
2009)? In the statistical shoe store, do ecologists sometimes
cut the foot to fit the shoe? How can we learn to do more
than just determine P values associated with mean squared
error terms in ANOVA (Butcher et al. 2007)? 

The short answer is by studying and using “models”.
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In a nutshell:
• Ecologists need to use non-standard statistical models and

methods of statistical inference to test models of ecological
processes and to address pressing environmental problems

• Such statistical models include both deterministic and sto-
chastic parts, and statistically fluent ecologists will need to
use probability theory and calculus to fit these models to
available data

• Many ecologists lack an appropriate background in probability
theory and calculus because there are serious disconnections
between the quantitative nature of ecology, the quantitative
skills we expect of ourselves and our students, and how we
teach and learn quantitative methods

• Our prescription for attaining statistical fluency includes
courses in calculus and calculus-based statistics, along with a
renewed commitment to the use of calculus in ecology, natural
resource, and environmental science courses
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Statistical analysis is fundamentally a process of building
and evaluating stochastic models, but such models were
rarely presented explicitly in the agricultural statistics–
education tradition that emphasized practical training
and de-emphasized calculus. Yet, any ecological process
that produces variable data can (and should) be described
by a stochastic, statistical model (Bolker 2008). Such
models may start as conceptual or “box-and-arrow” dia-
grams, but these should then be turned into more quanti-
tative descriptions of the processes of interest. The first
building block of such quantitative descriptions is a fixed
(deterministic) expression or formulation of the hypothe-
sized effects of environmental variables, time, and space.
These deterministic models are then coupled with the
second building block of quantitative description: dis-
crete and/or continuous probability distributions that
encapsulate stochasticity. These distributions, rarely nor-
mal, are chosen by the investigator to describe how the
departures of data from the deterministic sub-model are
hypothesized to occur. The sums of squares – a surrogate

for likelihood in normal distribution models – is no
longer the only statistical currency; likelihood and other
statistical objective functions are the more widely useful
coins of the realm. 

Alternatives to parametric, model-based methods

Figure 1. Milestones in statistical computing. (a) Women and
men (circa 1920) in the Computing Division of the US
Department of the Treasury (or the Veterans’ Bureau)
determining the bonuses to be distributed to veterans of World
War I. Photograph from the Library of Congress Lot 12356-2,
negative LC-USZ62-101229. (b) From left to right: Professor
(and Commander) Howard Aiken, Lieutenant (and later Rear
Admiral) Grace Hopper, and Ensign Campbell in front of a
portion of the MARK I Computer. The MARK I was designed
by Aiken, built by IBM, fit in a steel frame 16 m long x 2.5 m
high, weighed approximately 4500 kg, and included 800 km of
wire. It was used to solve integrals required by the US Navy
Bureau of Ships during World War II, and physics problems
associated with magnetic fields, radar, and the implosion of early
atomic weapons. Grace Hopper was the lead programmer of the
MARK I. Her experience writing its programs led her to develop
the first compiler for a computer programming language (which
subsequently evolved into COBOL), and she produced early
standards for both the FORTRAN and COBOL programming
languages. The MARK I was programmed by way of punched
paper tape and was the first automatic digital computer in the
US. Its calculating units were mechanically synchronized by a
~15-m-long drive shaft connected to a 4-kW (5-horsepower)
electric motor. The MARK I is considered to be the first
universal calculator (Stoll 1983). Reproduced with permission of
the Harvard University Archives. (c) A circa 2007 screen-shot
of the open-source R statistical package running on a personal
computer. The small, notebook computers on which we now run
R and other statistical software every day have central processors
that execute 10 000–100 000 MIPS (million instructions per
second). In contrast, the earliest commercial computers executed
0.06–1.0 KIPS (thousand instructions per second), and
Harvard’s MARK I computer took approximately 6 s to simply
multiply two numbers together; computing a single logarithm
took more than a minute. Image from www.r-project.org; used
with permission from the R Foundation.
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include non-parametric statistics and machine learning.
Classical non-parametric statistics (Conover 1998) have
been supplanted by computer simulation and randomiza-
tion tests (Manly 2006), but the statistical or causal
models that they test are rarely apparent to data analysts
and users of packaged (especially compiled) software
products. Similarly, model-free machine-learning and
data-mining methods (Breiman 2001) seek large-scale
correlative patterns in data by letting the data “speak for
themselves”. Although the adherents of these methods
promise that machine learning and data mining will
make the “standard” approach to scientific understand-
ing – hypothesis → model → test – obsolete (Anderson
2008), the ability of these essentially correlative meth-
ods to advance scientific understanding and provide reli-
able forecasts of future events has yet to be demon-
strated. Therefore, we focus here on the complexities
inherent in fitting stochastic statistical models, estimat-
ing their parameters, and carrying out statistical infer-
ence on the results.

Our students and colleagues routinely use ANOVA
and its relatives, but create or work with stochastic sta-
tistical models far less frequently; in 2008, only 23% of
papers published in Ecology used stochastic models or
applied competing statistical models on their data (and
about half of these used automated software, such as
stepwise regression or MARK [White and Burnham
1999], which takes much of the testing out of the hands
of the user and contrasts among models constructed
from many possible combinations of parameters). Why?
It may be that ecologists (or at least those who publish
in our leading journals) primarily conduct well-
designed experiments that test one or two factors at a
time and have sufficient sample sizes and balance
among treatments to satisfy all the requirements of
ANOVA and yield high statistical power. If this is true,
the complexity of stochastic models is simply unneces-
sary. However, our data are rarely so forgiving; more fre-
quently, sample sizes are too small, data are not nor-
mally distributed (or even continuous), experimental
and observational designs include mixtures of fixed and
random effects, and we know that processes affect study
systems hierarchically. Finally, we want to do more with
our data than simply tell a good story – we want to gen-
eralize, predict, and forecast. In short, we really do need
to model our data.

We suggest that there are profound disconnections
between the quantitative nature of ecology, the quanti-
tative (mathematical and statistical) skills we expect of
ourselves and of our students, and how we teach and
learn quantitative methods. Here, we illustrate these
disconnections with two motivating examples and sug-
gest a new standard – statistical fluency – for quantitative
skills that are learned and taught by ecologists. We close
by providing a prescription for better connecting (or
reconnecting) our teaching with the quantitative
expectations we have for our students, so that ecological

science can progress more rapidly and with more rele-
vance to society at large.

n Two motivating examples

The first law of population dynamics

Under optimal conditions, populations grow exponen-
tially:

Nt = N0 ert (Eq 1)

In this equation, N0 is the initial population size, Nt is
the population size at time t, r is the instantaneous rate
of population growth (units of individuals per infinitesi-
mally small units of time t), and e is the base of the nat-
ural logarithm. This simple equation is often referred to
as the first law of population dynamics (Turchin 2001),
and it is universally presented in undergraduate ecology
textbooks. Yet we all know that students in our intro-
ductory ecology classes view exponential growth mainly
through glazed eyes. Equation 1 is replete with complex
mathematical concepts normally encountered in the
first semester of calculus: the concept of a function, rais-
ing a real number to a real power, and Euler’s number, e.
Yet the majority of undergraduate ecology courses do not
require calculus as a prerequisite, thereby ensuring that
understanding fundamental concepts such as exponen-
tial growth is not an expected course outcome. The cur-
rent financial meltdown associated with the foreclosure
of exponentially ballooning sub-prime mortgages clearly
illustrates Bartlett’s (2004) assertion that “the greatest
shortcoming of the human race is our inability to under-
stand the exponential function”. Surely ecologists can
do better.

Instructors of undergraduate ecology courses that do
require calculus as a prerequisite often find themselves
apologizing to their students that ecology is a quantitative
science and go on to provide conceptual or qualitative
workarounds that keep course enrollments high and
deans happy. Students in the resource management fields
– forestry, fisheries, wildlife, etc – suffer even more, as
quantitative skills are further de-emphasized in these
fields. But resource managers need a deeper understand-
ing of exponential growth (and other quantitative con-
cepts) than do academic ecologists – for example, the
relationship of exponential growth to economics or its
role in the concept of the present value of future revenue.
The result in all these cases is the perpetuation of a cul-
ture of quantitative insecurity among students.

The actual educational situation with this example of
population growth models in ecology is much worse. The
exponential growth expression, as understood in mathe-
matics, is the solution to a differential equation. Differ-
ential equations, of course, are a core topic of calculus.
Indeed, because so many dynamic phenomena in all sci-
entific disciplines are naturally modeled in terms of
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instantaneous forces (rates), the topic of differential
equations is one of the main reasons for studying calculus
in the first place! To avoid introducing differential equa-
tions to introductory ecology classes, most ecology text-
books present exponential growth in a discrete-time
form, given by Nt+1 = (1 + births – deaths) Nt, and then
miraculously transmogrify this (with little or no ex-
planation) into the continuous time model given by
dN/dt = rN. These attempts to describe demographic
processes intuitively rather than quantitatively obscure,
for instance, the exact nature of the quantities of “births”
and “deaths” and how they would be measured, not to
mention the assumptions involved in discrete-time versus
continuous-time formulations. 

Furthermore, Equation 1 provides no insights into how
the unknown parameters (r and even N0 when popula-
tion size is not known) ought to be estimated from eco-
logical data. To convince yourself that it is indeed diffi-
cult to estimate unknown parameters from ecological
data, consider the following as a first exercise for an
undergraduate ecology laboratory: for a given set of
demographic data (perhaps collected from headstones in
a nearby cemetery), estimate r and N0 in Equation 1 and
provide a measure of confidence in the estimates. 

Finally, to actually use Equation 1 to describe the expo-
nential growth of a real population, one must add stochas-
ticity by modeling departures of observed data from the
model itself. There are many different ways of modeling
such variability that depend on the specific stochastic forces
acting on the observations; each model gives a different
likelihood function for the data and thereby prescribes a dif-
ferent way of estimating the growth parameter. In addition,
the choices of models for the stochastic components – such
as demographic variability, environmental variability, and
sampling variability – must be added to (and evaluated
along with) the suite of modeling decisions concerning the
deterministic core (eg changing exponential growth to
some density-dependent form or adding a predator). Next,
one must extend these concepts and methods to “simple”
Lotka-Volterra models of competition and predation.

The cumulative distribution function for a normal
curve

Our second motivating example deals with a core con-
cept of statistics: 

�
b

a
(σ2 2π) –1/2 exp [– (y – µ)2

]dy = Φ(b) – Φ(a) (Eq 2)
2σ2

The function Φ(y) is the cumulative distribution func-
tion for the normal distribution, and Equation 2 describes
the area under a normal curve (with two parameters:
mean = µ and variance = σ2) between a and b. This quan-
tity is important because the normal distribution is used
as a model assumption for many statistical methods (eg

linear models, probit analysis), and normal probabilities
can express predicted frequencies of occurrence of
observed events (data). Many test statistics also have
sampling distributions that are approximately normal.
Rejection regions, P values, and confidence intervals are
all defined in terms of areas under a normal curve. 

The meaning, measurement, and teaching of P values
continue to bedevil statisticians (eg Berger 2003; Hubbard
and Byarri 2003; Murdoch et al. 2008), yet ecologists often
use and interpret probability and P values uncritically, and
few ecologists can clearly describe a confidence interval
with any degree of…confidence. To convince yourself
that this is a real problem, consider asking any graduate
student in ecology (perhaps during their oral comprehen-
sive examination) to explain why P(10.2 < µ < 29.8) =
0.95 is not the correct interpretation of a confidence
interval on the parameter µ (original equation from Poole
1974); it is likely you will get an impression of someone
who is not secure in their statistical understanding.
Bayesian statisticians argue that Bayesian credible sets
provide clearer interpretations of true confidence and
uncertainty in parameter estimates, but in fact interpret-
ing Bayesian credible intervals makes equally large con-
ceptual demands (Hill 1968; Lele and Dennis 2009).
When pushed, students can calculate a confidence interval
by hand or with computer software, but the difficulty lies
in interpreting it (Panel 1) and generalizing its results. 

Three centuries of study of Equation 2 by mathematicians
and statisticians have not reduced it to any simpler form,
and evaluating it for any two real numbers, a and b, must be
done numerically. Alternatively, one can proceed through
the mysterious, multistep table-look-up process, involving
the Z tables provided in the back of every basic statistics
text. Look-up tables or built-in functions in statistical soft-
ware may work fine for standard probability distributions,
such as the normal or F distribution, but what about non-
standard distributions or mixtures of distributions used in
many hierarchical models? Numerical integration is a stan-
dard topic in calculus classes, and it can be applied to any
distribution of interest, not just the area under a normal
curve. Consider the power of understanding: how areas
under curves can be calculated for other continuous models
besides the normal distribution; how the probabilities for
other distributions sometimes converge to the above form,
based on the normal; and how normal-based probabilities
can serve as building blocks for hierarchical models of more
complex data (Clark 2007). Such interpretation and gener-
alization are at the heart of statistical fluency.

n Developing statistical fluency among ecologists

Fluency defined

We use the term “fluency” to emphasize that a deep
understanding of statistics and statistical concepts differs
from “literacy” (Table 1). Statistical literacy is a common
goal of introductory statistics courses that presuppose lit-
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tle or no familiarity with basic mathematical concepts
introduced in calculus, but this is insufficient for 21st-
century ecologists. Like fluency in a foreign language, sta-
tistical fluency means not only a sufficient understanding
of core theoretical concepts (grammar in languages,
mathematical underpinnings in statistics), but also the
ability to apply statistical principles and adapt statistical
analyses for non-standard problems (Table 1).

We must recognize that calculus is the language of the
general principles that underlie probability and statistics.
We emphasize that statistics is not mathematics; rather,
like physics, statistics uses a lot of mathematics (De
Veaux and Velleman 2008), and ecology uses a lot of sta-
tistics. However, the conceptual ideas on which statistics
is based are really hard. Basic statistics contains abstract
notions derived from those in basic calculus, and students
who take calculus courses and use calculus in their statis-
tics courses have a deeper understanding of statistical
concepts and the confidence to apply them in novel situ-
ations. In contrast, students who take only calculus-free,
cookbook-style statistical methods courses often have a
great deal of difficulty adapting the statistics that they
know to ecological problems for which those statistics are
inappropriate. 

For ecologists, the challenge of developing statistical flu-
ency has moved well beyond the relatively simple task of
learning and understanding fundamental aspects of con-
temporary data analysis. Ecological theories include sto-
chastic content that can only be interpreted probabilisti-
cally, and include parameters that can only be estimated
through complex statistics. For example, conservation biol-
ogists struggle with (and frequently express wrongly) the
distinctions between demographic and environmental vari-
ability in population viability models, and must master the
intricacies of first passage properties of stochastic growth
models. Community ecologists struggle to understand (and
figure out how to test) the “neutral” model of community
structure (Hubbell 2001), itself related to neutral models in
genetics (see Leigh 2007) with which ecological geneticists
must struggle. Landscape ecologists struggle with stochastic
dispersal models and spatial processes. Behavioral ecologists
struggle with Markov chain models of behavioral states. All
must struggle with huge, individual-based simulations and
hierarchical (random or latent effects) models. No sub-field
of ecology, no matter how empirical the tradition, is safe
from encroaching stochasticity and the attendant need for
the mathematics and statistics to deal with it.

Statistics is a post-calculus subject

What mathematics do we need to create, parameterize,
and use stochastic statistical models of ecological
processes? At a minimum, we need calculus. We must
recognize that statistics is a post-calculus subject and
that calculus is a prerequisite for the development of
statistical fluency. Expectation, conditional expecta-
tion, marginal and joint distributions, independence,
likelihood, convergence, bias, consistency, distribution
models of counts based on infinite series, and so on, are
key concepts of statistical modeling that must be under-
stood by the practicing ecologist, and these are straight-
forward calculus concepts. No amount of pre-calculus
statistical “methods” courses can make up for this fact.
Calculus-free statistical methods courses doom ecolo-
gists to a lifetime of insecurity with regard to the ideas of

Panel 1. Why “P (10.2 < � < 29.8) = 0.95” is not a
correct interpretation of a confidence interval, and
what are confidence intervals, anyway?

This statement says that the probability that the true population
mean � lies in the interval (10.2, 29.8) equals 0.95. But � is a fixed
(unknown) constant; it either is in the interval (10.2, 29.8) or is
not.  The probability that � is in the interval is zero or one;  we
just do not know which.  A confidence interval actually asserts
that 95% of the confidence intervals resulting from hypothetical
repeated samples (taken under the same random sampling proto-
col used for the single sample) will contain � in the long run.
Think of a game of horseshoes in which you have to throw the
horseshoe over a curtain positioned so that you cannot see the
stake. You throw a horseshoe and it lands (thud!); the probability
is zero or one that it is a ringer, but you do not know which.  The
confidence interval arising from a single sample is the horseshoe
on the ground, and � is the stake.  If you had the throwing motion
practiced so that, in the long run, the proportion of successful
ringers was 0.95, then your horseshoe game process would have
the probabilistic properties claimed by 95% confidence intervals.
You do not know the outcome (whether or not � is in the inter-
val) on any given sample, but you have constructed the sampling
process so as to be assured that 95% of such samples would, in
the long run, produce confidence intervals that are ringers.  The
distinction is clearer when we write the probabilistic expression
for a 95% confidence interval:

P(L < � < U) = 0.95
What this equation is telling us is that the true (but unknown)
population mean � will be found 95% of the time in an interval
bracketed by L at the lower end and U at the upper end, where L
and U vary randomly from sample to sample. Once the sample is
drawn, the lower and upper bounds of the interval are fixed (the
horseshoe has landed), and � (the stake) either is contained in
the interval or is not. 

Many standard statistical methods construct confidence inter-
vals symmetrically in the form of a “point estimate” plus or minus
a “margin of error”. For instance, a 100(1–�)% confidence inter-
val for � when sampling from a normal distribution is con-
structed based on the following probabilistic property:

P (Y–– t�/2 �S2/n < � < Y–+ t�/2 �S2/n) = (1 – �).

Here, t�/2 is the percentile of a t distribution with n – 1 degrees of
freedom, such that there is an area equal to �/2 under the t dis-
tribution to the right of t�/2, and Y– and S2 are, respectively, the
sample mean and sample variance of the observations. The quan-
tities Y– and S2 vary randomly from sample to sample, making the
lower and upper bounds of the interval vary as well. The confi-
dence interval itself becomes

y– ± t�/2 �s2/n ,
in which the lowercase y– and s2 are the actual numerical values of
sample mean and variance resulting from a single sample. In gen-
eral, modern-day confidence intervals for parameters in non-
normal models arising from computationally intensive methods
such as bootstrapping and profile likelihood are not necessarily
symmetric around the point estimates of those parameters.
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statistics. Such courses are like potato chips: they con-
tain virtually no nutritional value, no matter how many
are consumed. Pre-calculus statistics courses are similar to
pre-calculus physics courses in that regard; both have rep-
utations for being notoriously unsatisfying parades of
mysterious, plug-in formulas. Ecologists who have taken
and internalized post-calculus statistics courses are ready
to grapple with the increasingly stochastic theories at the
frontiers of ecology and will be able to rapidly incorporate
future statistical advances in their kit of data analysis
tools. So, how do our students achieve statistical fluency?

The prescription

Basic calculus, including an introduction to differential
equations, seems to us to be a minimum requirement. Our
course prescription includes (1) two semesters of standard
calculus and an introductory, calculus-requiring statistics
course in college; and (2) a two-semester, post-calculus
sequence in probability and mathematical statistics in the
first or second year of graduate school (Panel 2). However,
it is not enough to simply take calculus courses, as calculus is
already required (or at least recommended) by virtually all
undergraduate science degree programs (Figure 2). Rather,
calculus must be used, not only in statistics courses taken by
graduate students in ecology, but, more importantly, in
undergraduate and graduate courses in ecology (including
courses in resource management and environmental sci-
ence)! If this seems too daunting, consider that Hutchinson
(1978) summarizes “the modicum of infinitesimal calculus
required for ecological principles” in three and a half pages.
Contemporary texts (eg Clark 2007; Bolker 2008) in eco-
logical statistical modeling use little more than single-vari-
able calculus and basic matrix algebra. Like Hutchinson,
Bolker (2008) covers the essential calculus and matrix alge-
bra in four pages, each half the size of Hutchinson’s. Clark’s
(2007) 100-page mathematical refresher is somewhat more
expansive, but in all cases the authors show that some
knowledge of calculus allows one to advance rapidly on the
road to statistical fluency.

Nascent ecologists need not take more courses to attain
statistical fluency; they just need to take courses that are
different from standard “methods” classes. Current gradu-
ate students may need to take refresher courses in calculus
and mathematical statistics, but we expect that our pre-

scription (Panel 2) will actually reduce the time that
future ecology students spend in mathematics and statis-
tics classrooms. Most undergraduate life-science students
already take calculus and introductory statistics (Figure
2). The pre-calculus statistical methods courses that are
currently required can be swapped out in favor of two
semesters of post-calculus probability and statistics. Skills
in particular statistical methods can be obtained through

self-study or through additional methods
courses; a strong background in probabil-
ity and statistical theory makes self-study
a realistic option for rapid learning by
motivated students.

Why not just collaborate with
professional statisticians?

In the course of speaking about statistics
education to audiences of ecologists and
natural resource scientists, we are often

Table 1. The different components and stages of statistical literacy 

Basic literacy Ability to reason statistically Fluency in statistical thinking

Identify the process Explain the process Apply the process to new situations
Describe it Why does it work? Critique it
Rephrase it How does it work? Evaluate it
Translate it Generalize from it
Interpret it

Notes: “Process” refers to a statistical concept (such as a P value or confidence interval) or method. Modified
from delMas (2002).
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Institutions surveyed are based on data from the National Science
Foundation (NSF 1996). Data collected from department
websites and college or university course catalogs, July 2008.
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asked questions such as: “I don’t have to be a mechanic to
drive a car, so why do I need to understand statistical the-
ory to be an ecologist? (And why do I have to know cal-
culus to do statistics?)”. Our answer – and the point of
this article – is that the analogy of statistics as a tool or
black box increasingly is failing the needs of ecology.
Statistics is an essential part of the thinking, the
hypotheses, and the very theories on which ecology is
based. Ecologists of the future should be prepared to use
statistics with confidence, so that they can make substan-
tial progress in our science. 

“But”, continues the questioner, “why can’t I just enlist
the help of a statistician?”. Collaborations with statisti-
cians can produce excellent results and should be encour-
aged wherever and whenever possible, but ecologists will
find that their conversations and interactions with pro-
fessional statisticians will be enhanced if they have done
substantial statistical groundwork before their conversa-
tion begins, and if both ecologists and statisticians speak
a common language (mathematics). Collaborations

between ecologists and statisticians can also be facilitated
by building support for consulting statisticians into grant
proposals; academic statisticians rely on grant support as
much as academic ecologists do. However, ecologists can-
not count on the availability of statistical help whenever
it is needed, and statistical help may be unavailable at
many universities. We therefore believe that ecologists
should be self-sufficient and self-assured; we should mas-
ter our own scientific theories and be able to discuss how
our conclusions are drawn from ecological data with con-
fidence. We should be knowledgeable enough to recog-
nize what we do understand and what we do not, learn
new methods ourselves, and seek out experts who can
help us increase our understanding.

n Mathematics as the language of ecological
narratives

It is increasingly appreciated that scientific concepts can
be communicated to students of all ages through stories

Panel 2. A prescription for statistical fluency 

The problem of how to use calculus – in the context of developing statistical fluency – can be solved easily and effectively by rearranging
courses and substituting different statistics courses (those hitherto rarely taken by ecologists) for many of the statistical methods courses
now taken in college and graduate school. The suggested courses are standard ones, with standard textbooks, and already exist at most
universities. Our prescription is as follows: 

For undergraduate majors in the ecological sciences (including “integrative biology”, ecology, and evolutionary biology), along with students
bound for scientific careers in resource management fields such as wildlife, fisheries, and forestry:

(1) At least two semesters of standard calculus. “Standard” means real calculus, the courses taken by students in physical sciences and engi-
neering.  Those physics and engineering students go on to take a third (multivariable calculus) and a fourth (differential equations)
semester of calculus, but these latter courses are not absolutely necessary for ecologists. Only a small amount of the material in those
additional courses is used in subsequent statistics or ecology courses and can be introduced in those courses or acquired through self-
study.  Most population models must be solved numerically, methods for which can be covered in the population ecology courses
themselves. (Please note, we do not wish to discourage additional calculus for those students interested in excelling in ecological the-
ory; our prescription, rather, should be regarded as a minimum core for those who will ultimately obtain PhDs in the ecological sci-
ences, broadly defined.)

(2) An introductory statistics course that lists calculus as a prerequisite. This course is standard everywhere; it is the course that engineering and
physical-science students take, usually as juniors.  A typical textbook is Devore (2007). 

(3) A commitment to using calculus and post-calculus statistics in courses in life-science curricula must go hand-in-hand with course requirements
in calculus and post-calculus statistics. Courses in the physical sciences for physical-science majors use the language of science – math-
ematics – and its derived tool – statistics – unapologetically, starting in introductory courses.  Why don’t ecologists or other life scien-
tists do the same?  The basic ecology course for majors should include calculus as a prerequisite and must use calculus so that students
see its relevance. 

For graduate students in ecology (sensu lato):
(1) A standard two-course sequence in probability and mathematical statistics. This sequence is usually offered for undergraduate seniors and

can be taken for graduate credit. Typical textbooks are Rice (2006), Larson and Marx (2005), or Wackerly et al. (2007).  The courses
usually require two semesters of calculus as prerequisites.

(2) Any additional graduate-level course(s) in statistical methods, according to interests and research needs.  After a two-semester post-calcu-
lus probability and statistics sequence, the material covered in many statistical methods courses is also amenable to self-study. 

(3) Most ecologists will want to acquire some linear algebra somewhere along the line, because matrix formulations are used heavily in ecolog-
ical and statistical theory alike. Linear algebra could be taken in either college or graduate school. Linear algebra is often reviewed
extensively in courses such as multivariate statistical methods and population ecology, and necessary additional material can be
acquired through self-study.  Those ecologists whose research is centered on quantitative topics should consider formal coursework in
linear algebra.

The benefit of following this prescription is a rapid attainment of statistical fluency.  Whether students in ecology are focused more on the-
oretical ecology or on field methods, conservation biology, or the interface between ecology and the social sciences, a firm grounding in
quantitative skills will make for better teachers, better researchers, and better interdisciplinary communicators (for good examples, see
Armsworth et al. [2009] and other papers in the associated special feature on Integrating ecology and the social sciences in the April 2009
issue of the Journal of Applied Ecology). Because our prescription replaces courses rather than adding new ones, the primary cost to swal-
lowing this pill is either to recall and use calculus taken long ago or to take a calculus refresher course.
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and narratives (see Molles 2006; Figure
3). We do not disagree with the impor-
tance of telling a good story and engag-
ing our students with detailed narra-
tives of how the world works. Nor do
we minimize the importance of con-
ducting “hands-on” ecology through
inquiry-based learning, which is both
important and fun. Field trips, field
work, and lab work are exciting and
entertaining, draw students into ecol-
ogy, and dramatically enhance ecologi-
cal literacy. For individuals who pursue
careers in fields outside of science,
qualitative experiences and an intu-
itive grasp of the storyline can be suffi-
cient (Cope 2006). However, for those
students who want the deepest appre-
ciation of how science works – under-
standing how we know what we know
– and for those of us who are in scien-
tific careers and are educating the next
generation of scientists, we should use
the richest possible language for our
narratives of science, and that lan-
guage is mathematics. 
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