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How to analyze binary responses?  
Tradeoffs between reproduction and survival  

 

 
 

Ecological theory hypothesizes that, given that organisms have a restricted energy 
budget, there may be a tradeoff among different vital rates. The evidence for a complete 
energy partitioning is controversial and it is not discussed in this demo. The purpose of 
this week’s session is to demonstrate how to perform a logistic regression model in R and 
OpenBUGS. We will calculate a logistic regression to model the survival probability of 
Hypericum cumulicola plants with different number of reproductive structures.  
 
For this demo you will need to download the script Logistic_Regression2016.R and 
the hypericum_survival.txt data file. You also need to have installed the package 
R2OpenBUGS and the OpenBUGS software.   
 
Part I.  Preparing the data  
 
Enter the following commands to load and attach the Hypericum cumulicola dataset. This 
dataset contains two continuous predictor variables (height and rep_structures) and a 
binary response variable (survival, where 0 = dead and 1 = alive). For this demo we 
will focus on the regression of number of reproductive structures vs. survival but feel free 
to explore more complex models featuring height as well. 
 
orig_data <- read.table("Hypericum_survival.txt",header=T) 
attach(orig_data) 
 
We will constrain the data to concentrate only on the fate of reproductive individuals: 
 
survival <- survival[rep_structures>0] 
rep_structures <- rep_structures[rep_structures>0] 
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Part II.  Logistic regression with a Frequentist approach 
 
The response variable survival consists of 0 and 1values, therefore a binary Generalized 
Linear Model can be used to analyze these data. A GLM consists of three parts (Zuur et 
al. 2015): (1) a distribution for the response, (2) a link function, and (3) a predictor 
function. For a logistic regression they are: 
 

(1) The distribution is given by: 
 
 
 
 
 

 
(2) The link function for the logistic model is the logit of π, the estimate for p is the   
probability of a variable as a function of x is given by:  

 
      Logit (π) = η 
 
 

(3) The predictor function η is a function of the covariates: 
 
 
 
We will now build logistic regression models to evaluate the effect of number of 
reproductive structures on the probability of survival. We use the function glm indicating 
family=binomial (generalized linear models with binomial errors) and call its summary 
to inspect our estimates: 
 
 
model1 <- glm(survival ~ rep_structures, family=binomial) 
summary(model1) 
 
Call: 
glm(formula = survival ~ rep_structures, family = binomial) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.6413  -1.2929   0.7883   0.8484   1.9309   
 
Coefficients: 
                 Estimate Std. Error z value Pr(>|z|)     
(Intercept)     1.0493333  0.1183184   8.869  < 2e-16 *** 
rep_structures -0.0036073  0.0006762  -5.335 9.56e-08 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
(Dispersion parameter for binomial family taken to be 1) 
    Null deviance: 734.95  on 569  degrees of freedom 
Residual deviance: 700.61  on 568  degrees of freedom 
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AIC: 704.61 
Number of Fisher Scoring iterations: 4 
 
We can calculate a G2 statistic from the deviance values to assess the overall significance 
of the model and also get its p-value by comparing it to the Chi-square distribution. We 
reject the null hypothesis with p=4.65e-09. The explained percent variation is (734.95-
700.61)/734.95 = 21%. 
 
G_sq <- model1$null.deviance – model1$deviance 
pchisq(G_sq, 1, lower.tail=F) 
 
We can plot this model in two different ways. First we plot it in its natural scale; as you 
can see in the y-axis, the probability of survival is bounded by its logical scale of 0 to 1, 
but the resulting function is not linear. Confidence intervals for the model are illustrated 
with discontinuous lines. 
 
par(mfrow=c(1,2)) 
x_values_rs <- seq(0, max(rep_structures), 1) 
y_values_rs <- predict(model1, list(rep_structures=x_values_rs), 
type="response") 
plot(rep_structures, survival,type="n",ylab="P(survival)") 
rug(jitter(rep_structures[survival==0]),ticksize = 0.03,) 
rug(jitter(rep_structures[survival==1]),ticksize = 0.03, side=3) 
lines(x_values_rs, y_values_rs) 
b <- seq(0, max(rep_structures),50) 
z <- cut(rep_structures, b) 
prebyden <- tapply(survival,z,sum) 
tab <- table(z) 
probs <-prebyden/tab 
probs <- as.vector(probs) 
points(b[2:length(b)],probs,pch=16,cex=1) 
se2<-sqrt(probs*(1-probs)/tab) 
up2 <-probs+as.vector(se2) 
down2 <-probs-as.vector(se2) 
for (i in 1:length(b-1)){ 
lines(c(b[i+1],b[i+1]),c(up2[i],down2[i]))} 
 
A different option is to plot the response variable in its logit scale; where it is no longer a 
straightforward probability, but where it behaves linearly. We used heuristic (arbitrary) 
arrangements of the data to illustrate the different fits.  
 
coef <-model1$coefficients 
plot(b[2:length(b)],log(probs/(1-probs)),xlab="# reproductive 
structures") 
abline(a=coef[1],b=coef[2]) 
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However, we are not satisfied with the distribution of the residuals in this model. The 
scarce information for plants with many reproductive structures has too much leverage 
and is pulling the model down, predicting extremely low survival values for plants with > 
400 reproductive structures, even when plants with intermediate numbers of reproductive 
structures had survival probabilities around 0.5. This model predicts a probability of 
survival of 0.32 for plants with 500 reproductive structures. 
 
rs <- 500 
coeffs <- summary(model1)$coefficients 
odds_ratio <- coeffs[1,1]  + coeffs[2,1]*rs 
prob <- 1/(1 + (1/exp(odds_ratio))) 
prob 
[1] 0.31988 
 
We will now try a model where the number of reproductive structures has been log-
transformed to see if that improves the fit and assumptions (we include only the output, 
but the R script features the code written in exactly the same way as for model 1): 
 
rep <- log(rep_structures) 
model2 <-glm(survival ~ rep, family=binomial) 
summary(model2) 
 
Call: 
glm(formula = survival ~ rep, family = binomial) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.1012  -1.2201   0.7246   0.9424   1.3358   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  2.09096    0.27783   7.526 5.23e-14 *** 
rep         -0.37016    0.06466  -5.724 1.04e-08 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
(Dispersion parameter for binomial family taken to be 1) 
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    Null deviance: 734.95  on 569  degrees of freedom 
Residual deviance: 698.51  on 568  degrees of freedom 
AIC: 702.51 
 
Number of Fisher Scoring iterations: 4 

 

 
 
The new model has better residuals and allows us to conclude that the decline in survival 
with number of reproductive structures is larger for plants with fewer reproductive 
structures, and then decreases with increasing number of reproductive structures. The 
explained percent variation is (734.95-698.51)/734.95 = 36.48 %. We can visualize the 
differences between the two models even better by plotting them together (code included 
in R script, model 1 in blue, model 2 in red): 
 

 
The transformed model predicts a probability of survival of 0.45 for plants with 500 
reproductive structures. This value is more consistent with the overall data. We also 
calculate the AIC for both models and decide that model 2 is better to describe the 
variation in survival probability.  
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rs <- log(500) 
coeffs <- summary(model2)$coefficients 
odds_ratio <- coeffs[1,1]  + coeffs[2,1]*rs 
prob <- 1/(1 + (1/exp(odds_ratio))) 
prob 
[1] 0.4478278 
 
AIC(model1,model2) 
       df      AIC 
model1  2 704.6129 
model2  2 702.5136 
 
We can also use the predict function to produce an estimate of the survival probability 
of a plant with 500 flowering structures: 
 
new_data <- data.frame(list(rep=log(500))) 
predict(model2, newdata=new_data, type="response") 
0.4478278 
 
Part III. Logistic regression with a Bayesian approach 
 
Next, we implement a Bayesian analysis of both models 1 and 2. We use the function 
library (R2OpenBUGS) to connect with OpenBUGS. To define the model below we 
provide three sets of data: n the number plants, x their reproductive structures (non or 
log-transformed), and y their survival. The following lines of code describe model 1, the 
uninformed prior distributions, and give the initial conditions and MCMC simulation 
parameters. We use this model to compare with the frequentist approach and to calculate 
the predicted survival for plants with 500 flowering structures. To evaluate model 2 we 
just change rep_structures for rep and 500 for log(500). You may notice from the 
output that as usual, the estimates for the parameters are not identical. You can minimize 
this by drastically increasing the thinning rate, but that will also dramatically increase the 
time it takes to run! Also notice that the mean of prob_est coincides with the 
predictions of the frequentist approach, but now we have predicted distributions and not 
simply parameters.   
 
library(R2OpenBUGS) 
n <- NROW(rep_structures) 
x <- rep_structures 
y <-survival 
   
# Write model 
Logmodel<-function(){ 

for( i in 1 : n ) { 
   y[i] ~ dbern( mu[i] ) 
   mu[i] <- 1/(1+exp(-( b0 + inprod( b1 , x[i] )))) 
      } 
b0 ~ dnorm( 0 , 1.0E-12 ) 
b1 ~ dnorm( 0 , 1.0E-12 ) 
prob_est <- 1/(1 + (1/exp(b0 + b1*500))) 
} 
write.model(Logmodel, "Logmodel.txt") 
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# Bundle data 
win.data <- list("x","y","n") 
 
# Inits function 
inits <- function(){ list(b0=0.1, b1=0.1)} 
 
# Parameters to estimate 
params <- c("b0","b1","prob_est") 
 
# MCMC settings 
nc = 3  
ni=10000 
nb=1000 
nt=1 
 
# Start Gibbs sampler 
out <- bugs(data = win.data, inits = inits, parameters = params, model 
= "logmodel.txt",n.thin = nt, n.chains = nc, n.burnin = nb, n.iter = 
ni, codaPkg=T) 
  
# Display results 
library(coda) 
reg.coda1<-read.bugs(out) 
results1<-summary(reg.coda1) 
results1 
 
Comparison between Bayesian and Frequentist output, covariate is the number of 
reproductive structures. 
 
Method Model β1 se β2 se 
Frequentist cov- natural scale 1.0493 0.1183 -0.0036 0.00067 
Bayesian cov- natural scale 1.0583 0.1163 -0.0037 0.00064 
Frequentist Log (cov) 2.0909 0.2778 -0.3702 0.0647 
Bayesian  Log (cov) 2.1279 0.2825 -0.3786 0.0655 
 
We now visualize the differences between the two models by calculating and plotting the 
credibility intervals of the Bayesian models (model 1 in gray, model 2 in cyan), together 
with the frequentist models (model 1 in blue, model 2 in red). The dots are heuristic on 
arbitrary binning by percentages and represent the observed data, the black lines are the 
confidence intervals of these heuristic values:  
 
estim1 <- estim2 <- array(0,c(140,100)) 
x <- seq(1,1400,10) 
s1 <- round(runif(100)*5000,0) 
s2 <- round(runif(100)*5000,0) 
for(i in 1:100){ 
for(j in 1:140){ 
estim1[j,i] <- 1/(1 + (1/exp(as.numeric(reg.coda1[s[i],1][1]) + 
as.numeric(reg.coda1[s[i],2][1])*x[j]))) 
estim2[j,i] <- 1/(1 + (1/exp(as.numeric(reg.coda2[s[i],1][1]) + 
as.numeric(reg.coda2[s[i],2][1])*log(x[j])))) 
} 
} 
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plot(x_values_rs, y_values_rs, col="blue", type="l",xlab ="Number of 
reproductive structures", ylab ="Probability") 
for (i in 1:100){ 
lines(exp(log(seq(1,1400,10))),estim1[,i],type="l",col="gray") 
lines(seq(1,1400,10),estim2[,i],type="l",col="cyan") 
} 
points(exp(x_values_lrs), y_values_lrs, col="red",type="l") 
points(x_values_rs, y_values_rs, col="blue", type="l") 
b <- seq(0, max(rep_structures),30) 
z <- cut(rep_structures, b) 
prebyden <- tapply(survival,z,sum) 
tab <- table(z) 
probs <-prebyden/tab 
probs <- as.vector(probs) 
points(b[2:length(b)],probs,pch=16,cex=1) 
se2<-sqrt(probs*(1-probs)/tab) 
up2 <-probs+as.vector(se2) 
down2 <-probs-as.vector(se2) 
for (i in 1:length(b-1)){ 
lines(c(b[i+1],b[i+1]),c(up2[i],down2[i]))} 
 

 
 
We finish our session by detaching the data we attached at the beginning of our R 
session: detach(orig_data)  
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