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Summary

1.

 

Stephens 

 

et al

 

. (2005) argue for ‘pluralism’ in statistical analysis, combining null
hypothesis testing and information-theoretic (I-T) methods. We show that I-T methods
are more informative even in single variable problems and we provide an ecological
example.

 

2.

 

I-T methods allow inferences to be made from multiple models simultaneously. We
believe multimodel inference is the future of data analysis, which cannot be achieved
with null hypothesis-testing approaches.

 

3.

 

We argue for a stronger emphasis on critical thinking in science in general and
less reliance on exploratory data analysis and data dredging. Deriving alternative
hypotheses is central to science; deriving a single interesting science hypothesis and then
comparing it to a default null hypothesis (e.g. ‘no difference’) is not an efficient strategy
for gaining knowledge. We think this single-hypothesis strategy has been relied upon
too often in the past.

 

4.

 

We clarify misconceptions presented by Stephens 

 

et al

 

. (2005).

 

5.

 

We think inference should be made about models, directly linked to scientific hypo-
theses, and their parameters conditioned on data, Prob(

 

H

 

j

 

 

 

|

 

 data). I-T methods provide a
basis for this inference. Null hypothesis testing merely provides a probability statement
about the data conditioned on a null model, Prob(data 

 

|

 

 

 

H

 

0

 

).

 

6.

 

Synthesis and applications

 

. I-T methods provide a more informative approach to
inference. I-T methods provide a direct measure of evidence for or against hypotheses
and a means to consider simultaneously multiple hypotheses as a basis for rigorous
inference. Progress in our science can be accelerated if  modern methods can be used
intelligently; this includes various I-T and Bayesian methods.
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Introduction

 

A recent paper by Stephens 

 

et al

 

. (2005) questions the
rejection of null hypothesis testing (NHT) and calls for
a ‘pluralism’ of analysis methods. Much of their paper
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restates prior criticisms of the common misuses of NHT,
with which we are in agreement. The problems with
NHT and 

 

P

 

-values have been discussed extensively in
the literature (for a list of > 400 citations see http://
www.warnercnr.colostate.edu/

 

∼

 

anderson/null.html
(accessed 18 December 2006)), so we do not repeat them
here. We agree with Stephens 

 

et al

 

. (2005) that both
NHT and information-theoretic (I-T) methods can be
used inappropriately and careful attention must be
paid to the use of all statistical methods. However, there
are several occasions in Stephens 

 

et al

 

. (2005) in which
the potential for misunderstanding is great; thus we feel
further clarity regarding I-T approaches is warranted.
For example, we interpreted their call for plurality as
the notion that combining IT methods and NHT in data
analysis can provide stronger inference. The authors
describe a study that combined usage of likelihood
ratio testing and I-T methods as a powerful analysis
approach. Further correspondence has indicated their
intent was to suggest that I-T methods should be placed
alongside NHT in the biologist’s statistical toolbox and
not to suggest that both approaches be used in concert
with one another.

NHT remains in use in scientific research. NHT is
not mathematically wrong; it is just relatively unin-
formative for scientific questions compared with modern
analysis methods. Scientists are changing their views of
inference as better methods, such as I-T and Bayesian,
are replacing NHT. I-T and Bayesian methods provide
statistical frameworks for pursuing the multiple-hypothesis
approach to science advanced by Chamberlin (1897)
and endorsed as strong inference by Platt (1964). They
are also consistent with modern approaches to decision
making in the face of  competing ecological models,
found in adaptive resource management (Walters 1986;
Williams, Nichols & Conroy 2002). We do not object
to NHT being in a statistical toolbox if  used carefully.
We would rarely use NHT ourselves but often we, as
journal referees, would not argue against its use, for
example as a means of assessing goodness-of-fit.

NHT and I-T represent two philosophically differ-
ent views of data analysis and inference. NHT attempts
to present a binary choice between the null hypothesis
(H

 

0

 

) and the alternative (H

 

A

 

), based on an arbitrary 

 

α

 

level and the resulting 

 

P

 

-value, the probability of the
data (

 

X

 

) and unobserved, more extreme, data given the
null hypothesis, Prob(

 

X 

 

|

 

 H

 

0

 

). In contrast, I-T provides
simple ways to quantify directly the evidence for two or
more science hypotheses. This evidence usually stems
from a simultaneous analysis of multiple hypotheses
and includes a ranking of the models based on infor-
mation loss, the probability of each model given the
data [Prob(

 

H

 

j

 

 

 

|

 

 X

 

) for 

 

j

 

 = 1, 2, … , 

 

R

 

, where 

 

R

 

 is the
number of models] and evidence ratios (Table 1).

Stephens 

 

et al

 

.’s (2005) abbreviation ‘information-
theoretic model comparison (ITMC)’ poorly denotes
the breadth of this approach. Kullback–Leibler infor-
mation and its asymptotic estimator (Akaike’s infor-
mation criterion) is much more than a ‘model comparator’.

Hence we have adopted the abbreviation I-T in discuss-
ing this class of methods, including several procedures
to allow rigorous inference from more than a single
model (multimodel inference). Stephens 

 

et al

 

. (2005)
further state that NHT is a more appropriate tool for
some questions that they later clarify as being single-
parameter studies. We do not agree that NHT is more
appropriate than I-T methods for the scenarios they
presented, and offer an explanation for our disagreement.
We wish to make two main points. First, we demon-
strate that I-T is directly applicable in single-parameter
problems and, moreover, that it is more informative
than NHT. Secondly, we stress that developing scientific
hypotheses is a difficult process and it should rightly be
challenging. Hypothesizing is the cornerstone of science
and must be given considerable thought. I-T methods
encourage greater a priori thinking than NHT, which
focuses on the testing of  a null hypothesis against an
alternative.

 

The single-parameter case

 

Stephens 

 

et al

 

. (2005) suggested that NHT serves well
in single-parameter situations. We argue that I-T methods
remain more informative even in a case where only a
single additional parameter is in question. Our disa-
greement with Stephens 

 

et al

 

.’s (2005) position can be
illustrated using the capture–recapture data collected
for the European dipper 

 

Cinclus cinclus

 

 (Lebreton 

 

et al

 

.
1992) to contrast the two approaches. The points we
make here are general and are not restricted to this
particular example. The frog–atrazine case in Stephens

 

et al

 

. (2005) could easily be handled with the more
useful I-T methodology.

The basic research question in the European dipper
study related to whether the apparent survival proba-
bility of birds differed in years when floods occurred
during the breeding season (this species nests near
streams) vs. a normal year when a flood did not occur.
In each case there are two models: (1) {

 

ϕ

 

(·),

 

p

 

(·)},imply-
ing that apparent survival (

 

ϕ

 

) and recapture prob-
abilities (

 

p

 

) are approximately constant over years; and
(2) {

 

ϕ

 

(

 

n

 

),

 

ϕ

 

(

 

f

 

),

 

p

 

(·)}, where years are partitioned into
normal years (

 

n

 

) and flood years (

 

f

 

) in terms of apparent
survival probabilities. These models are clear repres-
entations of two science hypotheses, one where a flood
has no impact on apparent survival, and one where a

Table 1. Summary of the types of evidence provided under
null hypothesis testing and information-theoretic approaches

Null hypothesis 
testing Information-theoretic

P-values = 
Prob(X | H0)

Ranking of Hj j = 1, … R
Probability of hypothesis j = Prob(Hj | X)
Evidence ratios, hypothesis i vs. j
Model averaging
Unconditional estimates of precision

http://www.warnercnr.colostate.edu/~anderson/null.html
http://www.warnercnr.colostate.edu/~anderson/null.html
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flood does impact apparent survival. The first model
has 

 

K

 

 = 2 parameters, whereas the second model has

 

K

 

 = 3 parameters. The research question (a simple one-
parameter observational study) relates to the possible
change in survival probability during flood years.

The maximum likelihood estimates (MLE) for 

 

ϕ

 

 and
measures of precision for parameters in the two models
are presented in Table 2. The difference in estimates of
survival probability (the ‘effect size’) is 0·1383, SE =
0·0532, with a 95% confidence interval for this difference
of (0·0340, 0·2425). The MLE of 

 

p

 

 is 0·9025 (SE =
0·0286) vs. 0·8997 (SE = 0·0293) for the two models,
respectively.

 

  

 

The simpler model is nested in the three-parameter model
and a simple likelihood ratio test of the two models
provides a test statistic of 6·735 and, assuming this is 

 

χ

 

2

 

distributed on one degree of freedom, we obtain a 

 

P

 

-
value of 0·0095. This would be ruled ‘significant’; some
would say ‘highly significant’ and others would include
‘**’ in tabular material to emphasize its high significance.
Note that only the null hypothesis (

 

H

 

0

 

) is the subject of
the test.

Formally, the 

 

P

 

-value of 0·0095 is the probability of
a value as large as 6·735 or larger, given the null model
{

 

ϕ

 

(·),

 

p

 

(·)} is true. Given that this is such a small prob-
ability, one concludes (by default) that the alternative
model {

 

ϕ

 

(

 

n

 

),

 

ϕ

 

(

 

f

 

),

 

p

 

(·)} is ‘significantly’ better. The proper
interpretation of the 

 

P

 

-value is strained; this provides
some explanation regarding why so many people
erroneously believe the 

 

P

 

-value means something else
(e.g. the probability that the null model is true).

 

 - 

 

Under this approach, one obtains the model probabil-
ities directly:

Model Probability
{

 

ϕ

 

(.),

 

p

 

(.)} 0·0868
{

 

ϕ

 

(

 

n

 

),

 

ϕ

 

(

 

f

 

),

 

p

 

(.)} 0·9132.

In addition, these are mathematically equivalent to
Bayesian posterior model probabilities (Burnham &
Anderson 2004). These model probabilities provide
direct evidence regarding the empirical support for the
two models, without having to assume that either model is

‘true’ (there are no true models). We believe that most
scientists and resource managers would view these model
probabilities as more meaningful forms of  evidence
compared with 

 

P

 

-values.
The quantification of information loss (

 

∆

 

i

 

 = AIC

 

i

 

 –
minAIC) allows the computation of the likelihood of
model 

 

g

 

i

 

, given the data:

.

The probability of model 

 

i

 

 is a normalization of the
model likelihoods:

.

The 

 

w

 

i

 

 are ‘Akaike weights’ or model probabilities.
These weights are quite unlike 

 

P

 

-values (probability of
the data, given the null model), instead they are the
probability of model 

 

i

 

, given the data (Table 1). Finally,
an evidence ratio (

 

E

 

) is useful in comparing the relative
strength of evidence for two hypotheses, 

 

i

 

 and 

 

j

 

:

.

Burnham & Anderson (2002) provide a discussion of
evidence ratios and model probabilities. Evidence
ratios provide a measure of the relative likelihood of
one hypothesis vs. another. Here, likelihood has a tech-
nical meaning, can be quantified and should not be
confused with probability. For example, if  person A
holds three raffle tickets and person B has one, person
A is three times more 

 

likely

 

 to win than person A. We
do not know the absolute probability of either person
winning without knowing the total number of raffle
tickets. In the dipper example, the evidence ratio gauges
the relative support for the two alternatives: 0·9132/
0·0868 = 10·52. Given the available data, a difference in
survival probability having occurred between normal
and flood years is 10·52 times more likely than no dif-
ference having occurred. This suggests somewhat lim-
ited to moderate evidence for a flood effect on apparent
survival probability (strong evidence of a flood effect is
not warranted, contrary to the result from NHT). Evid-
ence ratios are invariant to other models in the model
set and are the statistic used in legal settings, such as
criminal trials relying on DNA evidence (Evett & Weir
1998). Evidence ratios are a continuous measure, but
some useful guidelines have existed in the statistical
literature (Table 3; Jeffreys 1948; Evett & Weir 1998).
Inference should be about models and parameters,
given data; however, 

 

P

 

-values are probability statements
about data, given null models. Model probabilities and
evidence ratios provide a means to make inference
directly about models and their parameters, given data.

I-T methods can be used in single-parameter problems
such as the pollutant problem posed by Stephens 

 

et al

 

.
(2005), despite their claim that AIC was not applicable

Table 2. Maximum likelihood estimates (MLE) and confidence
intervals (CI) for apparent survival (ϕ) of European dippers in
flood ( f ) and normal (n) years from two models

Model MLE 95% CI 

{ϕ(·),p(·)} 0·5602 0·5105 0·6088
{ϕ(n),ϕ( f ),p(·)}

(n) 0·6071 0·5451 0·6658
( f ) 0·4688 0·3858 0·5537
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because ‘AIC cannot be used to compare models of dif-
ferent data sets’ (Stephens et al. 2005). Stephens et al.
(2005) misinterpret what is meant in the statistical sci-
ences as a ‘data set.’ In particular, a data set does not
mean just one vector of numerical values. The example
presented by Stephens et al. (2005) is a case of a control–
treatment design, which assumes a control (sites are
similar) and independent samples at each site. In
actuality, paired control–treatment samples would be
recorded at similar times because pollutant effects are
time-dependent as a result of stream flow, but we dis-
regard this to be consistent with Stephens et al.’s (2005)
original example. Thus, the analysis could be framed as
two models:

Y = β0

Y = β0 + (β1 + 5)X

where Y is the concentration of the pollutant, β0 is the
overall mean concentration (the intercept), β1 is the
treatment effect, 5 is the constant added representing
the minimum treatment effect of interest, and X is an
indicator of  the upstream (control) or downstream
(treatment) site. The intercept-only model treats the
control and treatment observations as if  they were col-
lected at the same site, whereas the indicator-variable
model constrains these observations to be site-specific
in the analysis. In this case the response variable is
the same, therefore models can be built to represent
the hypotheses and I-T methods are applicable. If  the
response variables were different at each site, neither
I-T nor NHT could be used.

Stephens et al. (2005) were mistaken when they claimed
that NHT can provide ‘the probability with which HA

could be supported’. NHT does not provide informa-
tion about the probability of the alternative hypothesis
because only the null hypothesis is the subject of the
test. I-T methods provide the probability of the alter-
native hypothesis that the authors seek and both the
model weights and the evidence ratios quantify the
empirical support for the hypotheses, whether there are
two or more such hypotheses.

I-T methods allow us to go a step further in our analysis
and make formal inference from multiple models
simultaneously (Burnham & Anderson 2002). The
{ϕ(·),p(·)} and {ϕ(n),ϕ( f ),p(·)} apparent survival esti-
mates can be model-averaged to produce an estimate
of flood and normal year apparent survival that takes
model selection uncertainty into account. The model-

averaged estimates are a weighted average of the esti-
mates of the two models, with the weights based on the
model probabilities (Burnham & Anderson 2002). The
model-averaged variance accounts for sampling
variance and variation in parameter estimates across
models (Burnham & Anderson 2002). The model aver-
aged effect size for the dipper example is 0·1263 (SE =
0·0639). Note the estimate is a bit smaller than that for
the {ϕ(n),ϕ( f ),p(·)} model and the standard error is larger.
The difference represents the uncertainty as to which
model is actually best in terms of Kullback–Leibler
information loss. This estimate is conditional on the set
of models considered rather than a single model. NHT
offers no procedure for model averaging or for com-
puting the unconditional estimates of sampling vari-
ation or covariation.

It remains true that NHT is not wrong, but it is
relatively uninformative in most cases. The scientific
method in combination with NHT has increased know-
ledge since its formalization. However, the theory
underlying NHT is weak in that it is based on the prob-
ability of the data, given the null model. We believe I-T
approaches represent an improved methodology because
these methods encourage greater a priori thinking about
plausible scientific hypotheses (even if  there are only
two) and because the outputs are more directly inter-
pretable, regardless of the problem sophistication.

Developing scientific hypotheses

Statistical models should represent a translation of
scientific hypotheses to their equivalent mathematical
expression. An ecologist may need to collaborate with
a statistician to turn a scientific hypothesis into such a
mathematical statement. Such collaboration would be
likely to be fruitful for both the ecologist and statistician,
especially when initiated prior to collecting any data,
and this has been our experience. There may be cases
where a null hypothesis is plausible, and in those cases
its model should be included in the set of models under
consideration. The science hypotheses and statistical
models should always be very tightly linked.

Stephens et al. (2005) suggest that developing scientific
hypotheses and the statistical models that represent
them is a difficult process, therefore exploratory data
analysis (EDA) is needed to suggest new hypotheses.
EDA is often promoted as a method allowing researchers
to uncover relationships they would not have thought
of  previously. We agree that developing scientific
hypotheses is challenging; however, the ultimate role of
the scientist is that of developing and evaluating plau-
sible hypotheses. EDA is a risky method for developing
scientific hypotheses. The probability of finding an effect
that is spurious is often quite high with EDA (Freedman
1983). Frequent chasing of spurious effects slows the
progress of science (Anderson et al. 2001).

We encourage some post-hoc examination of data,
but only after the a priori investigations have been com-
pleted. Then it is important to keep the two types of

Table 3. General guidelines for the amount of support given
by an evidence ratio based on Evett & Weir (1998)

Evidence ratio Verbal description

1–10 Limited support
10–100 Moderate support
100–1000 Strong support
> 1000 Very strong support
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inferences separate. EDA based on NHT methods such
as stepwise selection simply removes thought from data
analysis. NHT provides little to an EDA to either develop
unknown relationships or extract new information. All
of the relationships are tied to the estimation method,
not NHT. Therefore, if  one were to use I-T or NHT it
would make little difference in the exploratory analysis.
I-T does provide the opportunity to model-average and
hedge one’s bet against spurious effects. We stress that
hard thinking about the scientific question combined
with theory about a problem presents a far better way
to develop new hypotheses.

We urge researchers to place substantial mental
effort to derive a set of plausible scientific hypotheses.
Hypothesizing is the centre of science. Soule (1987 )
stated: ‘models are tools for thinkers, not crutches for
the thoughtless’. Ecologists must actively engage in
developing meaningful hypotheses, rather than always
defaulting to the standard null hypothesis, ‘no effect’.

Are analyses employing both frequentist and I-T 
approaches more revealing?

We question whether analysing the same data set with
both NHT and I-T approaches has any justification.
Stephens et al. (2005) suggest that ‘if  our objective is to
maximize our understanding of  a system and develop
a model that best approximates reality … , there is an
argument that we should use whatever means are avail-
able to do so’. We are not aware of any statistical theory
that exists to guide an analyst in a combined analysis.
What does one do if  the results conflict? Stephens et al.
(2005) suggest exploring assumptions, but that should
be done as part of any analysis regardless of the method.
Why would one feel better about an inference if  the
results agree? The same data are being used for the two
analyses and the estimation procedures are in large part
identical. The two analyses are not independent lines of
evidence. Simply using ‘whatever means are available’
in the absence of guiding theory provides a weak basis
for science.

Conclusions

I-T and NHT represent two very different philosophical
views of data analysis and inference. We argue that I-T
methods provide a more informative approach to infer-
ence. I-T methods provide a direct measure of evidence
for or against hypotheses and a means to consider
simultaneously multiple hypotheses as a basis for
rigorous inference. It is the evidence ratio that allows a
researcher to consider the relative support for com-
peting scientific hypotheses, rather than merely selecting
an alternative hypothesis by default because the prob-
ability of  the data is small given the null hypothesis.
I-T methods allow a scientist to make inference from

models and parameters conditioned on data, rather than
probability statements about the data conditional on a
null model (Table 1). While it is true that both I-T and
NHT methods can be misused, no one is advocating
misuse of any statistical methods. When used properly,
I-T methods provide more information to the researcher.

Historically, NHT has occupied a large place in the
statistical toolbox. We ourselves have used NHT in the
recent past in limited applications. Increasingly we see
the place for NHT getting smaller. It is hard to under-
stand why one would cling to an inefficient tool when
better options exist. Our statistical toolbox has grown
rapidly in recent decades. I-T and Bayesian methods
should occupy the top shelf  of the toolbox, with NHT
getting only a small drawer.

Stephens et al. (2005) argue that many ecologists are
confused about analysis methods. We see the confusion
dissipating and the use of I-T methods rapidly increas-
ing. We also see an increase in the use of  Bayesian
methods, particularly for models with random effects.
Here we have attempted to help clarify I-T methodology
and demonstrate its clear advantages over NHT.
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