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It is always flattering to see one’s work cited by others. Not
only does it boost the ego, but it provides a satisfying feeling
that one’s efforts are both appreciated and contributing to the
advance of science. So I was pleased when a colleague pointed
out that Colegrave and Ruxton (2003) had cited a recent
paper of mine, ‘‘The insignificance of statistical significance
testing’’ ( Johnson, 1999). In that article I argued, as did
Colegrave and Ruxton, that confidence intervals often are
much more informative than are p values associated with
hypothesis tests.
My pleasure, alas, was short-lived. Colegrave and Ruxton

(2003: 446) wrote, ‘‘the p value is the probability that the null
hypothesis is actually true given this data.’’ Although I was not
cited in this regard, I had written, ‘‘p can be viewed as the
probability that the null hypothesis is true,’’ but pointed out
that this statement is a fantasy about significance testing,
following Carver (1978). I went on to say that p represents the
probability of the observed data, or more extreme data, given
that the null hypothesis is true and certain other conditions
hold. It is a gross mistake to equate Pr fhypothesis j datag with
Pr fdata j hypothesisg. To illustrate that Pr fX j Yg may differ
dramatically from Pr fY j Xg, let X be the event that a certain
coin will shows heads if flipped, and Y be the event that the
coin has heads on both sides. Then the probability is one
that you will get a head if you flip a coin with two heads; that
is, Pr fX j Yg 5 1. In contrast, it is very unlikely that a coin
has two heads just because you got a head by flipping it once;
that is Pr fY j Xg � 1. This misinterpretation is common
enough to earn its own name: ‘‘confusion of the inverse’’
(Utts, 2003).
Although a hypothesis test yields Pr fdata j hypothesis is

trueg, in reality Pr fhypothesis is true j datag would be much
more meaningful. The latter value represents what a novitiate
would expect from a hypothesis test. Only through intense
training in statistics does a student learn, if not appreciate, the
nonintuitive nature of a hypothesis test.
This awkward interpretation of a seemingly straightforward

statistical concept is a consequence of the traditional,
frequentist, philosophy of statistics. With that view, the
outcome of a single experiment or sample is just one of
many possible outcomes. The ‘‘significance’’ (p value) of that
single result is judged as the probability of that result, or any
result more extreme, assuming the null hypothesis is true.
That is, consideration is given to many (more extreme) results
that actually were not obtained.
There are ways out of this apparent difficulty. One

alternative approach is to consider the likelihood of the
observed outcome under the null model and under an
alternative model. The likelihood ratio expresses the strength
of evidence for one hypothesis versus the other. Royal (1997)
presented an overview of this approach, sometimes known as
the evidential paradigm. A second alternative is the Bayesian

approach, which combines the likelihood, which is based
solely on the observed data from the experiment or sample,
with information known or believed a priori. The Bayesian
philosophy was discussed by, among others, Box and Tiao
(1992), Gelman et al. (2003), and Press (2003). Barnett
(1999) compared and contrasted the various statistical
approaches.
I was further struck by Colegrave and Ruxton’s example, in

which they said (2003: 447) that ‘‘the breadth of that
confidence interval gives an indication of the likelihood of
the real effect size being zero (or at least very small).’’ In
reality, it is the location, more than the breadth, of
a confidence interval that provides such an indication.
Colegrave and Ruxton (2003: 447) argued that a confidence
interval of (20.07, 0.81) was more consistent with the null
hypothesis of no effect than was a confidence interval of
(20.59, 1.33). Examining graphs of distributions that would
provide such confidence intervals (Figures 1 and 2) would
lead me to the opposite conclusion. The latter confidence
interval gives a lot of credence to the real effect being small,
or even negative. For example, the likelihood that the effect
has a value 0.10 or less (the shaded area in each figure) is
0.115 for the first confidence interval versus 0.291 for the
second, wider, one.
The major point I made in my 1999 article was that the

testing of statistical hypotheses (as opposed to scientific
hypotheses) is generally misguided; most null hypotheses
tested are known to be false before any data are collected, and
the ‘‘significance’’ of any test is largely a function of the
sample size. I contrasted statistical hypotheses from scientific
hypotheses as had Simberloff (1990): statistical hypotheses
typically are statements about properties of populations,
whereas scientific hypotheses are credible statements about
phenomena in nature. I argued that, instead of testing
a hypothesis that the value of a certain parameter is zero, it is
often much more valuable to provide an estimate of that
parameter, as well as its confidence interval. I also mentioned
several shortcomings of power analysis, in particular the

Figure 1
Distribution generating 95% confidence interval (20.07, 0.81). The
shaded area, representing the likelihood of a small (,0.10) effect,
includes 11.5% of the likelihood.
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observation of Steidl et al. (1997) and, later and in more
detail, Hoenig and Heisey (2001) that power estimates made
with the same data that were used to test the null hypothesis
and the observed effect size are meaningless. On these points
I do agree with Colegrave and Ruxton (2003).
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Figure 2
Distribution generating 95% confidence interval (20.59, 1.33). The
shaded area, representing the likelihood of a small (,0.10) effect,
includes 29.1% of the likelihood.
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