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Why worry about assumptions? 
Reproductive output of a rare plant 

 
When we apply statistical models we entail a whole set of assumptions. For example, the use of 
linear regression models implies (i) normality, (ii) homogeneity of variance, (iii) independence, 
(iv) fixed measurement of the explanatory variable, and (v) correct model specification. In this 
session we will discuss how to verify these assumptions in a linear model and recognize the 
consequences of their violation. Quintana-Ascencio et al. (2003) collected demographic data of 
the rare and endemic plant Hypericum cumulicola in Archbold Biological Station, in Highlands, 
Florida. Reproduction is a critical vital rate contributing to determine population persistence so 
demographic studies of plants routinely characterize reproductive output of individuals with 
different sizes. Here, we will evaluate a linear regression model to predict number of 
reproductive structures of Hypericum cumulicola with different heights.  
     

                           
Figure 1. Vegetative and reproductive stages of Hypericum cumulicola 

 
Enter the following command to load the Hypericum cumulicola data. 

orig_data <- read.table("hypericum_data_94_07.txt", header=T) 
 

This dataset contains, among other variables, height in cm of each plant (ht_init) and number 
of reproductive structures per individual (rp_init).  For this demo we will focus on the 
regression of number of reproductive structures vs. height during 1994-1996. We will constrain 
the data to concentrate only on reproductive individuals collected during the first three years of 
study: 

dt <- subset(orig_data, !is.na(ht_init) & rp_init > 0 & year < 1997) 
height <- dt$ht_init 
fruits <- dt$rp_init 
id <- dt$tag 
year <- dt$year 
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We can naively start analyzing these data evaluating a linear model of the relationship between 
height and fruits for reproductive individuals and hypothesizing that the number of fruits changes 
with height. This model, summarized below, indicates that number of fruits increases with height 
and explains 24% of the observed variation.  
 
The underlying statistical model is: 
  
𝑵𝑵𝑵𝑵𝑵𝑵 𝒐𝒐 𝒇𝒇𝒇𝒇𝒇𝒇 =  𝜷𝟏 +  𝜷𝟐 ∗ 𝒉𝒉𝒉𝒉𝒉𝒉                  𝝐~𝑵(𝟎, 𝝈)             
 
The implementation and results in R are: 
 
Call: 
lm(formula = fruits ~ height) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-347.5  -81.4  -18.2   45.4 5620.8  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) -269.3643    16.8864  -15.95   <2e-16 *** 
height        11.2354     0.4416   25.44   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 240.7 on 2099 degrees of freedom 
Multiple R-squared:  0.2357,    Adjusted R-squared:  0.2353  
F-statistic: 647.2 on 1 and 2099 DF,  p-value: < 2.2e-16 
 
The plot of these two variables (Figure 2) for the first three years of the data shows that the 
number of fruits consistently increased with height through years, that the increase may be faster 
than a linear change, and that the uncertainty in the number of fruits augmented with height. 
 

 
 
Figure 2. Plot of number of fruits as a function of plant height for H. cumulicola 
measured during 1994, 1995, and 1996 at Archbold Biological Station. The line in red 
is the linear model (y = -269.36 + 11.23x). The ordinate access was truncated at 1000. 
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A plot of the residuals of the linear model shows a clear pattern of increasing variance for the 
values with height (Figure 3).  
 

 
Figure 3. Plots of model residuals as a function of height. The plot at the right 
enlarges the area where the data is concentrated.  
 

After inspecting the residuals in the previous plots we recognize the non-linear relationship 
between height and number of fruits and evaluate a power model. To accomplish this we 
implement a linear model of the natural logarithm of both variables.  
 
The underlying statistical model is: 
  
l𝐨𝐨 (𝑵𝑵𝑵𝑵𝑵𝑵 𝒐𝒐 𝒇𝒇𝒇𝒇𝒇𝒇) =  𝜷𝟏 + 𝜷𝟐 ∗ 𝐥𝐥𝐥 (𝒉𝒉𝒉𝒉𝒉𝒉)          𝝐~𝑵(𝟎, 𝝈)                     
 
The implementation and results in R are: 
 
Call: 
lm(formula = log(fruits) ~ log(height)) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-4.2555 -0.4869  0.0289  0.5258  4.8065  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -7.35037    0.17916  -41.03   <2e-16 *** 
log(height)  3.23867    0.05043   64.22   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.8164 on 2099 degrees of freedom 
Multiple R-squared:  0.6627,    Adjusted R-squared:  0.6625  
F-statistic:  4124 on 1 and 2099 DF,  p-value: < 2.2e-16 
 

Notice the different values for the Betas between models. 
 
This model characterizes the data much better (Figure 4 – red line) and the even distribution of 
the residuals indicates a more reliable model (Figure 5 – left). Notice that an outlier remains 
among the small plants. This plant has 4 cm and 7 fruits; an exceptional reproductive output for 
this size.  
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Figure 4. Plot of number of fruits as a function of plant height for H. cumulicola 
measured during 1994, 1995, and 1996 at Archbold Biological Station. The line in red 
is the power model using MLS (y = -7.35x3.24). The line in blue is the power model 
using likelihood (y = -7.60x3.37). The ordinate access was truncated at 1000. 

 
Figure 5. Plot of model residuals as a function of height for both power models.  

 
When we transformed the data we changed the model that we hypothesized fits the relationship; 
in this case from a linear to a power model. The estimation of the parameters of the power model 
varies depending on whether we use likelihood or the method of least squares to approximate 
the solution. For the previous power model we used the method of least squares on the logarithm 
transformed data. Below we approximate the solution of this model using likelihood on the 
natural scale of the data with the function nlsLM()of the R package minpack.lm  
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The underlying statistical model is: 
  
𝒚 =   𝒂𝟏 ∗ 𝒉𝒉𝒉𝒉𝒉𝒉𝒂𝟐         𝝐~𝑵(𝟎, 𝝈) 
 
The implementation and results in R are: 
 
library(minpack.lm) 
Power <- nlsLM(fruits~a1*height^a2,start=list(a1=1,a2=1),data=dt,algorithm="LM")  
summary(Power) 
 

The output of this model is  
 
Formula: fruits ~ a1 * height^a2 
 
Parameters: 
    Estimate Std. Error t value Pr(>|t|)     
a1 0.0005229  0.0002615   1.999   0.0457 *   
a2 3.3723063  0.1246992  27.044   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 232.2 on 2099 degrees of freedom 
 
Number of iterations to convergence: 36  
Achieved convergence tolerance: 1.49e-08 
 

Notice that the parameters of the nonlinear model using likelihood (α1: ln(0.0005) = -7.56 and 
α2: 3.37) are commensurate, but different, from those of the MLS model (α1: -7.35 and α2: 
3.24). Because the power model approximated with likelihood is evaluated on the same scale as 
the linear model we can compare their relative information using AIC. The Power model is more 
informative (AIC= 28857) than the linear one (AIC = 29008).  
 
We plot both power models in Figure 4 (blue line) and their residuals in Figure 5 (right). Notice 
the more central location of the likelihood power model around larger heights. This model 
emphasizes the increasing variation of number of fruits with increasing height. To decide which 
model you prefer consider that the model estimated with likelihood does not change the 
distribution of the variance along the mean, as happens with the transformed data.  
 
The plot of residuals of the MLS power model shows reduced variation for plants smaller than 
20 cm and those larger than 60 cm. This may be a problem because these regions of the model do 
not meet homogeneity of variance, an assumption of the MLS method. In several R procedures, 
weights can be specified to indicate that different observations have different variances (with the 
values in weights being inversely proportional to the variances (R documentation). Estimates of 
the coefficients are adjusted accordingly. The model below was estimated with weights by 
height. 
 
The underlying statistical model is: 
  
l𝐨 𝐠(𝑵𝑵𝑵𝑵𝑵𝑵 𝒐𝒐 𝒇𝒇𝒇𝒇𝒇𝒇) =  𝜷𝟏 +  𝜷𝟐 ∗ 𝐥𝐥 𝐠(𝒉𝒉𝒉𝒉𝒉𝒉)         𝝐~𝑵(𝟎, 𝝈)            𝝈~𝒘 ∗ 𝒉𝒉𝒉𝒉𝒉𝒉  
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The implementation and results in R are: 
 
Call: 
lm(formula = log(fruits) ~ log(height), weights = height) 
 
Weighted Residuals: 
     Min       1Q   Median       3Q      Max  
-25.5362  -2.8483   0.1603   3.0937  21.0921  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -7.42995    0.19962  -37.22   <2e-16 *** 
log(height)  3.26104    0.05452   59.81   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 4.796 on 2099 degrees of freedom 
Multiple R-squared:  0.6302,    Adjusted R-squared:   0.63  
F-statistic:  3577 on 1 and 2099 DF,  p-value: < 2.2e-16 
 

The coefficients of this model were very similar to the previous model with fixed variance 
(Figure 6) and we can use AIC to evaluate if fixed or variable variance are warranted. In this 
case the model with fixed variance has smaller AIC (5113.77) compared to the model with 
variable variance (5127.51) indicating that in this case the correction was not necessary. 
 

 
Figure 6. Plot of number of fruits as a function of plant height for H. cumulicola 
measured during 1994, 1995, and 1996 at Archbold Biological Station. The line in blue 
is the MLS power model with constant variances (y = -7.35x3.24). The line in red is the 
MLS power model assuming variable variance (y = -7.43x3.26). The ordinate access was 
truncated at 1000. 

 
While the residual of the linear model were highly skewed to the left, the residuals for both the 
power models were normally distributed (Figure 7).  
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Figure 7. Histogram of the residuals of the general linear model, the MLS and the 
likelihood power models (with constant variance).  

 
There are more aspects that we should inspect to validate the models. These data represent 
several years of work and there is a certain level of non-independence in the data. For example 
Population 63 had several individuals that were measured consecutively several times. The 
estimate of the coefficient of the slope of the power model based on those 32 individuals, results 
in biased estimates when compared to estimates based in random samples of the same size 
(Figure 8 and 9).  

 
Figure 8. Power models based on 500 random samples of 32 individuals (in blue) 
compared to the overall estimate (in black) and the estimate of 32 individuals 
repeatedly sampled in Population 63 (in red).  

 

  

res.M1

Fr
eq

ue
nc

y

0 1000 3000 5000

0
20

0
40

0
60

0
80

0
10

00

  

res.M2

Fr
eq

ue
nc

y

-4 -2 0 2 4

0
50

10
0

15
0

20
0

  

res.M3

Fr
eq

ue
nc

y

-4 -2 0 2 4

0
50

10
0

15
0

20
0

0 20 40 60 80

0
20

0
40

0
60

0
80

0
10

00

Non independent sam

height (cm)

N
um

be
r o

f f
ru

its



PCB 6468 - Methods in Experimental Ecology II  Fall 2016 Semester 
Pedro F. Quintana-Ascencio, David G. Jenkins, Lina M. Sánchez-Clavijo 01/15/2016 
 

 
Figure 9. Histogram of the coefficients of the models with all data (central value in 
black) and with Population 63 (central value in red).  

 

Finally, here, we assume a normal distribution for the errors, we could have evaluated alternative 
distributions for these data since number of fruits is a count. We will come back to this concern 
in another demo. 
 
Data sources: 

   
Quintana-Ascencio, P. F., E. S. Menges, and C. Weekley. 2003. A fire-explicit population 
viability analysis of Hypericum cumulicola in Florida rosemary scrub. Conservation Biology, 17: 
433-449. 
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